BibTex RIS Cite

Bir Sınıf Jacobi Matrisi İçin Özdeğer Problemi

Year 2006, Volume: 2 Issue: 27, 1 - 8, 01.12.2006

Abstract

Bu çalışma; n×n simetrik Jacobi matrislerinin özdeğerleri üzerine bazı yeni sonuçları içermektedir. Ele alınan problem; simetrik Jacobi matrisler ailesinin özel bir halidir. Burada ele alınan simetrik Jacobi matrisi, bir sınıf hiperbolik tip diferensiyel denklemin fark denklemi hale getirilmesi sonucu oluşan katsayılar matrisi ile aynıdır [4]. Elde edilen sonuçlar; bazı diferensiyel denklem sistemlerinin çözümünün davranışını irdelemeye imkan verir.

References

  • Alan Jeffrey, “Linear Algebra And Ordinary Differential Equations” CRC press, Inc., Boca Raton Ann Arbor. London, Tokyo,( 1993).
  • Kurosh, “Higher Algebra”, Mır Publıshers, Moscow, (1975).
  • John T. Moore, “Elements Of Linear Algebra And Matrix Theory”, New York, (1968).
  • O. Özkan, “İkinci Mertebeden Lineer Hiperbolik Denklemler Üzerine Bazı Karışık Problemler”, Yüksek Lisans Tezi, S.Ü. Fen Bilimleri Enst., Konya, (1999).
  • Hochstandt H., “On Construction Of A Jacobi Matrices”, Lin. Alg. Appl., 8, 435-446, (1974).
  • Hald O., “Inverse Eigenvalue Problems For Jacobi Matrices”, Lin. Alg. Appl.,14, 63-85, (1976).
  • M. Marcus, H. Minc, “A Survey Of Matrix Theory And Matrix İnequalities”, Dover Publications, NewYork, 166-167, (1964) . 8. Courant-Hilbert,
  • “Methods of Mathematical Physics”, Interscıence Publıshers, Inc., New York, (1953).
  • B. Aliev and A. Kh. Khanmamedov, “Energy Estimates for Solutions of the Mixed Problem for Lineer second-order Hperbolic Equations”, Mathematical Notes, vol. 59, No.4, (1996).
  • S. G. Kreın, “Linear Differential equations in Banach spaces (Russian )”. Ed. Nauka, Moscow, (1969).
  • J.-L. Lions, E. Magenes, “Problemes aux limites nonhomogenes et applications”, vol.1, Dunod, Paris, (1968).

Eigenvalue Problem For A Class Of Jacobi Matrices

Year 2006, Volume: 2 Issue: 27, 1 - 8, 01.12.2006

Abstract

This study contains some new results about the eigenvalues of a n × n symmetric Jacobi matrix. The problem is a special kind for the of family of the symmetric Jacobi matrices. The symmetric Jacobi matrix in this paper, is the same as the coefficient matrix obtained by converting one class of hyperbolic type differential equation into difference equation [4]. The obtained results enable to analyses the behavior of the solution of the system of some differential equations.

References

  • Alan Jeffrey, “Linear Algebra And Ordinary Differential Equations” CRC press, Inc., Boca Raton Ann Arbor. London, Tokyo,( 1993).
  • Kurosh, “Higher Algebra”, Mır Publıshers, Moscow, (1975).
  • John T. Moore, “Elements Of Linear Algebra And Matrix Theory”, New York, (1968).
  • O. Özkan, “İkinci Mertebeden Lineer Hiperbolik Denklemler Üzerine Bazı Karışık Problemler”, Yüksek Lisans Tezi, S.Ü. Fen Bilimleri Enst., Konya, (1999).
  • Hochstandt H., “On Construction Of A Jacobi Matrices”, Lin. Alg. Appl., 8, 435-446, (1974).
  • Hald O., “Inverse Eigenvalue Problems For Jacobi Matrices”, Lin. Alg. Appl.,14, 63-85, (1976).
  • M. Marcus, H. Minc, “A Survey Of Matrix Theory And Matrix İnequalities”, Dover Publications, NewYork, 166-167, (1964) . 8. Courant-Hilbert,
  • “Methods of Mathematical Physics”, Interscıence Publıshers, Inc., New York, (1953).
  • B. Aliev and A. Kh. Khanmamedov, “Energy Estimates for Solutions of the Mixed Problem for Lineer second-order Hperbolic Equations”, Mathematical Notes, vol. 59, No.4, (1996).
  • S. G. Kreın, “Linear Differential equations in Banach spaces (Russian )”. Ed. Nauka, Moscow, (1969).
  • J.-L. Lions, E. Magenes, “Problemes aux limites nonhomogenes et applications”, vol.1, Dunod, Paris, (1968).
There are 11 citations in total.

Details

Other ID JA58HU38BZ
Journal Section Research Articles
Authors

Ozan Özkan This is me

Publication Date December 1, 2006
Submission Date December 1, 2006
Published in Issue Year 2006 Volume: 2 Issue: 27

Cite

APA Özkan, O. (2006). Bir Sınıf Jacobi Matrisi İçin Özdeğer Problemi. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 2(27), 1-8.
AMA Özkan O. Bir Sınıf Jacobi Matrisi İçin Özdeğer Problemi. sufefd. December 2006;2(27):1-8.
Chicago Özkan, Ozan. “Bir Sınıf Jacobi Matrisi İçin Özdeğer Problemi”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 2, no. 27 (December 2006): 1-8.
EndNote Özkan O (December 1, 2006) Bir Sınıf Jacobi Matrisi İçin Özdeğer Problemi. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 2 27 1–8.
IEEE O. Özkan, “Bir Sınıf Jacobi Matrisi İçin Özdeğer Problemi”, sufefd, vol. 2, no. 27, pp. 1–8, 2006.
ISNAD Özkan, Ozan. “Bir Sınıf Jacobi Matrisi İçin Özdeğer Problemi”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 2/27 (December 2006), 1-8.
JAMA Özkan O. Bir Sınıf Jacobi Matrisi İçin Özdeğer Problemi. sufefd. 2006;2:1–8.
MLA Özkan, Ozan. “Bir Sınıf Jacobi Matrisi İçin Özdeğer Problemi”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, vol. 2, no. 27, 2006, pp. 1-8.
Vancouver Özkan O. Bir Sınıf Jacobi Matrisi İçin Özdeğer Problemi. sufefd. 2006;2(27):1-8.

Journal Owner: On behalf of Selçuk University Faculty of Science, Rector Prof. Dr. Hüseyin YILMAZ
Selcuk University Journal of Science Faculty accepts articles in Turkish and English with original results in basic sciences and other applied sciences. The journal may also include compilations containing current innovations.

It was first published in 1981 as "S.Ü. Fen-Edebiyat Fakültesi Dergisi" and was published under this name until 1984 (Number 1-4).
In 1984, its name was changed to "S.Ü. Fen-Edeb. Fak. Fen Dergisi" and it was published under this name as of the 5th issue.
When the Faculty of Letters and Sciences was separated into the Faculty of Science and the Faculty of Letters with the decision of the Council of Ministers numbered 2008/4344 published in the Official Gazette dated 3 December 2008 and numbered 27073, it has been published as "Selcuk University Journal of Science Faculty" since 2009.
It has been scanned in DergiPark since 2016.

88x31.png

Selcuk University Journal of Science Faculty is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.