Research Article
BibTex RIS Cite

Teknolojik Değişme ve İstihdam Arasındaki Dinamik İlişki: Genç İstihdamı ile Toplam İstihdamın Panel VAR ve Nedensellik Analizleri ile Karşılaştırılması

Year 2022, , 11 - 34, 25.10.2022
https://doi.org/10.17233/sosyoekonomi.2022.04.01

Abstract

Bu çalışma teknolojik değişme ile istihdam arasındaki ilişkiyi ve nedenselliği, genç istihdamı ile toplam istihdamı karşılaştırarak, ampirik olarak incelemektedir. Çalışma, 16 OECD ülkesi için 1985-2018 arası dönemdeki verileri kapsamakta olup teknolojik değişmenin göstergesi olarak çoklu faktör verimliliğini (ÇFV) kullanmaktadır. Genelleştirilmiş Momentler Panel Vektör Otoregresif (GMM Panel-VAR) analizi bulguları, ÇFV’nin genç ve toplam istihdamın üzerinde anlamlı ve pozitif etkisinin bulunduğunu; genç istihdamın ÇFV üzerindeki etkisinin ise anlamlı fakat negatif olduğunu göstermektedir. Panel VAR-Granger Nedensellik analizi bulgularına göre ise ÇFV ile genç istihdamı arasında çift-yönlü, ÇFV’den toplam istihdama doğru ise tek-yönlü nedensellik bulunmaktadır. Böylelikle bu çalışma ile teknolojik değişmenin iş yaratma etkisi ampirik olarak doğrulanmakta ve teknolojik değişme-istihdam ilişkisinin genç istihdamı için, toplam istihdama kıyasla, farklı olduğu sonucunu ulaşılmıştır.

References

  • Abrigo, M.R.M. & I. Love (2016), “Estimation of Panel Vector Autoregression in Stata” Stata Journal, 16(3), 778-804.
  • Alic, J.A. (1997), “Technological Change, Employment, and Sustainability”, Technological Forecasting and Social Change, 55(1), 1-13.
  • Andrews, D.W.K. & B. Lu (2001), “Consistent Model and Moment Selection Procedures for GMM Estimation with Application to Dynamic Panel Data Models”, Journal of Econometrics, 101(1), 123-164.
  • Arellano, M. & O. Bover (1995), “Another Look at the Instrumental Variable Estimation of Error-Components Models”, Journal Of Econometrics, 68(1), 29-51.
  • Bogliacino, F. & M. Vivarelli (2012), “The Job Creation Effect of R&D Expenditures”, Australian Economic Papers, 51(2), 96-113.
  • Breitung, J. & S. Das (2005), “Panel Unit Root Tests under Cross Sectional Dependence”, Statistica Neerlandica, 59(4), 414-433.
  • Buerger, M. et al. (2012), “Regional Dynamics of Innovation: Investigating the Co-evolution of Patents, Research and Development (R&D), and Employment”, Regional Studies, 46(5), 565-582.
  • Caliendo, M. & R. Schmidl (2016), “Youth Unemployment and Active Labour Market Policies”, IZA Journal of Labor Policy, 5(1), 1-30.
  • Campa, R. (2018), “Technological Unemployment: A Brief History of an Idea”, Orbis Idearum, 6(2), 57-79.
  • Coad, A. & R. Rao (2011), “The Firm-Level Employment Effects of Innovations in High-Tech US Manufacturing Industries”, Journal of Evolutionary Economics, 21(2), 255-283.
  • Dosi, G. et al. (2019), “Embodied and Disembodied Technological Change : The Sectoral Patterns of Job-Creation and Job-Destruction”, IZA Discussion Papers No.12408, IZA Institute of Labor Economics.
  • Dunsch, S. (2017), “Age- and Gender-Specific Unemployment and Okun’s Law in CEE Countries”, Eastern European Economics, 55(4), 377-93.
  • Eurofound (2012), Effectiveness of Policy Measures to Increase the Employment Participation of Young People, <www.eurofound.europa.eu>, 19.10.2018.
  • Evangelista, R. & A. Vezzani (2012), “The Impact of Technological and Organizational Innovations on Employment in European Firms”, Industrial and Corporate Change, 21(4), 871-899.
  • Falk, M. (2012), “Quantile Estimates of the Impact of R&D Intensity on Firm Performance”, Small Business Economics, 39(1), 19-37.
  • Gorkey, S. (2020), “The Rise of Youth Unemployment and Youth NEETs in the CEECs After the 2008 Crisis”, in: S. Amine (ed.), International Perspectives on the Youth Labor Market: Emerging Research and Opportunities (1-32), Hershey, PA: IGI Global.
  • Görkey, S. (2019), “Türkiye’de NEİY Gençler: Eğitimden İşgücü Piyasasına Geçişin İncelenmesi”, in: A. Şen et al. (eds.), Türkiye’de Ekonomi (210-258), İstanbul: İstanbul Kültür Üniversitesi Yayınevi.
  • Greenan, N. (2003), “Organisational Change Technology, Employment and Skill”, Cambridge Journal of Economics, 27(2), 287-316.
  • Holtz-Eakin, D. et al. (1988), “Estimating Vector Autoregressions with Panel Data”, Econometrica, 56(6), 1371-1395.
  • ILO (2020), Global Employment Trends for Youth 2020: Technology and the Future of Jobs, International Labour Organization.
  • Lachenmaier, S. & H. Rottmann (2011), “Effects of Innovation on Employment: A Dynamic Panel Analysis”, International Journal of Industrial Organization, 29(2), 210-220.
  • Maguire, S. et al. (2013), “Youth Unemployment”, Intereconomics, 48(4), 196-235.
  • Marx, K. (2015) [1867], Capital: A Critique of Political Economy Vol. I, (Issue Original Publication: 1867), Progress Publishers.
  • Matuzeviciute, K. et al. (2017), “Do Technological Innovations Affect Unemployment? Some Empirical Evidence from European Countries”, Economies, 5(4), 1-19.
  • OECD (2018), OECD Compendium of Productivity Indicators 2018, OECD Publishing, Paris.
  • OECD (2020a), ALFS Employment Database, <https://stats.oecd.org/>, 15.10.2020.
  • OECD (2020b), LFS by Sex and Age Database, <https://stats.oecd.org/>, 19.10.2020.
  • OECD (2020c), Productivity Database, <https://stats.oecd.org/>, 15.10.2020.
  • OECD (2020d), Growth in GDP per capita, productivity and ULC: Multifactor productivity, [Key statistical notes in data set], <https://stats.oecd.org/>, 01.10.2020.
  • OECD (2022), Mismatch Database, <https://stats.oecd.org/>, 04.07.2022.
  • Pesaran, M. (2004), “General Diagnostic Tests for Cross Section Dependence in Panels”, IZA Discussion Papers No.1240, IZA Institute of Labor Economics.
  • Pesaran, M.H. (2007), “A Simple Panel Unit Root Test in the Presence of Cross-Section Dependence”, Journal of Applied Econometrics, 22, 265-312.
  • Pini, P. (1995), “Economic Growth, Technological Change and Employment: Empirical Evidence for a Cumulative Growth Model with External Causation for Nine OECD Countries: 1960-1990”, Structural Change and Economic Dynamics, 6(2), 185-213.
  • Piva, M. & M. Vivarelli (2004), “Technological Change and Employment: Some Micro Evidence from Italy”, Applied Economics Letters, 11(6), 373-376.
  • Piva, M. & M. Vivarelli (2017), “Technological Change and Employment: Were Ricardo and Marx Right?”, IZA Discussion Paper:10471, IZA Institute of Labor Economics.
  • Piva, M. & M. Vivarelli (2018), “Is Innovation Destroying Jobs? Firm-Level Evidence from the EU”, Sustainability, 10, 1-16.
  • Ricardo, D. (2018) [1821], Siyasal İktisadın ve Vergilendirmenin İlkeleri, (Çev. B. Zeren), Türkiye İş Bankası Kültür Yayınları.
  • Signorelli, M. (2017), “Youth Unemployment in Transition Economies”, IZA World of Labor, November, 1-11.
  • Simonetti, R. et al. (2000), “Modelling the Employment Impact of Innovation”, in: M. Pianta & M. Vivarelli (eds.), The Employment Impact of Innovation: Evidence and Policy, London: Routledge.
  • Tancioni, M. & R. Simonetti (2002), “A Macroeconometric Model for the Analysis of the Impact of Technological Change and Trade on Employment”, Journal of Interdisciplinary Economics, 13(1-3), 185-221.
  • Van Roy, V. et al. (2018), “Technology and Employment: Mass Unemployment or Job Creation? Empirical Evidence from European Patenting Firms”, Research Policy, 47(9), 1762-1776.
  • Vivarelli, M. (1995), The Economics of Technology and Employment: Theory and Empirical Evidence, Edward Elgar Publishing.
  • Yerdelen-Tatoğlu, F. (2018), Panel Zaman Serileri Analizi: Stata Uygulamalı, 2. Baskı. İstanbul: Beta Basım Yayım Dağıtım.
  • Yerdelen-Tatoğlu, F. (2020), İleri Panel Veri Analizi: Stata Uygulamalı, 4. Baskı. İstanbul: Beta Basım Yayım Dağıtım.

The Dynamic Relationship between Technological Change and Employment: A Comparison of Youth and Total Employment using Panel VAR Approach and Causality Analysis

Year 2022, , 11 - 34, 25.10.2022
https://doi.org/10.17233/sosyoekonomi.2022.04.01

Abstract

This study empirically examines the relationship and causality between technological change and employment by comparing youth and total employment. It covers data from 16 OECD economies from 1985 to 2018 and uses multifactor productivity (MFP) as a proxy for technological change. The findings from the general method of moments panel vector autoregression (GMM Panel-VAR) approach indicate significant and positive effects of MFP on youth and total employment, and a significant yet negative impact of youth employment on MFP. According to Panel-VAR-Granger-Causality analysis results, there is a two-way causality between MFP and youth employment and a one-way causality from MFP to total employment. Thus, this study empirically confirms the job-creation effect of technology and finds out that the technological change and employment nexus differs for youth employment compared to that for total employment.

References

  • Abrigo, M.R.M. & I. Love (2016), “Estimation of Panel Vector Autoregression in Stata” Stata Journal, 16(3), 778-804.
  • Alic, J.A. (1997), “Technological Change, Employment, and Sustainability”, Technological Forecasting and Social Change, 55(1), 1-13.
  • Andrews, D.W.K. & B. Lu (2001), “Consistent Model and Moment Selection Procedures for GMM Estimation with Application to Dynamic Panel Data Models”, Journal of Econometrics, 101(1), 123-164.
  • Arellano, M. & O. Bover (1995), “Another Look at the Instrumental Variable Estimation of Error-Components Models”, Journal Of Econometrics, 68(1), 29-51.
  • Bogliacino, F. & M. Vivarelli (2012), “The Job Creation Effect of R&D Expenditures”, Australian Economic Papers, 51(2), 96-113.
  • Breitung, J. & S. Das (2005), “Panel Unit Root Tests under Cross Sectional Dependence”, Statistica Neerlandica, 59(4), 414-433.
  • Buerger, M. et al. (2012), “Regional Dynamics of Innovation: Investigating the Co-evolution of Patents, Research and Development (R&D), and Employment”, Regional Studies, 46(5), 565-582.
  • Caliendo, M. & R. Schmidl (2016), “Youth Unemployment and Active Labour Market Policies”, IZA Journal of Labor Policy, 5(1), 1-30.
  • Campa, R. (2018), “Technological Unemployment: A Brief History of an Idea”, Orbis Idearum, 6(2), 57-79.
  • Coad, A. & R. Rao (2011), “The Firm-Level Employment Effects of Innovations in High-Tech US Manufacturing Industries”, Journal of Evolutionary Economics, 21(2), 255-283.
  • Dosi, G. et al. (2019), “Embodied and Disembodied Technological Change : The Sectoral Patterns of Job-Creation and Job-Destruction”, IZA Discussion Papers No.12408, IZA Institute of Labor Economics.
  • Dunsch, S. (2017), “Age- and Gender-Specific Unemployment and Okun’s Law in CEE Countries”, Eastern European Economics, 55(4), 377-93.
  • Eurofound (2012), Effectiveness of Policy Measures to Increase the Employment Participation of Young People, <www.eurofound.europa.eu>, 19.10.2018.
  • Evangelista, R. & A. Vezzani (2012), “The Impact of Technological and Organizational Innovations on Employment in European Firms”, Industrial and Corporate Change, 21(4), 871-899.
  • Falk, M. (2012), “Quantile Estimates of the Impact of R&D Intensity on Firm Performance”, Small Business Economics, 39(1), 19-37.
  • Gorkey, S. (2020), “The Rise of Youth Unemployment and Youth NEETs in the CEECs After the 2008 Crisis”, in: S. Amine (ed.), International Perspectives on the Youth Labor Market: Emerging Research and Opportunities (1-32), Hershey, PA: IGI Global.
  • Görkey, S. (2019), “Türkiye’de NEİY Gençler: Eğitimden İşgücü Piyasasına Geçişin İncelenmesi”, in: A. Şen et al. (eds.), Türkiye’de Ekonomi (210-258), İstanbul: İstanbul Kültür Üniversitesi Yayınevi.
  • Greenan, N. (2003), “Organisational Change Technology, Employment and Skill”, Cambridge Journal of Economics, 27(2), 287-316.
  • Holtz-Eakin, D. et al. (1988), “Estimating Vector Autoregressions with Panel Data”, Econometrica, 56(6), 1371-1395.
  • ILO (2020), Global Employment Trends for Youth 2020: Technology and the Future of Jobs, International Labour Organization.
  • Lachenmaier, S. & H. Rottmann (2011), “Effects of Innovation on Employment: A Dynamic Panel Analysis”, International Journal of Industrial Organization, 29(2), 210-220.
  • Maguire, S. et al. (2013), “Youth Unemployment”, Intereconomics, 48(4), 196-235.
  • Marx, K. (2015) [1867], Capital: A Critique of Political Economy Vol. I, (Issue Original Publication: 1867), Progress Publishers.
  • Matuzeviciute, K. et al. (2017), “Do Technological Innovations Affect Unemployment? Some Empirical Evidence from European Countries”, Economies, 5(4), 1-19.
  • OECD (2018), OECD Compendium of Productivity Indicators 2018, OECD Publishing, Paris.
  • OECD (2020a), ALFS Employment Database, <https://stats.oecd.org/>, 15.10.2020.
  • OECD (2020b), LFS by Sex and Age Database, <https://stats.oecd.org/>, 19.10.2020.
  • OECD (2020c), Productivity Database, <https://stats.oecd.org/>, 15.10.2020.
  • OECD (2020d), Growth in GDP per capita, productivity and ULC: Multifactor productivity, [Key statistical notes in data set], <https://stats.oecd.org/>, 01.10.2020.
  • OECD (2022), Mismatch Database, <https://stats.oecd.org/>, 04.07.2022.
  • Pesaran, M. (2004), “General Diagnostic Tests for Cross Section Dependence in Panels”, IZA Discussion Papers No.1240, IZA Institute of Labor Economics.
  • Pesaran, M.H. (2007), “A Simple Panel Unit Root Test in the Presence of Cross-Section Dependence”, Journal of Applied Econometrics, 22, 265-312.
  • Pini, P. (1995), “Economic Growth, Technological Change and Employment: Empirical Evidence for a Cumulative Growth Model with External Causation for Nine OECD Countries: 1960-1990”, Structural Change and Economic Dynamics, 6(2), 185-213.
  • Piva, M. & M. Vivarelli (2004), “Technological Change and Employment: Some Micro Evidence from Italy”, Applied Economics Letters, 11(6), 373-376.
  • Piva, M. & M. Vivarelli (2017), “Technological Change and Employment: Were Ricardo and Marx Right?”, IZA Discussion Paper:10471, IZA Institute of Labor Economics.
  • Piva, M. & M. Vivarelli (2018), “Is Innovation Destroying Jobs? Firm-Level Evidence from the EU”, Sustainability, 10, 1-16.
  • Ricardo, D. (2018) [1821], Siyasal İktisadın ve Vergilendirmenin İlkeleri, (Çev. B. Zeren), Türkiye İş Bankası Kültür Yayınları.
  • Signorelli, M. (2017), “Youth Unemployment in Transition Economies”, IZA World of Labor, November, 1-11.
  • Simonetti, R. et al. (2000), “Modelling the Employment Impact of Innovation”, in: M. Pianta & M. Vivarelli (eds.), The Employment Impact of Innovation: Evidence and Policy, London: Routledge.
  • Tancioni, M. & R. Simonetti (2002), “A Macroeconometric Model for the Analysis of the Impact of Technological Change and Trade on Employment”, Journal of Interdisciplinary Economics, 13(1-3), 185-221.
  • Van Roy, V. et al. (2018), “Technology and Employment: Mass Unemployment or Job Creation? Empirical Evidence from European Patenting Firms”, Research Policy, 47(9), 1762-1776.
  • Vivarelli, M. (1995), The Economics of Technology and Employment: Theory and Empirical Evidence, Edward Elgar Publishing.
  • Yerdelen-Tatoğlu, F. (2018), Panel Zaman Serileri Analizi: Stata Uygulamalı, 2. Baskı. İstanbul: Beta Basım Yayım Dağıtım.
  • Yerdelen-Tatoğlu, F. (2020), İleri Panel Veri Analizi: Stata Uygulamalı, 4. Baskı. İstanbul: Beta Basım Yayım Dağıtım.
There are 44 citations in total.

Details

Primary Language English
Subjects Economics
Journal Section Articles
Authors

Selda Görkey 0000-0002-2760-3667

Publication Date October 25, 2022
Submission Date January 19, 2021
Published in Issue Year 2022

Cite

APA Görkey, S. (2022). The Dynamic Relationship between Technological Change and Employment: A Comparison of Youth and Total Employment using Panel VAR Approach and Causality Analysis. Sosyoekonomi, 30(54), 11-34. https://doi.org/10.17233/sosyoekonomi.2022.04.01
AMA Görkey S. The Dynamic Relationship between Technological Change and Employment: A Comparison of Youth and Total Employment using Panel VAR Approach and Causality Analysis. Sosyoekonomi. October 2022;30(54):11-34. doi:10.17233/sosyoekonomi.2022.04.01
Chicago Görkey, Selda. “The Dynamic Relationship Between Technological Change and Employment: A Comparison of Youth and Total Employment Using Panel VAR Approach and Causality Analysis”. Sosyoekonomi 30, no. 54 (October 2022): 11-34. https://doi.org/10.17233/sosyoekonomi.2022.04.01.
EndNote Görkey S (October 1, 2022) The Dynamic Relationship between Technological Change and Employment: A Comparison of Youth and Total Employment using Panel VAR Approach and Causality Analysis. Sosyoekonomi 30 54 11–34.
IEEE S. Görkey, “The Dynamic Relationship between Technological Change and Employment: A Comparison of Youth and Total Employment using Panel VAR Approach and Causality Analysis”, Sosyoekonomi, vol. 30, no. 54, pp. 11–34, 2022, doi: 10.17233/sosyoekonomi.2022.04.01.
ISNAD Görkey, Selda. “The Dynamic Relationship Between Technological Change and Employment: A Comparison of Youth and Total Employment Using Panel VAR Approach and Causality Analysis”. Sosyoekonomi 30/54 (October 2022), 11-34. https://doi.org/10.17233/sosyoekonomi.2022.04.01.
JAMA Görkey S. The Dynamic Relationship between Technological Change and Employment: A Comparison of Youth and Total Employment using Panel VAR Approach and Causality Analysis. Sosyoekonomi. 2022;30:11–34.
MLA Görkey, Selda. “The Dynamic Relationship Between Technological Change and Employment: A Comparison of Youth and Total Employment Using Panel VAR Approach and Causality Analysis”. Sosyoekonomi, vol. 30, no. 54, 2022, pp. 11-34, doi:10.17233/sosyoekonomi.2022.04.01.
Vancouver Görkey S. The Dynamic Relationship between Technological Change and Employment: A Comparison of Youth and Total Employment using Panel VAR Approach and Causality Analysis. Sosyoekonomi. 2022;30(54):11-34.