Research Article
BibTex RIS Cite

The Effect of Logic Pro X-Based Project-Based Learning on Gifted Students’ Musical Perception and Social-Emotional Development

Year 2025, Issue: 103, 263 - 283, 10.09.2025
https://doi.org/10.17753/sosekev.1631561

Abstract

This study aimed to investigate the effects of Logic Pro X-based project-based learning on the musical perception and social-emotional skills of gifted students. The research was conducted using a quasi-experimental design and involved 24 gifted students studying at Diyarbakır BİLSEM (12 in the experimental group and 12 in the control group). Students’ musical perception levels were assessed using the Primary Measures of Music Audiation (PMMA) developed by Edwin E. Gordon, while their social-emotional competencies were measured using the Social-Emotional Competence Questionnaire (SDCQ). In addition to quantitative data, qualitative data were collected from the experimental group through semi-structured interviews and analyzed using content analysis. The findings revealed that the Logic Pro X-based project training significantly improved both the musical perception and social-emotional skills of the students in the experimental group. Compared to the traditional instruction applied to the control group, the improvements in the experimental group were more pronounced. No statistically significant improvement was observed in the control group. Furthermore, the qualitative findings obtained from student interviews indicated that the process supported pedagogical gains in areas such as creative expression, collaboration, and digital literacy. These results suggest that project-based learning supported by digital tools promotes multi-dimensional development in gifted students, including creativity, problem-solving, and social interaction skills. The integration of innovative digital tools like Logic Pro X into educational settings not only enhances individual learning experiences but also strengthens cooperation and communication within groups. The study concludes that digital music education is an effective method not only for cognitive development but also for fostering social-emotional growth. Accordingly, the integration of innovative educational practices into mainstream education is emphasized, and the widespread use of digital tools is recommended to enhance learning processes.

References

  • Bauer, W. I. (2014). Music learning and technology. Oxford University.
  • Campayo–Muñoz, E. Á., & Cabedo–Mas, A. (2017). The role of emotional skills in music education. British Journal of Music Education, 34(3), 243–258. https://doi.org/10.1017/S0265051717000067
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Erlbaum.
  • Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed.). Sage.
  • Creswell, J. W., & Plano Clark, V. L. (2018). Designing and conducting mixed methods research (3rd ed.). Sage.
  • Çaydere, O., & Akgün, N. (2023). Eğitimde yenilikçi teknolojilerin kullanımı ve çağdaş içerik tasarlama. Stratejik ve Sosyal Araştırmalar Dergisi, 7(2), 439–451. https://doi.org/10.30692/sisad.1254245
  • Dorfman, J. (2013). Theory and practice of technology-based music instruction. Oxford University.
  • Ekşi, H., Tuncer, E., & Avcu, A. (2019). Sosyal Duygusal Yeterlik Anketi’nin (SDYA) Türkçe’ye adaptasyonu: Geçerlik ve güvenirlik çalışması. Marmara Üniversitesi Atatürk Eğitim Fakültesi Eğitim Bilimleri Dergisi, 50(50), 109–124.
  • Ercan, A. (2017). Çocuk gelişiminde müzik eğitiminin sosyal etkileri. Anadolu Üniversitesi Eğitim Fakültesi Dergisi, 12(4), 101–115. https://doi.org/10.12345/auefd.2017.005
  • Field, A. (2018). Discovering statistics using IBM SPSS Statistics (5th ed.). Sage.
  • Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2011). How to design and evaluate research in education (8th ed.). McGraw-Hill.
  • Gagné, F. (2004). Transforming gifts into talents: The DMGT as a developmental model. High Ability Studies, 15(2), 23–32. https://doi.org/10.1080/1359813042000314682
  • Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. The Journal of Neuroscience, 23(27), 9240–9245. https://doi.org/10.1523/JNEUROSCI.23-27-09240.2003
  • George, D., & Mallery, P. (2010). SPSS for Windows step by step: A simple guide and reference (10th ed.). Boston, MA.
  • Gordon, E. E. (1989). Learning sequences in music: Skill, content, and patterns. GIA.
  • Herholz, S. C., & Zatorre, R. J. (2012). Musical training as a framework for brain plasticity: Behavior, function, and structure. Neuron, 76(3), 486–502. https://doi.org/10.1016/j.neuron.2012.10.011
  • IBM Corp. (2020). IBM SPSS Statistics for Windows, Version 27.0.
  • Jaap, A. S. (2011). Recognising and developing musical gift and talent [Doctoral thesis, University of Glasgow]. University of Glasgow. https://theses.gla.ac.uk/2826/
  • Kartal, H. (2020). Listening to colourful voices: How do children imagine their music lessons in school? International Online Journal of Primary Education, 9(1), 22–38.
  • Kibici, V. B. (2022). The effect of project-based learning approach on lesson outcomes, attitudes, and retention of learned in secondary school music. OPUS Toplum Araştırmaları Dergisi, 19(49), 8–14.
  • Lee, S. Y., Olszewski-Kubilius, P., & Thomson, D. L. (2012). Academically gifted students' perceived interpersonal competence and peer relationships. Journal of Research in Music Education, 60(4), 8–28.
  • Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. The Annals of Mathematical Statistics, 18(1), 50–60. https://doi.org/10.1214/aoms/1177730491
  • Mayer, R. E. (2020). Multimedia learning (3rd ed.). Cambridge. https://doi.org/10.1017/9781316941355
  • Miendlarzewska, E. A., & Trost, W. J. (2014). How musical training affects cognitive development: Rhythm, reward and other modulating factors. Frontiers in Psychology, 5, Article 605, 1–6. https://doi.org/10.3389/fpsyg.2014.00605
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (2nd ed.). Sage.
  • Moreno, S., Bialystok, E., Barac, R., Schellenberg, E. G., Cepeda, N. J., & Chau, T. (2011). Short-term music training enhances verbal intelligence and executive function. Psychological Science, 22(11), 1425–1433. https://doi.org/10.1177/0956797611416999
  • Muijs, D. (2010). Doing quantitative research in education with SPSS (2nd ed.). Sage.
  • Neihart, M. (1999). The social and emotional development of gifted children. Roeper Review, 21(1), 15–18. https://doi.org/10.1080/02783199909553994
  • Oskarita, E., & Arasy, H. N. (2024). The role of digital tools in enhancing collaborative learning in secondary education. International Journal of Educational Research, 1(1), 26–32. https://doi.org/10.62951/ijer.v1i1.15
  • Patton, M. Q. (2002). Qualitative research and evaluation methods (3rd ed.). Sage.
  • Perloff, R. (1997). Daniel Goleman’s Emotional intelligence: Why it can matter more than IQ [Review of the book Emotional Intelligence, by D. Goleman]. The Psychologist-Manager Journal, 1(1), 21–22. https://doi.org/10.1037/h0095822
  • Pfeiffer, S. I. (2013). Serving the gifted: Evidence-based clinical and psychoeducational practice. Routledge.
  • Savery, J. R. (2006). Overview of problem-based learning: Definitions and distinctions. Interdisciplinary Journal of Problem-Based Learning, 1(1), 9–20. https://doi.org/10.7771/1541-5015.1002
  • Schellenberg, E. G. (2006). Long-term positive associations between music lessons and IQ. Journal of Educational Psychology, 98(2), 457–468. https://doi.org/10.1037/0022-0663.98.2.457
  • Schwartz, D. L., & McDermott, M. (2004). Teaching with technology: A framework for integrating multimedia. Educational Psychology Review, 16(2), 212–220. https://doi.org/10.1023/B:EDPR.0000035413.89237.9a
  • Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalized causal inference. HoughtonMifflin.
  • Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3–4), 591–611. https://doi.org/10.1093/biomet/52.3-4.591
  • Silverman, L. K. (1993). Counseling the gifted and talented. Love.
  • Subotnik, R. F., Olszewski-Kubilius, P., & Worrell, F. C. (2011). Rethinking giftedness and gifted education: A proposed direction forward based on psychological science. Psychological Science in the Public Interest, 12(1), 3–54. https://doi.org/10.1177/1529100611418056
  • Swan, K. (2005). A constructivist model for thinking about teaching and learning. Journal of Asynchronous Learning Networks, 9(1), 7–24.
  • Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Pearson.
  • Thomas, J. W. (2000). A review of research on project-based learning. The Autodesk Foundation.
  • Torrance, E. P. (1993). Understanding creativity: Where to start? Psychological Inquiry, 4(3), 232–234. https://doi.org/10.1207/s15327965pli0403_12
  • Tosunoğlu, E. (2021). Özel yetenekli öğrencilerin öğretiminde dijital tabanlı uygulamalar: Son 10 yılda yapılan araştırmalardaki eğilimlerin incelenmesi. Instructional Technology and Lifelong Learning, 2(1), 53–74. https://doi.org/10.52911/itall.869692
  • VanTassel-Baska, J., & Stambaugh, T. (2005). Challenges and possibilities for serving gifted learners in the regular classroom. Theory Into Practice, 44(3), 211–217. https://doi.org/10.1207/s15430421tip4403_5
  • Yıldırım, A., & Şimşek, H. (2022). Sosyal bilimlerde nitel araştırma yöntemleri (13. baskı). Seçkin.
  • Zatorre, R. J., & Salimpoor, V. N. (2013). From perception to pleasure: Music and its neural substrates. Proceedings of the National Academy of Sciences, 110(Suppl 2), 10430–10437. https://doi.org/10.1073/pnas.1301228110
  • Webster, P. R. (2012). Rethinking music teaching and learning in the digital age. In G. E. McPherson & G. F. Welch (Eds.), The Oxford handbook of music education (Vol. 1, pp. 439–454). Oxford University.
  • Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80–83. https://doi.org/10.2307/3001968

LOGİC PRO X TABANLI PROJE EĞİTİMİNİN ÜSTÜN YETENEKLİ ÖĞRENCİLERİN MÜZİKAL ALGI VE SOSYAL-DUYGUSAL GELİŞİMİNE ETKİSİ

Year 2025, Issue: 103, 263 - 283, 10.09.2025
https://doi.org/10.17753/sosekev.1631561

Abstract

Bu araştırma, Logic Pro X tabanlı proje eğitiminin, üstün yetenekli öğrencilerin müzikal algı ve sosyal-duygusal becerileri üzerindeki etkilerini incelemek amacıyla gerçekleştirilmiştir. Çalışma, yarı deneysel desen kullanılarak yürütülmüş ve Diyarbakır BİLSEM’de öğrenim gören 24 üstün yetenekli öğrenci (deney grubu: 12, kontrol grubu: 12) üzerinde uygulanmıştır. Araştırmada, öğrencilerin müzikal algı düzeyleri, Edwin E. Gordon tarafından geliştirilen Müzikal Algının Birincil Ölçümleri (PMMA) testi ile; sosyal-duygusal becerileri ise Sosyal Duygusal Yeterlik Anketi (SDYA) ile değerlendirilmiştir. Nicel verilere ek olarak, deney grubundaki 12 öğrenciden elde edilen nitel veriler, yarı yapılandırılmış görüşme formu aracılığıyla toplanmış ve içerik analizi yöntemiyle değerlendirilmiştir. Elde edilen bulgular, Logic Pro X tabanlı proje eğitiminin, deney grubundaki öğrencilerin hem müzikal algı düzeylerini hem de sosyal-duygusal becerilerini anlamlı düzeyde artırdığını ortaya koymuştur. Deney grubunda gözlemlenen bu gelişim, kontrol grubundaki geleneksel öğretim yöntemleriyle elde edilen sonuçlarla kıyaslandığında daha belirgindir. Kontrol grubunda, müzikal algı ve sosyal-duygusal becerilerde istatistiksel olarak anlamlı bir gelişim tespit edilmemiştir. Ayrıca, öğrenci görüşlerinden elde edilen nitel bulgular, bu sürecin yaratıcı ifade, iş birliği ve dijital becerilerin gelişimi açısından pedagojik olarak destekleyici olduğunu ortaya koymuştur. Bu sonuçlar, dijital araçlarla desteklenen proje tabanlı eğitimin, üstün yetenekli öğrencilerin yaratıcılık, problem çözme ve sosyal etkileşim becerileri gibi çok boyutlu gelişim alanlarını desteklediğini göstermektedir. Logic Pro X gibi yenilikçi dijital araçların eğitim süreçlerine entegrasyonu, bireysel öğrenme deneyimlerinin yanı sıra grup içi iş birliği ve iletişim becerilerini de güçlendirmiştir. Araştırma, dijital müzik eğitiminin yalnızca bilişsel değil, aynı zamanda sosyal-duygusal gelişim açısından da etkili bir yöntem olduğunu ortaya koymaktadır. Bu kapsamda, yenilikçi eğitim yaklaşımlarının genel eğitim sistemine entegrasyonunun önemine vurgu yapılmakta ve dijital araçların daha yaygın kullanımının eğitim süreçlerine katkı sağlayabileceği değerlendirilmektedir.

References

  • Bauer, W. I. (2014). Music learning and technology. Oxford University.
  • Campayo–Muñoz, E. Á., & Cabedo–Mas, A. (2017). The role of emotional skills in music education. British Journal of Music Education, 34(3), 243–258. https://doi.org/10.1017/S0265051717000067
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Erlbaum.
  • Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed.). Sage.
  • Creswell, J. W., & Plano Clark, V. L. (2018). Designing and conducting mixed methods research (3rd ed.). Sage.
  • Çaydere, O., & Akgün, N. (2023). Eğitimde yenilikçi teknolojilerin kullanımı ve çağdaş içerik tasarlama. Stratejik ve Sosyal Araştırmalar Dergisi, 7(2), 439–451. https://doi.org/10.30692/sisad.1254245
  • Dorfman, J. (2013). Theory and practice of technology-based music instruction. Oxford University.
  • Ekşi, H., Tuncer, E., & Avcu, A. (2019). Sosyal Duygusal Yeterlik Anketi’nin (SDYA) Türkçe’ye adaptasyonu: Geçerlik ve güvenirlik çalışması. Marmara Üniversitesi Atatürk Eğitim Fakültesi Eğitim Bilimleri Dergisi, 50(50), 109–124.
  • Ercan, A. (2017). Çocuk gelişiminde müzik eğitiminin sosyal etkileri. Anadolu Üniversitesi Eğitim Fakültesi Dergisi, 12(4), 101–115. https://doi.org/10.12345/auefd.2017.005
  • Field, A. (2018). Discovering statistics using IBM SPSS Statistics (5th ed.). Sage.
  • Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2011). How to design and evaluate research in education (8th ed.). McGraw-Hill.
  • Gagné, F. (2004). Transforming gifts into talents: The DMGT as a developmental model. High Ability Studies, 15(2), 23–32. https://doi.org/10.1080/1359813042000314682
  • Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. The Journal of Neuroscience, 23(27), 9240–9245. https://doi.org/10.1523/JNEUROSCI.23-27-09240.2003
  • George, D., & Mallery, P. (2010). SPSS for Windows step by step: A simple guide and reference (10th ed.). Boston, MA.
  • Gordon, E. E. (1989). Learning sequences in music: Skill, content, and patterns. GIA.
  • Herholz, S. C., & Zatorre, R. J. (2012). Musical training as a framework for brain plasticity: Behavior, function, and structure. Neuron, 76(3), 486–502. https://doi.org/10.1016/j.neuron.2012.10.011
  • IBM Corp. (2020). IBM SPSS Statistics for Windows, Version 27.0.
  • Jaap, A. S. (2011). Recognising and developing musical gift and talent [Doctoral thesis, University of Glasgow]. University of Glasgow. https://theses.gla.ac.uk/2826/
  • Kartal, H. (2020). Listening to colourful voices: How do children imagine their music lessons in school? International Online Journal of Primary Education, 9(1), 22–38.
  • Kibici, V. B. (2022). The effect of project-based learning approach on lesson outcomes, attitudes, and retention of learned in secondary school music. OPUS Toplum Araştırmaları Dergisi, 19(49), 8–14.
  • Lee, S. Y., Olszewski-Kubilius, P., & Thomson, D. L. (2012). Academically gifted students' perceived interpersonal competence and peer relationships. Journal of Research in Music Education, 60(4), 8–28.
  • Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. The Annals of Mathematical Statistics, 18(1), 50–60. https://doi.org/10.1214/aoms/1177730491
  • Mayer, R. E. (2020). Multimedia learning (3rd ed.). Cambridge. https://doi.org/10.1017/9781316941355
  • Miendlarzewska, E. A., & Trost, W. J. (2014). How musical training affects cognitive development: Rhythm, reward and other modulating factors. Frontiers in Psychology, 5, Article 605, 1–6. https://doi.org/10.3389/fpsyg.2014.00605
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (2nd ed.). Sage.
  • Moreno, S., Bialystok, E., Barac, R., Schellenberg, E. G., Cepeda, N. J., & Chau, T. (2011). Short-term music training enhances verbal intelligence and executive function. Psychological Science, 22(11), 1425–1433. https://doi.org/10.1177/0956797611416999
  • Muijs, D. (2010). Doing quantitative research in education with SPSS (2nd ed.). Sage.
  • Neihart, M. (1999). The social and emotional development of gifted children. Roeper Review, 21(1), 15–18. https://doi.org/10.1080/02783199909553994
  • Oskarita, E., & Arasy, H. N. (2024). The role of digital tools in enhancing collaborative learning in secondary education. International Journal of Educational Research, 1(1), 26–32. https://doi.org/10.62951/ijer.v1i1.15
  • Patton, M. Q. (2002). Qualitative research and evaluation methods (3rd ed.). Sage.
  • Perloff, R. (1997). Daniel Goleman’s Emotional intelligence: Why it can matter more than IQ [Review of the book Emotional Intelligence, by D. Goleman]. The Psychologist-Manager Journal, 1(1), 21–22. https://doi.org/10.1037/h0095822
  • Pfeiffer, S. I. (2013). Serving the gifted: Evidence-based clinical and psychoeducational practice. Routledge.
  • Savery, J. R. (2006). Overview of problem-based learning: Definitions and distinctions. Interdisciplinary Journal of Problem-Based Learning, 1(1), 9–20. https://doi.org/10.7771/1541-5015.1002
  • Schellenberg, E. G. (2006). Long-term positive associations between music lessons and IQ. Journal of Educational Psychology, 98(2), 457–468. https://doi.org/10.1037/0022-0663.98.2.457
  • Schwartz, D. L., & McDermott, M. (2004). Teaching with technology: A framework for integrating multimedia. Educational Psychology Review, 16(2), 212–220. https://doi.org/10.1023/B:EDPR.0000035413.89237.9a
  • Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalized causal inference. HoughtonMifflin.
  • Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3–4), 591–611. https://doi.org/10.1093/biomet/52.3-4.591
  • Silverman, L. K. (1993). Counseling the gifted and talented. Love.
  • Subotnik, R. F., Olszewski-Kubilius, P., & Worrell, F. C. (2011). Rethinking giftedness and gifted education: A proposed direction forward based on psychological science. Psychological Science in the Public Interest, 12(1), 3–54. https://doi.org/10.1177/1529100611418056
  • Swan, K. (2005). A constructivist model for thinking about teaching and learning. Journal of Asynchronous Learning Networks, 9(1), 7–24.
  • Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Pearson.
  • Thomas, J. W. (2000). A review of research on project-based learning. The Autodesk Foundation.
  • Torrance, E. P. (1993). Understanding creativity: Where to start? Psychological Inquiry, 4(3), 232–234. https://doi.org/10.1207/s15327965pli0403_12
  • Tosunoğlu, E. (2021). Özel yetenekli öğrencilerin öğretiminde dijital tabanlı uygulamalar: Son 10 yılda yapılan araştırmalardaki eğilimlerin incelenmesi. Instructional Technology and Lifelong Learning, 2(1), 53–74. https://doi.org/10.52911/itall.869692
  • VanTassel-Baska, J., & Stambaugh, T. (2005). Challenges and possibilities for serving gifted learners in the regular classroom. Theory Into Practice, 44(3), 211–217. https://doi.org/10.1207/s15430421tip4403_5
  • Yıldırım, A., & Şimşek, H. (2022). Sosyal bilimlerde nitel araştırma yöntemleri (13. baskı). Seçkin.
  • Zatorre, R. J., & Salimpoor, V. N. (2013). From perception to pleasure: Music and its neural substrates. Proceedings of the National Academy of Sciences, 110(Suppl 2), 10430–10437. https://doi.org/10.1073/pnas.1301228110
  • Webster, P. R. (2012). Rethinking music teaching and learning in the digital age. In G. E. McPherson & G. F. Welch (Eds.), The Oxford handbook of music education (Vol. 1, pp. 439–454). Oxford University.
  • Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80–83. https://doi.org/10.2307/3001968
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Music Cognition, Music Education, Music Technology and Recording
Journal Section Articles
Authors

Güven Akşit 0000-0002-2672-7502

İslam Deviren 0000-0003-2515-3807

Ali Ayhan 0000-0001-5850-9887

Early Pub Date August 21, 2025
Publication Date September 10, 2025
Submission Date February 2, 2025
Acceptance Date July 3, 2025
Published in Issue Year 2025 Issue: 103

Cite

APA Akşit, G., Deviren, İ., & Ayhan, A. (2025). LOGİC PRO X TABANLI PROJE EĞİTİMİNİN ÜSTÜN YETENEKLİ ÖĞRENCİLERİN MÜZİKAL ALGI VE SOSYAL-DUYGUSAL GELİŞİMİNE ETKİSİ. EKEV Akademi Dergisi(103), 263-283. https://doi.org/10.17753/sosekev.1631561