Research Article
BibTex RIS Cite

Üçgen Kuyu Potansiyeli ile Modellenen Ar ve Xe Akışkanlarının Termodinamik Özellikleri

Year 2021, Volume: 47 Issue: 1, 80 - 93, 30.04.2021
https://doi.org/10.35238/sufefd.881298

Abstract

İkinci mertebeli Barker-Henderson pertürbasyon teorisine dayalı olarak üçgen kuyu potansiyeli için türetilen analitik durum denklemi Ar ve Xe akışkanlarının sıvı buhar dengesi, basınç ve iç enerji gibi termodinamik özelliklerinin hesaplanmasında kullanılmıştır. Elde edilen sonuçlar hem simülasyon hem de deneysel veriler ile karşılaştırılmıştır. Her iki akışkan için sıvı buhar dengesi için elde edilen sonuçların kritik nokta yakındaki bölge haricinde hem deney hem de simülasyon verileriyle uyumlu olduğu görülmüştür. Diğer taraftan basınç ve enerji sonuçları için bazı uyumsuzlukların ortaya çıktığı gözlenmiştir.

References

  • Adhikari J and Kofke DA (2002). Monte Carlo and cell model calculations for the solid-fluid phase behaviour of the triangle-well model. Mol Phys 100:1543-1550.
  • Akhouri BP and Solana JR (2020). Square-well mixtures revisited: computer simulation, mixing rules and one-fluid theory. Molec Sim 46:102-110.
  • Barcenas M, Castellanos V, Reyes Y, Odriozola G and Orea P (2017). Phase behaviour of short range triangle well fluids: A comparison with lysozyme suspensions. J Mol Liq 225:723-729.
  • Barcenas M, Reyes Y, Romero-Martínez A, Odriozola G, and Orea P (2015). Coexistence and interfacial properties of a triangle-well mimicking the Lennard-Jones fluid and a comparison with noble gases. J Chem Phys 142:074706.
  • Barker JA and Henderson D (1967). Perturbation Theory and Equation of State for Fluids: The Square‐Well Potential. J Chem Phys 47:2856-2861.
  • Barker JA and Henderson D (1976). What is liquid? Understanding the states of matter, Rev Mod Phys 48:587-671.
  • Barker JA, Fisher RA and Watts RO (1971). Liquid argon: Monte Carlo and molecular dynamics calculations. Mol Phys 21:657-673;
  • Barker JA, Watts RO, Lee JK, Schafer TP and Lee YT (1974). Interatomic potentials for krypton and xenon, J Chem Phys 61:3081-3089.
  • Benavides AL, Cervantes LA and Torres-Arenas J (2018). Analytical equations of state for triangle-well and triangle-shoulder potentials. J Molec Liq 271:670-676.
  • Betancourt-Cardenas FF, Galicia-Luna LA and Sandler SI (2007). Thermodynamic properties for the triangular-well fluid. Mol Phys 105:2987-2998.
  • Betancourt-Cardenas FF, Galicia-Luna LA, Benavides AL, Ramirez JA and Schöll-Paschinger E (2008). Thermodynamics of a long-range triangle-well fluid. Mol Phys 106:113-126.
  • Card DN and Walkley J (1974). Monte Carlo and Perturbation Calculations for a Triangular Well Fluid. Can J Phys 52:80-88.
  • Carnahan NF and Starling KE (1969). Equation of state for nonattracting rigid spheres. J Chem Phys 51:635-636.
  • Chang J and Sandler SI (1994). A real function representation for the structure of the hard-sphere fluid. Mol Phys 81:735-744.
  • Espíndola-Heredia, R, del Río F and Malijevsky A (2009). Optimized equation of the state of the square-well fluid of variable range based on a fourth-order free-energy expansion. J Chem Phys 130:024509.
  • Goharshadi EK and Abbaspour M (2006) Molecular dynamics simulation of argon, krypton, and xenon using two-body and three-body intermolecular potentials. J Chem Theory and Comput 2:920-926.
  • Guérin H (2012). Improved analytical thermodynamic properties of the triangular-well fluid from perturbation theory. J Mol Liq 170:37.
  • Guérin H (2015). Unified SAFT-VR theory for simple and chain fluids formed of square-well, triangular-well, Sutherland and Mie segments. J Molec Liq 203:187-197.
  • Koyuncu M (2011). Equation of state of a long-range triangular-well fluid. Mol Phys 109:565-573.
  • Largo J and Solana JR (2000). A simplified perturbation theory for equilibrium properties of triangular-well fluids. Physica A 284:68-78.
  • Marcelli G and Sadus RJ (1999). Molecular simulation of the phase behavior of noble gases using accurate two-body and three-body intermolecular potentials. J Chem Phys 111 (1999) 1533-1540.
  • Mick JR, Barhaghi MS, Jackman B, Rushaidat K, Schweibert L, Potoff, JJ (2015). Optimized Mie potentials for phase equilibria: Application to noble gases and their mixtures with n-alkanes. J Chem Phys 143:114504.
  • Montero AM and Santos A (2019). Triangle-Well and Ramp Interactions in One-Dimensional Fluids: A Fully Analytic Exact Solution. J Stat Phys 175:269-288.
  • Nagamiya T (1940). Statistical Mechanics of One-dimensional Substances I. Proc Phys-Math Soc Japan 22:705-720.
  • Nezbeda I (2001). Can we understand (and model) aqueous solutions without any long range electrostatic interactions? Mol Phys 99:1631-1639.
  • NIST webbook http://webbook.nist.gov/chemistry/fluid/.
  • Orea P and Odriozola G (2013). Constant-force approach to discontinuous potentials. J Chem Phys 138:214105.
  • Paricaud PA (2006). General perturbation approach for equation of state development: applications to simple fluids, ab initio potentials, and fullerenes. J Chem Phys124: 154505.
  • Reyes Y, Bárcenas M, Odriozola G and Orea P (2016). Thermodynamic properties of triangle-well fluids in two dimensions: MC and MD simulations. J Chem Phys 145: 174505.
  • Rivera LD, Robles M and Lopez de Haro M (2012). Equation of state and liquid–vapour equilibrium in a triangle-well fluid. Mol Phys 110:1317-1323.
  • Sengupta A and Adhikari J (2016). Prediction of fluid phase equilibria and interfacial tension of triangle-well fluids using transition matrix Monte Carlo. Chem Phys 469-470:16–24.
  • Smith WR, Henderson D and Barker JA (1970). Approximate evaluation of the second-order term in the perturbation theory of fluids. J Chem Phys 53:508-515.
  • Somasekhara Reddy MC and Murthy AK (1983). Perturbation theory for a microemulsion with triangular well potential. Pramana 20:217.
  • Trejos VM, Martínez A and Valadez-Pérez NE (2018). Statistical fluid theory for systems of variable range interacting via triangular-well pair potential. J Mol Liq 265:337-346.
  • Wang GF and Lai SK (2002). Phase diagram for an attractive triangular potential within van der Waals-like theory. J Non-Cryst Solids 312-314:236.
  • Weeks JD, Chandler D and Andersen HC (1971). Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids. J Chem Phys 41:5237.
  • Zhang BJ (1999). Calculating thermodynamic properties from perturbation theory I. An analytic representation of square-well potential hard-sphere perturbation theory. Fluid Phase Equilib. 154:1-10.
  • Zhou S (2009). Thermodynamics and phase behavior of a triangle-well model and density-dependent variety. J Chem Phys 130:014502.
  • Zwanzig RW (1954). High‐Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases. J Chem Phys 22:1420.

Thermodynamic Properties of Ar and Xe Fluids Modeled by Triangular Well Potential

Year 2021, Volume: 47 Issue: 1, 80 - 93, 30.04.2021
https://doi.org/10.35238/sufefd.881298

Abstract

The simple analytical equation of state derived for the triangular well potential based on the second order Barker-Henderson perturbation theory is used to calculate the thermodynamic properties such as liquid-vapor equilibrium, pressure and internal energy of Ar and Xe fluids. Obtained results were compared with both simulation and experimental data. It was seen that the results obtained for liquid-vapor equilibria for both fluids were compatible with both the experimental and the simulation data except for the region near the critical point. On the other hand, it has been observed that some incompatibilities occur for pressure and energy results.

References

  • Adhikari J and Kofke DA (2002). Monte Carlo and cell model calculations for the solid-fluid phase behaviour of the triangle-well model. Mol Phys 100:1543-1550.
  • Akhouri BP and Solana JR (2020). Square-well mixtures revisited: computer simulation, mixing rules and one-fluid theory. Molec Sim 46:102-110.
  • Barcenas M, Castellanos V, Reyes Y, Odriozola G and Orea P (2017). Phase behaviour of short range triangle well fluids: A comparison with lysozyme suspensions. J Mol Liq 225:723-729.
  • Barcenas M, Reyes Y, Romero-Martínez A, Odriozola G, and Orea P (2015). Coexistence and interfacial properties of a triangle-well mimicking the Lennard-Jones fluid and a comparison with noble gases. J Chem Phys 142:074706.
  • Barker JA and Henderson D (1967). Perturbation Theory and Equation of State for Fluids: The Square‐Well Potential. J Chem Phys 47:2856-2861.
  • Barker JA and Henderson D (1976). What is liquid? Understanding the states of matter, Rev Mod Phys 48:587-671.
  • Barker JA, Fisher RA and Watts RO (1971). Liquid argon: Monte Carlo and molecular dynamics calculations. Mol Phys 21:657-673;
  • Barker JA, Watts RO, Lee JK, Schafer TP and Lee YT (1974). Interatomic potentials for krypton and xenon, J Chem Phys 61:3081-3089.
  • Benavides AL, Cervantes LA and Torres-Arenas J (2018). Analytical equations of state for triangle-well and triangle-shoulder potentials. J Molec Liq 271:670-676.
  • Betancourt-Cardenas FF, Galicia-Luna LA and Sandler SI (2007). Thermodynamic properties for the triangular-well fluid. Mol Phys 105:2987-2998.
  • Betancourt-Cardenas FF, Galicia-Luna LA, Benavides AL, Ramirez JA and Schöll-Paschinger E (2008). Thermodynamics of a long-range triangle-well fluid. Mol Phys 106:113-126.
  • Card DN and Walkley J (1974). Monte Carlo and Perturbation Calculations for a Triangular Well Fluid. Can J Phys 52:80-88.
  • Carnahan NF and Starling KE (1969). Equation of state for nonattracting rigid spheres. J Chem Phys 51:635-636.
  • Chang J and Sandler SI (1994). A real function representation for the structure of the hard-sphere fluid. Mol Phys 81:735-744.
  • Espíndola-Heredia, R, del Río F and Malijevsky A (2009). Optimized equation of the state of the square-well fluid of variable range based on a fourth-order free-energy expansion. J Chem Phys 130:024509.
  • Goharshadi EK and Abbaspour M (2006) Molecular dynamics simulation of argon, krypton, and xenon using two-body and three-body intermolecular potentials. J Chem Theory and Comput 2:920-926.
  • Guérin H (2012). Improved analytical thermodynamic properties of the triangular-well fluid from perturbation theory. J Mol Liq 170:37.
  • Guérin H (2015). Unified SAFT-VR theory for simple and chain fluids formed of square-well, triangular-well, Sutherland and Mie segments. J Molec Liq 203:187-197.
  • Koyuncu M (2011). Equation of state of a long-range triangular-well fluid. Mol Phys 109:565-573.
  • Largo J and Solana JR (2000). A simplified perturbation theory for equilibrium properties of triangular-well fluids. Physica A 284:68-78.
  • Marcelli G and Sadus RJ (1999). Molecular simulation of the phase behavior of noble gases using accurate two-body and three-body intermolecular potentials. J Chem Phys 111 (1999) 1533-1540.
  • Mick JR, Barhaghi MS, Jackman B, Rushaidat K, Schweibert L, Potoff, JJ (2015). Optimized Mie potentials for phase equilibria: Application to noble gases and their mixtures with n-alkanes. J Chem Phys 143:114504.
  • Montero AM and Santos A (2019). Triangle-Well and Ramp Interactions in One-Dimensional Fluids: A Fully Analytic Exact Solution. J Stat Phys 175:269-288.
  • Nagamiya T (1940). Statistical Mechanics of One-dimensional Substances I. Proc Phys-Math Soc Japan 22:705-720.
  • Nezbeda I (2001). Can we understand (and model) aqueous solutions without any long range electrostatic interactions? Mol Phys 99:1631-1639.
  • NIST webbook http://webbook.nist.gov/chemistry/fluid/.
  • Orea P and Odriozola G (2013). Constant-force approach to discontinuous potentials. J Chem Phys 138:214105.
  • Paricaud PA (2006). General perturbation approach for equation of state development: applications to simple fluids, ab initio potentials, and fullerenes. J Chem Phys124: 154505.
  • Reyes Y, Bárcenas M, Odriozola G and Orea P (2016). Thermodynamic properties of triangle-well fluids in two dimensions: MC and MD simulations. J Chem Phys 145: 174505.
  • Rivera LD, Robles M and Lopez de Haro M (2012). Equation of state and liquid–vapour equilibrium in a triangle-well fluid. Mol Phys 110:1317-1323.
  • Sengupta A and Adhikari J (2016). Prediction of fluid phase equilibria and interfacial tension of triangle-well fluids using transition matrix Monte Carlo. Chem Phys 469-470:16–24.
  • Smith WR, Henderson D and Barker JA (1970). Approximate evaluation of the second-order term in the perturbation theory of fluids. J Chem Phys 53:508-515.
  • Somasekhara Reddy MC and Murthy AK (1983). Perturbation theory for a microemulsion with triangular well potential. Pramana 20:217.
  • Trejos VM, Martínez A and Valadez-Pérez NE (2018). Statistical fluid theory for systems of variable range interacting via triangular-well pair potential. J Mol Liq 265:337-346.
  • Wang GF and Lai SK (2002). Phase diagram for an attractive triangular potential within van der Waals-like theory. J Non-Cryst Solids 312-314:236.
  • Weeks JD, Chandler D and Andersen HC (1971). Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids. J Chem Phys 41:5237.
  • Zhang BJ (1999). Calculating thermodynamic properties from perturbation theory I. An analytic representation of square-well potential hard-sphere perturbation theory. Fluid Phase Equilib. 154:1-10.
  • Zhou S (2009). Thermodynamics and phase behavior of a triangle-well model and density-dependent variety. J Chem Phys 130:014502.
  • Zwanzig RW (1954). High‐Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases. J Chem Phys 22:1420.
There are 39 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Enes Yıldırım 0000-0003-2668-6998

Mustafa Koyuncu 0000-0001-5409-9171

Publication Date April 30, 2021
Submission Date February 16, 2021
Published in Issue Year 2021 Volume: 47 Issue: 1

Cite

APA Yıldırım, E., & Koyuncu, M. (2021). Üçgen Kuyu Potansiyeli ile Modellenen Ar ve Xe Akışkanlarının Termodinamik Özellikleri. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 47(1), 80-93. https://doi.org/10.35238/sufefd.881298
AMA Yıldırım E, Koyuncu M. Üçgen Kuyu Potansiyeli ile Modellenen Ar ve Xe Akışkanlarının Termodinamik Özellikleri. sufefd. April 2021;47(1):80-93. doi:10.35238/sufefd.881298
Chicago Yıldırım, Enes, and Mustafa Koyuncu. “Üçgen Kuyu Potansiyeli Ile Modellenen Ar Ve Xe Akışkanlarının Termodinamik Özellikleri”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 47, no. 1 (April 2021): 80-93. https://doi.org/10.35238/sufefd.881298.
EndNote Yıldırım E, Koyuncu M (April 1, 2021) Üçgen Kuyu Potansiyeli ile Modellenen Ar ve Xe Akışkanlarının Termodinamik Özellikleri. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 47 1 80–93.
IEEE E. Yıldırım and M. Koyuncu, “Üçgen Kuyu Potansiyeli ile Modellenen Ar ve Xe Akışkanlarının Termodinamik Özellikleri”, sufefd, vol. 47, no. 1, pp. 80–93, 2021, doi: 10.35238/sufefd.881298.
ISNAD Yıldırım, Enes - Koyuncu, Mustafa. “Üçgen Kuyu Potansiyeli Ile Modellenen Ar Ve Xe Akışkanlarının Termodinamik Özellikleri”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 47/1 (April 2021), 80-93. https://doi.org/10.35238/sufefd.881298.
JAMA Yıldırım E, Koyuncu M. Üçgen Kuyu Potansiyeli ile Modellenen Ar ve Xe Akışkanlarının Termodinamik Özellikleri. sufefd. 2021;47:80–93.
MLA Yıldırım, Enes and Mustafa Koyuncu. “Üçgen Kuyu Potansiyeli Ile Modellenen Ar Ve Xe Akışkanlarının Termodinamik Özellikleri”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, vol. 47, no. 1, 2021, pp. 80-93, doi:10.35238/sufefd.881298.
Vancouver Yıldırım E, Koyuncu M. Üçgen Kuyu Potansiyeli ile Modellenen Ar ve Xe Akışkanlarının Termodinamik Özellikleri. sufefd. 2021;47(1):80-93.

Journal Owner: On behalf of Selçuk University Faculty of Science, Rector Prof. Dr. Metin AKSOY
Selcuk University Journal of Science Faculty accepts articles in Turkish and English with original results in basic sciences and other applied sciences. The journal may also include compilations containing current innovations.

It was first published in 1981 as "S.Ü. Fen-Edebiyat Fakültesi Dergisi" and was published under this name until 1984 (Number 1-4).
In 1984, its name was changed to "S.Ü. Fen-Edeb. Fak. Fen Dergisi" and it was published under this name as of the 5th issue.
When the Faculty of Letters and Sciences was separated into the Faculty of Science and the Faculty of Letters with the decision of the Council of Ministers numbered 2008/4344 published in the Official Gazette dated 3 December 2008 and numbered 27073, it has been published as "Selcuk University Journal of Science Faculty" since 2009.
It has been scanned in DergiPark since 2016.

88x31.png

Selcuk University Journal of Science Faculty is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.