Research Article
BibTex RIS Cite

Climate Change Analysis in Mountainous Areas: Trends in Land Surface Temperature and Cloud Cover Ratio in the Köroğlu Mountain Region

Year 2025, Volume: 16 Issue: 2, 357 - 389, 30.07.2025

Abstract

In this study, surface temperature and cloud cover rates in the Köroğlu Mountains—one of Turkey's significant mountainous regions—were analyzed between the years 2000 and 2022 using MODIS (Terra and Aqua) satellite data. Although the region holds strategic importance due to its forested areas, agricultural lands, water resources, and settlements, it has not been adequately studied because of its mountainous terrain and the limited number of meteorological stations. In this context, surface temperature and cloud cover data for the months of January, April, July, and October were evaluated, and temporal change trends were determined using the Mann-Kendall trend test. The findings reveal that there are significant positive trends in surface temperatures in mountainous areas particularly in April, while some areas exhibited negative temperature trends during daytime in July. Cloud cover rates peaked in January and dropped to the lowest levels in July. Significant decreases in cloud cover were also detected in April and October. This study demonstrates that MODIS satellite data is an effective method for monitoring climate change in vast and rugged terrains and provides valuable contributions to regional planning, agriculture, and water resource management

References

  • Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H. & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29(28), 42539–42559. https://doi.org/10.1007/s11356-022-19718-6
  • Begert, M., & Frei, C. (2018). Long-term area-mean temperature series for Switzerland combining homogenized station data and high resolution grid data. International Journal of Climatology, 38(6), 2792–2807. https://doi.org/10.1002/joc.5460
  • Bhutiyani, M. R., Kale, V. S., & Pawar, N. J. (2007). Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya 98 during the twentieth century. Climatic Change, 85(1–2), 159–177. https://doi.org/10.1007/s10584-006-9196-1
  • Bolat, İ. , Kara, Ö. & Tok, E. (2017). Kastamonu, Karabük ve Bolu’da 1980-1999 İle 2000-2015 Yılları Arasındaki Sıcaklık ve Yağışın Değişimi . Bartın Orman Fakültesi Dergisi , 19 (1) , 276-289
  • Chen, Y., Li, W., Deng, H., Fang, G., ve Li, Z. (2016). Changes in central Asia’s Water Tower: Past, Present and future. Scientific Reports, 6(1), 35458. https://doi.org/10.1038/srep35458
  • Çeribaşı, G., Doğan, E., Sönmez, O., Kızılaslan, M. A., Demir, F., & Akkaya, U. (2014). Evaluation of temperature, rainfall and lake water level data of Sapanca Basin by trend analysis method. In Proceedings of the International Civil Engineering Architecture Symposium for Academicians (pp. 1–5). Antalya, Turkey.
  • Çeribasi, G. & Dogan, E. (2015). Trend Analysis of Average Annual Precipitation for Black Sea And Sakarya Basins (Karadeniz ve Sakarya Havzalarında Yıllık Ortalama Yağışların Trend Analizi). Uluslararası Teknolojik Bilimler Dergisi. 7. 1-7.
  • Dağ, K., & Aktaş, E. (2024). İklim değişikliğinin Türkiye tarımına etkileri. Tarım Ekonomisi Dergisi, 30(2), 173-181. https://doi.org/10.24181/tarekoder.1553204
  • Dağıdır, S., & Alıcı, O. V. (2024). Su ve Kanalizasyon İdarelerinin Stratejik Planlarında İklim Değişikliği. Kent Akademisi, 17(3), 1086-1103. https://doi.org/10.35674/kent.1442434
  • Demir, A. (2009). Küresel İklim Değişikliğinin Biyolojik Çeşitlilik ve Ekosistem Kaynakları Üzerine Etkisi. Ankara Üniversitesi Çevrebilimleri Dergisi, 1(2), 37-54. https://doi.org/10.1501/Csaum_0000000013
  • Diaz, H. F., Eischeid, J. K., Duncan, C., & Bradley, R. S. (2003). Variability of freezing levels, melting season indicators, and snow cover for selected high-elevation and continental regions in the last 50 years. Climatic Change, 33–52. https://doi.org/10.1007/978-94-015-1252-7_3
  • Elizbarashvili, M., Elizbarashvili, E., Tatishvili, M., Elizbarashvili, S., Meskhia, R., Kutaladze, N., King, L., Keggenhoff, I., ve Khardziani, T. (2017). Georgian climate change under global warming conditions. Annals of Agrarian Science, 15(1), 17–25. https://doi.org/10.1016/j.aasci.2017.02.001
  • European Environment Agency. (2022, Temmuz 20). CORINE Land Cover 1990 and 2018 datasets. Copernicus Land Monitoring Service. Retrieved from https://land.copernicus.eu/pan-european/corine-land-cover
  • Ertuğrul, M., Varol, T., & Özel, H. B. (2014). Clımate Changes In Prospect For The West Black Sea Forests. Bartın Orman Fakültesi Dergisi, 16(23), 35-43.
  • Er, R., & Atalay D., A. (2020). Sakarya Nehri Havzası’nda Sıcaklık, Yağış ve Akarsu Rejiminde Meydana Gelen Değişikliklerin İncelenmesi(Examination of Changes in Temperature, Rainfall and Stream Regime in Sakarya River Basin). Journal of Anatolian Cultural Research (JANCR), 4(2), 127–143.
  • Fujibe, F., Yamazaki, N., Katsuyama, M., & Kobayashi, K. (2005). The increasing trend of intense precipitation in Japan based on four-hourly data for a Hundred years. SOLA, 1, 41–44. https://doi.org/10.2151/sola.2005-012
  • Geveli, M. (1998), Bolu-Gerede Güneyindeki Sahanın (Köroğlu Dağları ve Çevresinin) Bitki Coğrafyası, İst. Üniv. Sosyal Bil. Enst. Basılmamış Doktora Tezi, İstanbul.
  • Gilbert, A., ve Vincent, C. (2013). Atmospheric temperature changes over the 20th century at very high elevations in the European Alps from englacial temperatures. 103 Geophysical Research Letters, 40(10), 2102–2108. https://doi.org/10.1002/grl.50401
  • Goodarzi, M. R., Sabaghzadeh, M., & Niazkar, M. (2023). Evaluation of snowmelt impacts on flood flows based on remote sensing using SRM model. Water, 15(9), 1650. https://doi.org/10.3390/w15091650
  • Guo, D., Wang, H., ve Li, D. (2012). A projection of permafrost degradation on the Tibetan Plateau during the 21st century. Journal of Geophysical Research: Atmospheres, 117(D5), n/a. https://doi.org/10.1029/2011jd016545 Günal, N. (2013). Türkiye’de İklimin Doğal Bitki Örtüsü Üzerindeki Etkileri The Effects of the Climate on the Natural Vegetation in Turkey. www.actaturcica.com
  • Halimi, M., Rezaei, M., Mohammadi, C., & Farajzadeh, M. (2017). Association between cloudiness and rainfall over Fars province in Iran. Russian Meteorology and Hydrology, 42(10), 671–676.
  • Hammad, A. A., & Salameh, A. M. (2019). Temperature analysis as an indicator of climate change in the Central Palestinian Mountains. Theoretical and Applied Climatology, 136(3–4), 1453–1464. https://doi.org/10.1007/s00704-018-2561-y
  • Ham, S., Loeb, N. G., Kato, S., Thorsen, T. J., Voigt, A., Smith, W. L., & Winker, D. M. (2025). Zonal cloud trends observed by passive MODIS and active CALIOP and CPR sensors. Journal of Climate. https://doi.org/10.1175/jcli-d-23-0722.1
  • Jiang, N., Shen, M., Chen, J., Yang, W., Zhu, X., Wang, X., & Peñuelas, J. (2023). Continuous advance in the onset of vegetation green-up in the Northern Hemisphere, during hiatuses in spring warming. Npj Climate and Atmospheric Science, 6(1). https://doi.org/10.1038/s41612-023-00343-0
  • Kaynakkan, M. Y. (2024). Köroğlu Dağlık Alanının MODIS Verileri Kullanılarak İklim Değişikliği Analizi [Yüksek lisans tezi, Ankara Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Kocakuşak, S. (1990). Köroğlu Dağı Güneyinde Nüfus ve Yerleşme Özellikleri. Ankara Üniversitesi Dil Ve Tarih-Coğrafya Fakültesi Dergisi, 33(1-2), 102-119.
  • Koç, İ. (2021). Küresel İklim Değişikliğinin Bolu’da Bazı İklim Parametreleri ve İklim Tiplerine Etkisi . Bartın Orman Fakültesi Dergisi , 23 (2) , 706-719 . DOI: 10.24011/barofd.947981
  • Lejeune, Y., Dumont, M., Panel, J.-M., Lafaysse, M., Lapalus, P., Le Gac, E., Lesaffre, B., & Morin, S. (2019). 57 years (1960–2017) of snow and meteorological observations from a mid‑altitude mountain site (Col de Porte, France, 1325 m of altitude). Earth System Science Data, 11, 71–88. https://doi.org/10.5194/essd-11-71-
  • 2019Limaheluw, J., Hall, L., De Kraker, J., Serafim, F., & Husman, A. R. (2024). Impacts of long-term climate change on human health: a global scoping review. European Journal of Public Health, 34(Supplement_3). https://doi.org/10.1093/eurpub/ckae144.474
  • Liu, X., & Chen, B. (2000). Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 20(14), 1729–1742. https://doi.org/10.1002/1097-0088(20001130)20:143.0.co;2-y.CO;2-Y
  • Liu, X., Cheng, Z., Yan, L., & Yin, Z. Y. (2009). Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Global and Planetary Change, 68(3), 164–174. https://doi.org/10.1016/j.gloplacha.2009.03.017Porte, France, 1325 m of altitude). Earth System Science Data, 11(1), 71–88. https://doi.org/10.5194/essd11-71-2019
  • Liu, H., Koren, I., Altaratz, O., & Chekroun, M. D. (2023). Opposing trends of cloud coverage over land and ocean under global warming. Atmospheric Chemistry and Physics, 23(11), 6559–6569. https://doi.org/10.5194/acp-23-6559-2023
  • Luintel, N., Ma, W., Ma, Y., Wang, B., & Subba, S. (2019). Spatial and temporal variation of daytime and nighttime MODIS land surface temperature across Nepal. Atmospheric and Oceanic Science Letters, 12(5), 305–312. https://doi.org/10.1080/16742834.2019.1625701
  • Nsengiyumva, P. (2019). African Mountains in a Changing Climate: Trends, Impacts, and Adaptation Solutions. Mountain Research and Development, 39(2). https://doi.org/10.1659/mrd-journal-d-19-00062.1
  • Ohmura, A. (2012). Enhanced temperature variability in high-altitude climate change. Theoretical and Applied Climatology, 110(4), 499–508. https://doi.org/10.1007/s00704-012-0687-x
  • Oyler, J. W., Dobrowski, S. Z., Ballantyne, A. P., Klene, A. E., & Running, S. W. (2015). Artificial amplification of warming trends across the mountains of the western United States. Geophysical Research Letters, 42(1), 153–161. https://doi.org/10.1002/2014GL062803
  • Palazzi, E., von Hardenberg, J., & Provenzale, A. (2013). Precipitation in the Hindu‑Kush Karakoram Himalaya: Observations and future scenarios. Journal of Geophysical Research: Atmospheres, 118(1), 85–100. https://doi.org/10.1029/2012JD018697
  • Pepin, N. C., & Seidel, D. J. (2005). A global comparison of surface and free-air temperatures at high elevations. Journal of Geophysical Research, 110(3), 1–15. https://doi.org/10.1029/2004JD00504
  • Qin, J., Yang, K., Liang, S., & Guo, X. (2009). The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Climatic Change, 97(1–2), 321–327. https://doi.org/10.1007/s10584-009-9733-9
  • Ruiz, D., Moreno, H. A., Gutiérrez, M. E., & Zapata, P. A. (2008). Changing climate and endangered high mountain ecosystems in Colombia. Science of the Total Environment, 398(1–3), 122–132. https://doi.org/10.1016/j.scitotenv.2008.02.038
  • Rusticucci, M., Zazulie, N., & Raga, G. B. (2014). Regional winter climate of the southern central Andes: Assessing the performance of ERA-Interim for climate studies. Journal of Geophysical Research: Atmospheres, 119(14), 8568–8582. https://doi.org/10.1002/2013JD021167
  • Scherrer, S. C., Ceppi, P., Croci-Maspoli, M., & Appenzeller, C. (2012). Snow-albedo feedback and Swiss spring temperature trends. Theoretical and Applied Climatology, 110(4), 509–516. https://doi.org/10.1007/s00704-012-0712-0
  • Somuncu, M. (2018). İklim Değişikliği Türkiye Turizmi İçin Bir Tehdit mi, Bir Fırsat mı? [Climate Change: Threat or Opportunity for Turkey’s Tourism?]. Proceedings of the International Geography Symposium on the 30th Anniversary of TUCAUM, Ankara, Türkiye.
  • Spinoni, J., Szalai, S., Szentimrey, T., Lakatos, M., Bihari, Z., Nagy, A., Németh, K., Kovács, T., Mihic, D., Dacic, M., Petrovic, P., Kržič, A., Hiebl, J., Auer, I., Milkovic, J., ŠTepánek, P., Zahradnícek, P., Kilar, P., Limanowka, D., . . . Vogt, J. (2014). Climate of the Carpathian Region in the period 1961–2010: 113 climatologies and trends of 10 variables. International Journal of Climatology, 35(7), 1322–1341. https://doi.org/10.1002/joc.4059
  • Stephens, D. J., & Lyons, T. J. (1998). Rainfall–yield relationships across the Australian wheatbelt. Australian Journal of Agricultural Research, 49, 211–223.
  • Tuncer, G. & Sonmez, O. (2023). Trend analysis of Sapanca Lake water levels using Mann-Kendall and innovative Methods. 10.31462/icearc.2023.hyd834.
  • Türkeş, M. (2012). Türkiye’de gözlenen ve öngörülen iklim değişikliği, kuraklık ve çölleşme [Observed and projected climate change, drought and desertification in Turkey]. Ankara Üniversitesi Çevrebilimleri Dergisi, 4(2), 1–32. https://doi.org/10.1501/Csaum_0000000063
  • Vuille, M., Franquist, E., Garreaud, R., Lavado Casimiro, W. S., ve Cáceres, B. (2015). Impact of the global warming hiatus on Andean temperature. Journal of Geophysical Research: Atmospheres, https://doi.org/10.1002/2015JD023126
  • Wendler, G., Gordon, T., & Stuefer, M. (2017). On the precipitation and precipitation change in Alaska. Atmosphere, 8(12), Article 253. https://doi.org/10.3390/atmos8120253
  • World Meteorological Organization. (2023, 5 Aralık). Rate and impact of climate change surges dramatically in 2011–2020. WMO. https://public.wmo.int/news/media-centre/rate-and-impact-of-climate-change-surges-dramatically-2011-2020 (Erişim tarihi: 11 Haziran 2025).
  • Xu, F., Jia, Y., Peng, H., Niu, C., ve Liu, J. (2018). Temperature and precipitation trends and their links with elevation in the Hengduan Mountain region, China. Climate Research, 75(2), 163–180. https://doi.org/10.3354/cr01516
  • Yan, L., & Liu, X. (2014). Has climatic warming over the Tibetan Plateau Paused or continued in recent years. Journal of Earth, Ocean and Atmospheric Sciences, 1(1), 13–28
  • Yılmaz, A. (2018). Batı Karadeniz Bölümünde Sıcaklık ve Yağış Verilerinin Trend Analizi. Yüksek Lisans Tezi, Karabük Üniversitesi Sosyal Bilimler Enstitüsü Coğrafya Anabilim Dalı, Karabük. 361 p.
  • Yılmaz, E. (2018). Monthly precipitation trends, precipitation temporal shifts and precipitation trends regimes in Turkey (1971-2010)<p>Türkiye’de aylık yağış eğilimleri, yağış kaymaları ve yağış Eğilim Rejimleri (1971-2010). Journal of Human Sciences, 15(4), 2066–2091.
  • Yılmaz, E., & Çiçek, İ. (2018). Türkiye’nin detaylandırılmış Köppen-Geiger iklim bölgeleri, Journal of Human Sciences15(2), 225-242
  • Yu, Y.-S., Zou, S., & Whittemore, D. (1993). Non-parametric trend analysis of water quality data of rivers in Kansas. Journal of Hydrology, 150(1), 61–80. https://doi.org/10.1016/0022-1694(93)90156-4
  • Zhao, W., He, J., Wu, Y., Xiong, D., Wen, F., & Li, A. (2019). An Analysis of Land Surface Temperature Trends in the Central Himalayan Region Based on MODIS Products. Remote Sensing, 11(8), 900. https://doi.org/10.3390/rs11080900

DAĞLIK ALANLARDA İKLİM DEĞİŞİKLİĞİ ANALİZİ: KÖROĞLU DAĞLIK ALANI’NDA YÜZEY SICAKLIK VE BULUTLULUK ORANI EĞİLİMLERİ

Year 2025, Volume: 16 Issue: 2, 357 - 389, 30.07.2025

Abstract

Bu çalışmada Türkiye’nin önemli dağlık bölgelerinden biri olan Köroğlu Dağları’nda, 2000–2022 yılları arasında, MODIS (Terra ve Aqua) uydu verileri aracılığıyla yüzey sıcaklığı ve bulutluluk oranları analiz edilmiştir. Bölge; ormanlık alanları, tarım sahaları, su kaynakları ve yerleşim birimleriyle stratejik öneme sahip olmasına rağmen, dağlık yapısı ve meteorolojik istasyonların sınırlılığı nedeniyle gerektiği gibi incelenememektedir. Bu kapsamda ocak, nisan, temmuz ve ekim aylarına ait yüzey sıcaklığı ve bulutluluk verileri değerlendirilmiş; Mann-Kendall eğilim testi ile zamansal değişim eğilimleri belirlenmiştir. Bulgular, özellikle nisan ayında dağlık alanlarda yüzey sıcaklıklarında anlamlı pozitif eğilimler olduğunu, temmuz ayında ise bazı alanlarda gündüz vakitlerinde negatif sıcaklık eğilimlerinin görüldüğünü ortaya koymaktadır. Bulutluluk oranları en yüksek seviyeye ocak ayında ulaşırken, temmuz ayında en düşük seviyelere gerilemiştir. Nisan ve ekim aylarında ise anlamlı bulutluluk azalmaları tespit edilmiştir. Bu çalışma, MODIS uydu verilerinin geniş ve engebeli alanlarda iklim değişimini izleme açısından etkili bir yöntem olduğunu ortaya koymakta ve bölgesel planlama, tarım ve su kaynakları yönetimi açısından önemli katkılar sunmaktadır.

References

  • Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H. & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29(28), 42539–42559. https://doi.org/10.1007/s11356-022-19718-6
  • Begert, M., & Frei, C. (2018). Long-term area-mean temperature series for Switzerland combining homogenized station data and high resolution grid data. International Journal of Climatology, 38(6), 2792–2807. https://doi.org/10.1002/joc.5460
  • Bhutiyani, M. R., Kale, V. S., & Pawar, N. J. (2007). Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya 98 during the twentieth century. Climatic Change, 85(1–2), 159–177. https://doi.org/10.1007/s10584-006-9196-1
  • Bolat, İ. , Kara, Ö. & Tok, E. (2017). Kastamonu, Karabük ve Bolu’da 1980-1999 İle 2000-2015 Yılları Arasındaki Sıcaklık ve Yağışın Değişimi . Bartın Orman Fakültesi Dergisi , 19 (1) , 276-289
  • Chen, Y., Li, W., Deng, H., Fang, G., ve Li, Z. (2016). Changes in central Asia’s Water Tower: Past, Present and future. Scientific Reports, 6(1), 35458. https://doi.org/10.1038/srep35458
  • Çeribaşı, G., Doğan, E., Sönmez, O., Kızılaslan, M. A., Demir, F., & Akkaya, U. (2014). Evaluation of temperature, rainfall and lake water level data of Sapanca Basin by trend analysis method. In Proceedings of the International Civil Engineering Architecture Symposium for Academicians (pp. 1–5). Antalya, Turkey.
  • Çeribasi, G. & Dogan, E. (2015). Trend Analysis of Average Annual Precipitation for Black Sea And Sakarya Basins (Karadeniz ve Sakarya Havzalarında Yıllık Ortalama Yağışların Trend Analizi). Uluslararası Teknolojik Bilimler Dergisi. 7. 1-7.
  • Dağ, K., & Aktaş, E. (2024). İklim değişikliğinin Türkiye tarımına etkileri. Tarım Ekonomisi Dergisi, 30(2), 173-181. https://doi.org/10.24181/tarekoder.1553204
  • Dağıdır, S., & Alıcı, O. V. (2024). Su ve Kanalizasyon İdarelerinin Stratejik Planlarında İklim Değişikliği. Kent Akademisi, 17(3), 1086-1103. https://doi.org/10.35674/kent.1442434
  • Demir, A. (2009). Küresel İklim Değişikliğinin Biyolojik Çeşitlilik ve Ekosistem Kaynakları Üzerine Etkisi. Ankara Üniversitesi Çevrebilimleri Dergisi, 1(2), 37-54. https://doi.org/10.1501/Csaum_0000000013
  • Diaz, H. F., Eischeid, J. K., Duncan, C., & Bradley, R. S. (2003). Variability of freezing levels, melting season indicators, and snow cover for selected high-elevation and continental regions in the last 50 years. Climatic Change, 33–52. https://doi.org/10.1007/978-94-015-1252-7_3
  • Elizbarashvili, M., Elizbarashvili, E., Tatishvili, M., Elizbarashvili, S., Meskhia, R., Kutaladze, N., King, L., Keggenhoff, I., ve Khardziani, T. (2017). Georgian climate change under global warming conditions. Annals of Agrarian Science, 15(1), 17–25. https://doi.org/10.1016/j.aasci.2017.02.001
  • European Environment Agency. (2022, Temmuz 20). CORINE Land Cover 1990 and 2018 datasets. Copernicus Land Monitoring Service. Retrieved from https://land.copernicus.eu/pan-european/corine-land-cover
  • Ertuğrul, M., Varol, T., & Özel, H. B. (2014). Clımate Changes In Prospect For The West Black Sea Forests. Bartın Orman Fakültesi Dergisi, 16(23), 35-43.
  • Er, R., & Atalay D., A. (2020). Sakarya Nehri Havzası’nda Sıcaklık, Yağış ve Akarsu Rejiminde Meydana Gelen Değişikliklerin İncelenmesi(Examination of Changes in Temperature, Rainfall and Stream Regime in Sakarya River Basin). Journal of Anatolian Cultural Research (JANCR), 4(2), 127–143.
  • Fujibe, F., Yamazaki, N., Katsuyama, M., & Kobayashi, K. (2005). The increasing trend of intense precipitation in Japan based on four-hourly data for a Hundred years. SOLA, 1, 41–44. https://doi.org/10.2151/sola.2005-012
  • Geveli, M. (1998), Bolu-Gerede Güneyindeki Sahanın (Köroğlu Dağları ve Çevresinin) Bitki Coğrafyası, İst. Üniv. Sosyal Bil. Enst. Basılmamış Doktora Tezi, İstanbul.
  • Gilbert, A., ve Vincent, C. (2013). Atmospheric temperature changes over the 20th century at very high elevations in the European Alps from englacial temperatures. 103 Geophysical Research Letters, 40(10), 2102–2108. https://doi.org/10.1002/grl.50401
  • Goodarzi, M. R., Sabaghzadeh, M., & Niazkar, M. (2023). Evaluation of snowmelt impacts on flood flows based on remote sensing using SRM model. Water, 15(9), 1650. https://doi.org/10.3390/w15091650
  • Guo, D., Wang, H., ve Li, D. (2012). A projection of permafrost degradation on the Tibetan Plateau during the 21st century. Journal of Geophysical Research: Atmospheres, 117(D5), n/a. https://doi.org/10.1029/2011jd016545 Günal, N. (2013). Türkiye’de İklimin Doğal Bitki Örtüsü Üzerindeki Etkileri The Effects of the Climate on the Natural Vegetation in Turkey. www.actaturcica.com
  • Halimi, M., Rezaei, M., Mohammadi, C., & Farajzadeh, M. (2017). Association between cloudiness and rainfall over Fars province in Iran. Russian Meteorology and Hydrology, 42(10), 671–676.
  • Hammad, A. A., & Salameh, A. M. (2019). Temperature analysis as an indicator of climate change in the Central Palestinian Mountains. Theoretical and Applied Climatology, 136(3–4), 1453–1464. https://doi.org/10.1007/s00704-018-2561-y
  • Ham, S., Loeb, N. G., Kato, S., Thorsen, T. J., Voigt, A., Smith, W. L., & Winker, D. M. (2025). Zonal cloud trends observed by passive MODIS and active CALIOP and CPR sensors. Journal of Climate. https://doi.org/10.1175/jcli-d-23-0722.1
  • Jiang, N., Shen, M., Chen, J., Yang, W., Zhu, X., Wang, X., & Peñuelas, J. (2023). Continuous advance in the onset of vegetation green-up in the Northern Hemisphere, during hiatuses in spring warming. Npj Climate and Atmospheric Science, 6(1). https://doi.org/10.1038/s41612-023-00343-0
  • Kaynakkan, M. Y. (2024). Köroğlu Dağlık Alanının MODIS Verileri Kullanılarak İklim Değişikliği Analizi [Yüksek lisans tezi, Ankara Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Kocakuşak, S. (1990). Köroğlu Dağı Güneyinde Nüfus ve Yerleşme Özellikleri. Ankara Üniversitesi Dil Ve Tarih-Coğrafya Fakültesi Dergisi, 33(1-2), 102-119.
  • Koç, İ. (2021). Küresel İklim Değişikliğinin Bolu’da Bazı İklim Parametreleri ve İklim Tiplerine Etkisi . Bartın Orman Fakültesi Dergisi , 23 (2) , 706-719 . DOI: 10.24011/barofd.947981
  • Lejeune, Y., Dumont, M., Panel, J.-M., Lafaysse, M., Lapalus, P., Le Gac, E., Lesaffre, B., & Morin, S. (2019). 57 years (1960–2017) of snow and meteorological observations from a mid‑altitude mountain site (Col de Porte, France, 1325 m of altitude). Earth System Science Data, 11, 71–88. https://doi.org/10.5194/essd-11-71-
  • 2019Limaheluw, J., Hall, L., De Kraker, J., Serafim, F., & Husman, A. R. (2024). Impacts of long-term climate change on human health: a global scoping review. European Journal of Public Health, 34(Supplement_3). https://doi.org/10.1093/eurpub/ckae144.474
  • Liu, X., & Chen, B. (2000). Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 20(14), 1729–1742. https://doi.org/10.1002/1097-0088(20001130)20:143.0.co;2-y.CO;2-Y
  • Liu, X., Cheng, Z., Yan, L., & Yin, Z. Y. (2009). Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Global and Planetary Change, 68(3), 164–174. https://doi.org/10.1016/j.gloplacha.2009.03.017Porte, France, 1325 m of altitude). Earth System Science Data, 11(1), 71–88. https://doi.org/10.5194/essd11-71-2019
  • Liu, H., Koren, I., Altaratz, O., & Chekroun, M. D. (2023). Opposing trends of cloud coverage over land and ocean under global warming. Atmospheric Chemistry and Physics, 23(11), 6559–6569. https://doi.org/10.5194/acp-23-6559-2023
  • Luintel, N., Ma, W., Ma, Y., Wang, B., & Subba, S. (2019). Spatial and temporal variation of daytime and nighttime MODIS land surface temperature across Nepal. Atmospheric and Oceanic Science Letters, 12(5), 305–312. https://doi.org/10.1080/16742834.2019.1625701
  • Nsengiyumva, P. (2019). African Mountains in a Changing Climate: Trends, Impacts, and Adaptation Solutions. Mountain Research and Development, 39(2). https://doi.org/10.1659/mrd-journal-d-19-00062.1
  • Ohmura, A. (2012). Enhanced temperature variability in high-altitude climate change. Theoretical and Applied Climatology, 110(4), 499–508. https://doi.org/10.1007/s00704-012-0687-x
  • Oyler, J. W., Dobrowski, S. Z., Ballantyne, A. P., Klene, A. E., & Running, S. W. (2015). Artificial amplification of warming trends across the mountains of the western United States. Geophysical Research Letters, 42(1), 153–161. https://doi.org/10.1002/2014GL062803
  • Palazzi, E., von Hardenberg, J., & Provenzale, A. (2013). Precipitation in the Hindu‑Kush Karakoram Himalaya: Observations and future scenarios. Journal of Geophysical Research: Atmospheres, 118(1), 85–100. https://doi.org/10.1029/2012JD018697
  • Pepin, N. C., & Seidel, D. J. (2005). A global comparison of surface and free-air temperatures at high elevations. Journal of Geophysical Research, 110(3), 1–15. https://doi.org/10.1029/2004JD00504
  • Qin, J., Yang, K., Liang, S., & Guo, X. (2009). The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Climatic Change, 97(1–2), 321–327. https://doi.org/10.1007/s10584-009-9733-9
  • Ruiz, D., Moreno, H. A., Gutiérrez, M. E., & Zapata, P. A. (2008). Changing climate and endangered high mountain ecosystems in Colombia. Science of the Total Environment, 398(1–3), 122–132. https://doi.org/10.1016/j.scitotenv.2008.02.038
  • Rusticucci, M., Zazulie, N., & Raga, G. B. (2014). Regional winter climate of the southern central Andes: Assessing the performance of ERA-Interim for climate studies. Journal of Geophysical Research: Atmospheres, 119(14), 8568–8582. https://doi.org/10.1002/2013JD021167
  • Scherrer, S. C., Ceppi, P., Croci-Maspoli, M., & Appenzeller, C. (2012). Snow-albedo feedback and Swiss spring temperature trends. Theoretical and Applied Climatology, 110(4), 509–516. https://doi.org/10.1007/s00704-012-0712-0
  • Somuncu, M. (2018). İklim Değişikliği Türkiye Turizmi İçin Bir Tehdit mi, Bir Fırsat mı? [Climate Change: Threat or Opportunity for Turkey’s Tourism?]. Proceedings of the International Geography Symposium on the 30th Anniversary of TUCAUM, Ankara, Türkiye.
  • Spinoni, J., Szalai, S., Szentimrey, T., Lakatos, M., Bihari, Z., Nagy, A., Németh, K., Kovács, T., Mihic, D., Dacic, M., Petrovic, P., Kržič, A., Hiebl, J., Auer, I., Milkovic, J., ŠTepánek, P., Zahradnícek, P., Kilar, P., Limanowka, D., . . . Vogt, J. (2014). Climate of the Carpathian Region in the period 1961–2010: 113 climatologies and trends of 10 variables. International Journal of Climatology, 35(7), 1322–1341. https://doi.org/10.1002/joc.4059
  • Stephens, D. J., & Lyons, T. J. (1998). Rainfall–yield relationships across the Australian wheatbelt. Australian Journal of Agricultural Research, 49, 211–223.
  • Tuncer, G. & Sonmez, O. (2023). Trend analysis of Sapanca Lake water levels using Mann-Kendall and innovative Methods. 10.31462/icearc.2023.hyd834.
  • Türkeş, M. (2012). Türkiye’de gözlenen ve öngörülen iklim değişikliği, kuraklık ve çölleşme [Observed and projected climate change, drought and desertification in Turkey]. Ankara Üniversitesi Çevrebilimleri Dergisi, 4(2), 1–32. https://doi.org/10.1501/Csaum_0000000063
  • Vuille, M., Franquist, E., Garreaud, R., Lavado Casimiro, W. S., ve Cáceres, B. (2015). Impact of the global warming hiatus on Andean temperature. Journal of Geophysical Research: Atmospheres, https://doi.org/10.1002/2015JD023126
  • Wendler, G., Gordon, T., & Stuefer, M. (2017). On the precipitation and precipitation change in Alaska. Atmosphere, 8(12), Article 253. https://doi.org/10.3390/atmos8120253
  • World Meteorological Organization. (2023, 5 Aralık). Rate and impact of climate change surges dramatically in 2011–2020. WMO. https://public.wmo.int/news/media-centre/rate-and-impact-of-climate-change-surges-dramatically-2011-2020 (Erişim tarihi: 11 Haziran 2025).
  • Xu, F., Jia, Y., Peng, H., Niu, C., ve Liu, J. (2018). Temperature and precipitation trends and their links with elevation in the Hengduan Mountain region, China. Climate Research, 75(2), 163–180. https://doi.org/10.3354/cr01516
  • Yan, L., & Liu, X. (2014). Has climatic warming over the Tibetan Plateau Paused or continued in recent years. Journal of Earth, Ocean and Atmospheric Sciences, 1(1), 13–28
  • Yılmaz, A. (2018). Batı Karadeniz Bölümünde Sıcaklık ve Yağış Verilerinin Trend Analizi. Yüksek Lisans Tezi, Karabük Üniversitesi Sosyal Bilimler Enstitüsü Coğrafya Anabilim Dalı, Karabük. 361 p.
  • Yılmaz, E. (2018). Monthly precipitation trends, precipitation temporal shifts and precipitation trends regimes in Turkey (1971-2010)<p>Türkiye’de aylık yağış eğilimleri, yağış kaymaları ve yağış Eğilim Rejimleri (1971-2010). Journal of Human Sciences, 15(4), 2066–2091.
  • Yılmaz, E., & Çiçek, İ. (2018). Türkiye’nin detaylandırılmış Köppen-Geiger iklim bölgeleri, Journal of Human Sciences15(2), 225-242
  • Yu, Y.-S., Zou, S., & Whittemore, D. (1993). Non-parametric trend analysis of water quality data of rivers in Kansas. Journal of Hydrology, 150(1), 61–80. https://doi.org/10.1016/0022-1694(93)90156-4
  • Zhao, W., He, J., Wu, Y., Xiong, D., Wen, F., & Li, A. (2019). An Analysis of Land Surface Temperature Trends in the Central Himalayan Region Based on MODIS Products. Remote Sensing, 11(8), 900. https://doi.org/10.3390/rs11080900
There are 57 citations in total.

Details

Primary Language Turkish
Subjects Türkiye Physical Geography
Journal Section Research Articles
Authors

Murat Yiğit Kaynakkan 0009-0006-5149-6909

Erkan Yilmaz 0000-0002-3821-3648

Publication Date July 30, 2025
Submission Date June 17, 2025
Acceptance Date July 14, 2025
Published in Issue Year 2025 Volume: 16 Issue: 2

Cite

APA Kaynakkan, M. Y., & Yilmaz, E. (2025). DAĞLIK ALANLARDA İKLİM DEĞİŞİKLİĞİ ANALİZİ: KÖROĞLU DAĞLIK ALANI’NDA YÜZEY SICAKLIK VE BULUTLULUK ORANI EĞİLİMLERİ. Ankara Üniversitesi Sosyal Bilimler Dergisi, 16(2), 357-389.