Review
BibTex RIS Cite

Bitki Patojeni Virüslerde Proteaz Tipleri ve Fonksiyonları

Year 2018, Volume: 44 Issue: 2, 175 - 186, 11.10.2018

Abstract

Bitkileri hastalandıran çok sayıda bitki patojeni virüs
bulunmaktadır. 
Bitki patojeni
virüsler
  konukçu hücreleri içerisine
girdikten sonra, hayatlarını devam ettirmek ve konukçu içinde çoğalmak için
örtü proteinlerinden ayrılırlar. Çoğalma işlemini gerçekleştirmek için
yapılarında bulunan enzimleri kullanarak yeni virüsler kopyalarlar. Bu
enzimleri proteazlar ve
nükleik asit
sentezinden sorumlu enzimler (replikasyon enzimleri) oluşturur. Virüslerin
genom ifadeleri esnasında proteazlar önemli fonksiyona sahiptir. Bu enzimler
genomu fonksiyonel proteinlere işlenmesinde ilk basamağı oluştururlar. Bu
derlemede bitki patojeni virüslerin yapıları ve fonksiyonlarından
bahsedilmiştir. 

References

  • Agrios GN (2005). Plant pathology. Elsevier Academic Press, United States of America, 922.
  • Anonymous (2017). https://www6.inra.fr/pvy_organization_eng/Potato-virus-Y/Genome. (Erişim tarihi: 02.12.2017).
  • Anonymous (2018a). https://en.wikipedia.org/wiki/File:Serine_protease_catalysis.png. (Erişim tarihi: 02.10.2018).
  • Anonymous (2018b). Caulimovirus. https://viralzone.expasy.org/119?outline=all_by_species. (Erişim tarihi: 02.10.2018).
  • Atallah OO, Kang SH, El-Mohtar CA, Shilts T, Bergua M, Folimonova SY (2016). A 50-proximal region of the Citrus tristeza virus genome encoding two leader proteases is involved in virus superinfection exclusion. Virology 489: 108–115.
  • Ballut L, Drucker M, Pugnie` re M, Cambon F, Blanc S, Roquet F, Candresse T, Schmid HP, Nicolas P, Gall P, Badaoui S (2005). HcPro, a multifunctional protein encoded by a plant RNA virus, targets the 20S proteasome and affects its enzymic activities. Journal of General Virology 86: 2595–2603.
  • Bazan JF, Fletterick RJ (1988). Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Proc Natl Acad Sci USA 85: 7872–7876.
  • Bazan JF, Fletterick RJ (1990). Structural and catalytic models of trypsin-like viral proteases. Semin Virol 1: 311–322.
  • Chen KC, Chiang CH, Raja JA, Liu FL, Tai CH, Yeh SD (2008). A single amino acid of NIa pro of Papaya ringspot virus determines host specificity for infection of papaya. Mol Plant Microbe Interact 21: 1046–1057.
  • Dougherty W, Semler BL (1993). Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiological Reviews 781–822.
  • Fernandez-Rodriguez J, Voigt CA (2016). Post-translational control of genetic circuits using Potyvirus proteases. Nucleic Acids Research 44(13): 6493–6502.
  • Franssen H, Moerman M, Rezelman G, Goldbach R (1984). Evidence that the 32,000-dalton protein encoded by bottom-component RNA of cowpea mosaic virus is a proteolytic processing enzyme. Journal Virology Apr 50(1): 183–190.
  • Gorbalenya AE, Koonin EV, Blinov VM, Donchenko AP (1988). Sobemovirus genome appears to encode a serine protease related to cysteine proteases of picornaviruses. FEBS Lett 236: 287–290.
  • Gorbalenya AE, Donchenko AP, Blinov VM, Koonin EV (1989). Cysteine proteases of positive strains RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold. FEBS Lett 243: 103–114.
  • Guo B, Lin J, Ye K (2011). Structure of the autocatalytic cysteine protease domain of potyvirus helper-component proteinase. The Journal of Biological Chemistry 286(24): 21937–21943.
  • Huet H, Gal-On Meir EA, Lecoq H, Raccah B (1994). Mutations in the hepler component protease gene of zucchini yellow mosaic virus affect its ability to mediate aphid transmissibility. Journal of General Virology 75: 1407–1414.
  • Li X, Ryan MD, Lamb J W (2000). Potato leaf roll virus protein P1 contains a serine proteinase domain. Journal of General Virology 81: 1857–1864.
  • Li X, Ryan MD, Lamb JW (2000). Potato leafroll virus protein P1 contains a serine proteinase domain. J Gen Virol 81: 1857–1864.
  • Liu YP, Peremyslov VV, Medina V, Dolja VV (2009). Tandem leader proteases of Grapevine leafroll-associated virus-2: host-specific functions in the infection cycle. Virology 383: 291–299.
  • Lutz L, Raikhy G, Leisner SM (2012). Cauliflower mosaic virus major inclusion body protein interacts with the aphid transmission factor, the virion-associated protein, and gene VII product. Virus Res 170: 150–153.
  • Mann KS, Walker M, Sanfaçon H (2017). Identification of cleavage sites recognized by the 3C-like cysteine protease within the two polyproteins of strawberry mottle virus. Front Microbiol 8: 745.
  • Margis R, Pinck L (1992). Effect of site-directed mutagenesis on the presumed catalytic triad and substrate-binding pocket of grapevine fanleaf nepovirus 24-kDa proteinase. Virology 190: 884–888.
  • Pasin F, Simón-Mateo C, García JA (2014). The hypervariable amino-terminus of P1 protease modulates potyviral replication and host defense responses. PLoS Pathog 10(3): e1003985.
  • Plisson C, Drücker M, Blanc S, German-Retana S, Le Gall O, Thomas D, Bron P (2003). Structural characterization of HC-Pro, a plant virus multifunctional protein. J Biol Chem 278: 23753–23761.
  • Prüfer D, Kawchuk L, Monecke M, Nowok S, Fischer R, Rohde W (1999). Immunological analysis of potato leafroll luteovirus (PLRV) P1 expression identifies a 25 kDa RNA-binding protein derived via P1 processing. Nucleic Acids Res 27: 421–425.
  • Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews 62(3): 597–635.
  • Rodamilans B, Valli A, Antonio Garcia A (2013). Mechanistic divergence between P1 proteases of the family Potyviridae. Journal of General Virology 94: 1407–1414.
  • Rodamilans B, Shan H, Pasin F, García JA (2018). Plant viral proteases: beyond the role of peptide cutters. Frontiers in Plant Science 9.
  • Ryan MD, Flint M (1997). Virus-encoded proteinases of the picornavirus super-group. Journal of General Virology 78: 699–723.
  • Satheshkumar PS, Lokesh GL, Savithri HS (2004). Polyprotein processing: cis and trans proteolytic activities of Sesbania mosaic virus serine protease. Virology 318: 429–438.
  • Sõmera M, Sarmiento C, Truve E (2015). Overview on sobemoviruses and a proposal for the creation of the family Sobemoviridae. Viruses 7: 3076–3115.
  • Taliansky M, Torrance L, Kalinina N (2008). Role of plant virus movement proteins. from: methods in molecular biology, Vol. 451, Plant Virology Protocols: 33 From Viral Sequence to Protein Function Edited by Foster GD, Johansen IE, Hong Y. and Nagy P.D., Humana Press, Totowa, NJ.
  • Tekin N (2008). Türkiye kaynaklı Bacillus spp.’lerin alkalen proteaz üretim kapasiteleri ve enzimlerin kısmen karakterizasyonu. Ankara Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı, Yüksek Lisans Tezi 109.
  • Thole V, Hull R (1998). Rice tungro spherical virus polyprotein processing: identification of a virus-encoded protease and mutational analysis of putative cleavage sites. Virology 247: 106–114.
  • Thompson JR, Kamath N, Perry KL (2014). An evolutionary analysis of the Secoviridae family of viruses. PLoS One 9: e106305.
  • Torruella M, Gordon K, Hohn T (1989). Cauliflower mosaic virus produces an aspartic proteinase to cleave its polyproteins. EMBO J 8: 2819–2825.
  • Verchot J, Carrington JC (1995). Evidence that the potyvirus P1 proteinase functions in trans as an accessory factor for genome amplification. J Virol 69: 3668–3674.
  • Verver J, Goldbach R, Garcia JA, Vos P (1987). In vitro expression of a full-length DNA copy of cowpea mosaic virus B RNA: identification of the B RNA encoded 24-kd protein as a viral protease. EMBO J 6: 549–554.
  • Wang A, Carrier K, Chisholm J, Wieczorek A, Huguenot C, Sanfaçon H (1999). Proteolytic processing of tomato ringspot nepovirus 3C-like protease precursors: definition of the domains for the VPg, protease and putative RNA-dependent RNA polymerase. J Gen Virol 80: 799–809.
  • Wang A, Sanfaçon H (2000). Proteolytic processing at a novel cleavage site in the N-terminal region of the tomato ringspot nepovirus RNA-1-encoded polyprotein in vitro. J Gen Virol 81 2771–2781.

Protease Types and Functions of Plant Pathogenic Viruses

Year 2018, Volume: 44 Issue: 2, 175 - 186, 11.10.2018

Abstract

There are numerous virus that infect the plants. After the
plant viruses 
penetrated in to the host
plant cells, they
  uncoat from coat
protein for surviving and genome expression. Then viruses use the enzymes for
replication and genome expression. The important enzymes for genome expression
are proteases and replication enzymes. The proteases have important role for
replication. In the review, structure of plant pathogenic viruses and functions
are discussed. 

References

  • Agrios GN (2005). Plant pathology. Elsevier Academic Press, United States of America, 922.
  • Anonymous (2017). https://www6.inra.fr/pvy_organization_eng/Potato-virus-Y/Genome. (Erişim tarihi: 02.12.2017).
  • Anonymous (2018a). https://en.wikipedia.org/wiki/File:Serine_protease_catalysis.png. (Erişim tarihi: 02.10.2018).
  • Anonymous (2018b). Caulimovirus. https://viralzone.expasy.org/119?outline=all_by_species. (Erişim tarihi: 02.10.2018).
  • Atallah OO, Kang SH, El-Mohtar CA, Shilts T, Bergua M, Folimonova SY (2016). A 50-proximal region of the Citrus tristeza virus genome encoding two leader proteases is involved in virus superinfection exclusion. Virology 489: 108–115.
  • Ballut L, Drucker M, Pugnie` re M, Cambon F, Blanc S, Roquet F, Candresse T, Schmid HP, Nicolas P, Gall P, Badaoui S (2005). HcPro, a multifunctional protein encoded by a plant RNA virus, targets the 20S proteasome and affects its enzymic activities. Journal of General Virology 86: 2595–2603.
  • Bazan JF, Fletterick RJ (1988). Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Proc Natl Acad Sci USA 85: 7872–7876.
  • Bazan JF, Fletterick RJ (1990). Structural and catalytic models of trypsin-like viral proteases. Semin Virol 1: 311–322.
  • Chen KC, Chiang CH, Raja JA, Liu FL, Tai CH, Yeh SD (2008). A single amino acid of NIa pro of Papaya ringspot virus determines host specificity for infection of papaya. Mol Plant Microbe Interact 21: 1046–1057.
  • Dougherty W, Semler BL (1993). Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiological Reviews 781–822.
  • Fernandez-Rodriguez J, Voigt CA (2016). Post-translational control of genetic circuits using Potyvirus proteases. Nucleic Acids Research 44(13): 6493–6502.
  • Franssen H, Moerman M, Rezelman G, Goldbach R (1984). Evidence that the 32,000-dalton protein encoded by bottom-component RNA of cowpea mosaic virus is a proteolytic processing enzyme. Journal Virology Apr 50(1): 183–190.
  • Gorbalenya AE, Koonin EV, Blinov VM, Donchenko AP (1988). Sobemovirus genome appears to encode a serine protease related to cysteine proteases of picornaviruses. FEBS Lett 236: 287–290.
  • Gorbalenya AE, Donchenko AP, Blinov VM, Koonin EV (1989). Cysteine proteases of positive strains RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold. FEBS Lett 243: 103–114.
  • Guo B, Lin J, Ye K (2011). Structure of the autocatalytic cysteine protease domain of potyvirus helper-component proteinase. The Journal of Biological Chemistry 286(24): 21937–21943.
  • Huet H, Gal-On Meir EA, Lecoq H, Raccah B (1994). Mutations in the hepler component protease gene of zucchini yellow mosaic virus affect its ability to mediate aphid transmissibility. Journal of General Virology 75: 1407–1414.
  • Li X, Ryan MD, Lamb J W (2000). Potato leaf roll virus protein P1 contains a serine proteinase domain. Journal of General Virology 81: 1857–1864.
  • Li X, Ryan MD, Lamb JW (2000). Potato leafroll virus protein P1 contains a serine proteinase domain. J Gen Virol 81: 1857–1864.
  • Liu YP, Peremyslov VV, Medina V, Dolja VV (2009). Tandem leader proteases of Grapevine leafroll-associated virus-2: host-specific functions in the infection cycle. Virology 383: 291–299.
  • Lutz L, Raikhy G, Leisner SM (2012). Cauliflower mosaic virus major inclusion body protein interacts with the aphid transmission factor, the virion-associated protein, and gene VII product. Virus Res 170: 150–153.
  • Mann KS, Walker M, Sanfaçon H (2017). Identification of cleavage sites recognized by the 3C-like cysteine protease within the two polyproteins of strawberry mottle virus. Front Microbiol 8: 745.
  • Margis R, Pinck L (1992). Effect of site-directed mutagenesis on the presumed catalytic triad and substrate-binding pocket of grapevine fanleaf nepovirus 24-kDa proteinase. Virology 190: 884–888.
  • Pasin F, Simón-Mateo C, García JA (2014). The hypervariable amino-terminus of P1 protease modulates potyviral replication and host defense responses. PLoS Pathog 10(3): e1003985.
  • Plisson C, Drücker M, Blanc S, German-Retana S, Le Gall O, Thomas D, Bron P (2003). Structural characterization of HC-Pro, a plant virus multifunctional protein. J Biol Chem 278: 23753–23761.
  • Prüfer D, Kawchuk L, Monecke M, Nowok S, Fischer R, Rohde W (1999). Immunological analysis of potato leafroll luteovirus (PLRV) P1 expression identifies a 25 kDa RNA-binding protein derived via P1 processing. Nucleic Acids Res 27: 421–425.
  • Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews 62(3): 597–635.
  • Rodamilans B, Valli A, Antonio Garcia A (2013). Mechanistic divergence between P1 proteases of the family Potyviridae. Journal of General Virology 94: 1407–1414.
  • Rodamilans B, Shan H, Pasin F, García JA (2018). Plant viral proteases: beyond the role of peptide cutters. Frontiers in Plant Science 9.
  • Ryan MD, Flint M (1997). Virus-encoded proteinases of the picornavirus super-group. Journal of General Virology 78: 699–723.
  • Satheshkumar PS, Lokesh GL, Savithri HS (2004). Polyprotein processing: cis and trans proteolytic activities of Sesbania mosaic virus serine protease. Virology 318: 429–438.
  • Sõmera M, Sarmiento C, Truve E (2015). Overview on sobemoviruses and a proposal for the creation of the family Sobemoviridae. Viruses 7: 3076–3115.
  • Taliansky M, Torrance L, Kalinina N (2008). Role of plant virus movement proteins. from: methods in molecular biology, Vol. 451, Plant Virology Protocols: 33 From Viral Sequence to Protein Function Edited by Foster GD, Johansen IE, Hong Y. and Nagy P.D., Humana Press, Totowa, NJ.
  • Tekin N (2008). Türkiye kaynaklı Bacillus spp.’lerin alkalen proteaz üretim kapasiteleri ve enzimlerin kısmen karakterizasyonu. Ankara Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı, Yüksek Lisans Tezi 109.
  • Thole V, Hull R (1998). Rice tungro spherical virus polyprotein processing: identification of a virus-encoded protease and mutational analysis of putative cleavage sites. Virology 247: 106–114.
  • Thompson JR, Kamath N, Perry KL (2014). An evolutionary analysis of the Secoviridae family of viruses. PLoS One 9: e106305.
  • Torruella M, Gordon K, Hohn T (1989). Cauliflower mosaic virus produces an aspartic proteinase to cleave its polyproteins. EMBO J 8: 2819–2825.
  • Verchot J, Carrington JC (1995). Evidence that the potyvirus P1 proteinase functions in trans as an accessory factor for genome amplification. J Virol 69: 3668–3674.
  • Verver J, Goldbach R, Garcia JA, Vos P (1987). In vitro expression of a full-length DNA copy of cowpea mosaic virus B RNA: identification of the B RNA encoded 24-kd protein as a viral protease. EMBO J 6: 549–554.
  • Wang A, Carrier K, Chisholm J, Wieczorek A, Huguenot C, Sanfaçon H (1999). Proteolytic processing of tomato ringspot nepovirus 3C-like protease precursors: definition of the domains for the VPg, protease and putative RNA-dependent RNA polymerase. J Gen Virol 80: 799–809.
  • Wang A, Sanfaçon H (2000). Proteolytic processing at a novel cleavage site in the N-terminal region of the tomato ringspot nepovirus RNA-1-encoded polyprotein in vitro. J Gen Virol 81 2771–2781.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Research Articles
Authors

Şerife Topkaya

Filiz Ertunç This is me

Publication Date October 11, 2018
Submission Date April 25, 2018
Published in Issue Year 2018 Volume: 44 Issue: 2

Cite

APA Topkaya, Ş., & Ertunç, F. (2018). Bitki Patojeni Virüslerde Proteaz Tipleri ve Fonksiyonları. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 44(2), 175-186.
AMA Topkaya Ş, Ertunç F. Bitki Patojeni Virüslerde Proteaz Tipleri ve Fonksiyonları. sufefd. October 2018;44(2):175-186.
Chicago Topkaya, Şerife, and Filiz Ertunç. “Bitki Patojeni Virüslerde Proteaz Tipleri Ve Fonksiyonları”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 44, no. 2 (October 2018): 175-86.
EndNote Topkaya Ş, Ertunç F (October 1, 2018) Bitki Patojeni Virüslerde Proteaz Tipleri ve Fonksiyonları. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 44 2 175–186.
IEEE Ş. Topkaya and F. Ertunç, “Bitki Patojeni Virüslerde Proteaz Tipleri ve Fonksiyonları”, sufefd, vol. 44, no. 2, pp. 175–186, 2018.
ISNAD Topkaya, Şerife - Ertunç, Filiz. “Bitki Patojeni Virüslerde Proteaz Tipleri Ve Fonksiyonları”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 44/2 (October 2018), 175-186.
JAMA Topkaya Ş, Ertunç F. Bitki Patojeni Virüslerde Proteaz Tipleri ve Fonksiyonları. sufefd. 2018;44:175–186.
MLA Topkaya, Şerife and Filiz Ertunç. “Bitki Patojeni Virüslerde Proteaz Tipleri Ve Fonksiyonları”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, vol. 44, no. 2, 2018, pp. 175-86.
Vancouver Topkaya Ş, Ertunç F. Bitki Patojeni Virüslerde Proteaz Tipleri ve Fonksiyonları. sufefd. 2018;44(2):175-86.

Journal Owner: On behalf of Selçuk University Faculty of Science, Rector Prof. Dr. Metin AKSOY
Selcuk University Journal of Science Faculty accepts articles in Turkish and English with original results in basic sciences and other applied sciences. The journal may also include compilations containing current innovations.

It was first published in 1981 as "S.Ü. Fen-Edebiyat Fakültesi Dergisi" and was published under this name until 1984 (Number 1-4).
In 1984, its name was changed to "S.Ü. Fen-Edeb. Fak. Fen Dergisi" and it was published under this name as of the 5th issue.
When the Faculty of Letters and Sciences was separated into the Faculty of Science and the Faculty of Letters with the decision of the Council of Ministers numbered 2008/4344 published in the Official Gazette dated 3 December 2008 and numbered 27073, it has been published as "Selcuk University Journal of Science Faculty" since 2009.
It has been scanned in DergiPark since 2016.

88x31.png

Selcuk University Journal of Science Faculty is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.