Investigation of the Products of Heavy Hypernuclei
Year 2021,
, 118 - 124, 30.04.2021
Süleyman Öztürk
,
Nihal Büyükçizmeci
Abstract
Evaporation of hypernuclei is investigated similar to evaporation of normal nuclei taking place in deep-inelastic nuclear collisions. Final cold hypernuclei can be obtained in such processes and offer a new direction for investigation. This may concern the production of exotic states which can exist due to the presence of a hyperon. It will be difficult to obtain such exotic states in other reactions since there are practical limitations on the use of radioactive targets in experiments. We have investigated the evaporation mechanism of some heavy hypernuclei for emission of light hypernuclei which take place from the target and projectile residues. Theoretical calculations are carried out by using computer codes developed for the statistical multifragmentation model generalized to hypernuclei.
Supporting Institution
TÜBİTAK
Thanks
Many helpful discussions with AS Botvina, R Ogul and A Kaya are gratefully acknowledged. This study is prepared from Master Thesis of S Ozturk at Graduate School of Natural Science of Selcuk University, supported by Scientific and Technological Research Council of Turkey (TUBITAK), under Project No. 118F111, and has been performed in the framework of COST Action CA15213 THOR.
References
- Bondorf JP, Botvina AS, Iljinov AS, Mishustin IN, and Sneppen K (1995). Statistical multifragmentation of nuclei. Phys. Rep. 257: 133-221.
- Botvina AS et al. (1995). Multifragmentation of spectators in relativistic heavy-ion reactions. Nucl. Phys. A 584: 737.
- Botvina AS, Buyukcizmeci N, Ergun A, Ogul R, Bleicher M, Pochodzalla J (2016). Formation of hypernuclei in evaporation and fission processes. Phys. Rev. C. 94: 054615.
- Botvina, A.S. and Pochodzalla J (2007). Production of hypernuclei in multifragmentation of nuclear spectator matter”. Phys. Rev. C 76: 024909.
- Buyukcizmeci N, Botvina AS, Ergun A, Ogul R, Bleicher M (2018). Statistical production and binding energy of hypernuclei. Phys. Rev. C. 98: 064603.
- Buyukcizmeci N, Botvina AS, Ogul R, Ergun A, Bleicher M (2019). Production of ΛΛ-hypernuclei and evaluation of their binding energies via the double yield ratio. Eur. Phys. J. A 55(2): 1.
- Buyukcizmeci N, Botvina AS, Pochodzalla J and Bleicher M (2013). Mechanisms for the production of hypernuclei beyond the neutron and proton drip lines. Phys. Rev. C 88: 014611.
- Buyukcizmeci N, Ogul R, Botvina AS, Bleicher M (2020). On the survey of nuclei and hypernuclei in multifragmentation. Phys. Scr. 95: 075311.
- Hashimoto O and Tamura H (2006). Spectroscopy of hypernuclei. Prog. Part. Nucl. Phys. 57: 564.
- Karnaukhov VA et al. (2008). Critical temperature for the nuclear liquid-gas phase transition (from multifragmentation and fission). Physics of Atomic Nuclei 71: 2067.
- Kreutz P et al., (1993). Charge correlations as a probe of nuclear disassembly. Nucl. Phys. A 556: 672.
- Li B -A, DeAngelis AR, and Gross DHE (1993). Statistical model analysis of ALADIN multifragmentation data. Phys. Lett. B 303: 225.
- Ogul R et al. (2011). Isospin-dependent multifragmentation of relativistic projectiles. Phys. Rev. C 83: 024608.
- Pienkowski L, Kwiatkowski K, Lefort T, Hsi W -c, Beaulieu L, Viola VE et al. (2002). Breakup time scale studied in the 8 GeV/cπ−+197Au reaction. Phys. Rev. C 65: 064606.
- Schaffner J, Dover CB, Gal A, Greiner C and Stoecker H (1993). Strange hadronic matter. Phys. Rev. Lett., 71: 1328.
- Scharenberg RP, Srivastava BK, Albergo S, Bieser F, Brady FP, Caccia Z et al., (2001). Comparison of 1AGeV 197Au+C data with thermodynamics: The nature of the phase transition in nuclear multifragmentation. Phys. Rev. C 64: 054602.
- Special issue on Progress in Strangeness Nuclear Physics (2012). Edt. Gal A, Hashimoto O and Pochodzalla J, Nucl. Phys. A 881: 1-338.
- Viola VE et al. (2001). Signals for the transition from liquid to gas in hot nuclei. Nucl. Phys. A 681: 267c.
- Xi H et al. (1997). Breakup temperature of target spectators in 197Au + 197Au collisions at E/A=1000 MeV. Z. Phys. A 359: 97–67.
Ağır Hiperçekirdeklerin Ürünlerinin Araştırılması
Year 2021,
, 118 - 124, 30.04.2021
Süleyman Öztürk
,
Nihal Büyükçizmeci
Abstract
Hiperçekirdeklerin buharlaşması, derin esnek olmayan nükleer çarpışmalarda meydana gelen normal çekirdeklerin buharlaşmasına benzer şekilde incelenmiştir. Son soğuk hiperçekirdekler bu tür işlemlerde elde edilebilir ve araştırma için yeni bir yön sunar. Bu, bir hiperonun varlığından dolayı var olabilecek egzotik durumların üretimiyle ilgili olabilir. Deneylerde radyoaktif hedeflerin kullanımında pratik sınırlamalar olduğundan, diğer reaksiyonlarda bu tür egzotik durumları elde etmek zor olacaktır. Hedef ve mermi kalıntılarından meydana gelen hafif hiperçekirdeklerin emisyonu için bazı ağır hiperçekirdeklerin buharlaşma mekanizmasını araştırdık. Teorik hesaplamalar, hiperçekirdeklere genelleştirilmiş istatistiksel çoklu parçalanma modeli için geliştirilen bilgisayar kodları kullanılarak yapılmıştır.
References
- Bondorf JP, Botvina AS, Iljinov AS, Mishustin IN, and Sneppen K (1995). Statistical multifragmentation of nuclei. Phys. Rep. 257: 133-221.
- Botvina AS et al. (1995). Multifragmentation of spectators in relativistic heavy-ion reactions. Nucl. Phys. A 584: 737.
- Botvina AS, Buyukcizmeci N, Ergun A, Ogul R, Bleicher M, Pochodzalla J (2016). Formation of hypernuclei in evaporation and fission processes. Phys. Rev. C. 94: 054615.
- Botvina, A.S. and Pochodzalla J (2007). Production of hypernuclei in multifragmentation of nuclear spectator matter”. Phys. Rev. C 76: 024909.
- Buyukcizmeci N, Botvina AS, Ergun A, Ogul R, Bleicher M (2018). Statistical production and binding energy of hypernuclei. Phys. Rev. C. 98: 064603.
- Buyukcizmeci N, Botvina AS, Ogul R, Ergun A, Bleicher M (2019). Production of ΛΛ-hypernuclei and evaluation of their binding energies via the double yield ratio. Eur. Phys. J. A 55(2): 1.
- Buyukcizmeci N, Botvina AS, Pochodzalla J and Bleicher M (2013). Mechanisms for the production of hypernuclei beyond the neutron and proton drip lines. Phys. Rev. C 88: 014611.
- Buyukcizmeci N, Ogul R, Botvina AS, Bleicher M (2020). On the survey of nuclei and hypernuclei in multifragmentation. Phys. Scr. 95: 075311.
- Hashimoto O and Tamura H (2006). Spectroscopy of hypernuclei. Prog. Part. Nucl. Phys. 57: 564.
- Karnaukhov VA et al. (2008). Critical temperature for the nuclear liquid-gas phase transition (from multifragmentation and fission). Physics of Atomic Nuclei 71: 2067.
- Kreutz P et al., (1993). Charge correlations as a probe of nuclear disassembly. Nucl. Phys. A 556: 672.
- Li B -A, DeAngelis AR, and Gross DHE (1993). Statistical model analysis of ALADIN multifragmentation data. Phys. Lett. B 303: 225.
- Ogul R et al. (2011). Isospin-dependent multifragmentation of relativistic projectiles. Phys. Rev. C 83: 024608.
- Pienkowski L, Kwiatkowski K, Lefort T, Hsi W -c, Beaulieu L, Viola VE et al. (2002). Breakup time scale studied in the 8 GeV/cπ−+197Au reaction. Phys. Rev. C 65: 064606.
- Schaffner J, Dover CB, Gal A, Greiner C and Stoecker H (1993). Strange hadronic matter. Phys. Rev. Lett., 71: 1328.
- Scharenberg RP, Srivastava BK, Albergo S, Bieser F, Brady FP, Caccia Z et al., (2001). Comparison of 1AGeV 197Au+C data with thermodynamics: The nature of the phase transition in nuclear multifragmentation. Phys. Rev. C 64: 054602.
- Special issue on Progress in Strangeness Nuclear Physics (2012). Edt. Gal A, Hashimoto O and Pochodzalla J, Nucl. Phys. A 881: 1-338.
- Viola VE et al. (2001). Signals for the transition from liquid to gas in hot nuclei. Nucl. Phys. A 681: 267c.
- Xi H et al. (1997). Breakup temperature of target spectators in 197Au + 197Au collisions at E/A=1000 MeV. Z. Phys. A 359: 97–67.