Review
BibTex RIS Cite

Apoptosis

Year 2023, Volume: 49 Issue: 1, 1 - 10, 10.04.2023
https://doi.org/10.35238/sufefd.1210651

Abstract

Apoptosis is an energy-requiring physiological process known as programmed cell death, and apoptosis plays a critical role in embryological development and maintenance of adult tissues. Apoptosis, known as programmed cell death, is a mechanism that controls and destroys cells that the organism does not need, that have completed their biological task or that are damaged at the genetic level. Various diseases occur when the rate of apoptosis is impaired, slowed down or increased. The apoptosis process can be triggered by intracellular signals, such as genotoxic stress, or by extrinsic signals, such as ligands binding to cell surface death receptors. The mechanism of apoptosis involves various proteins and molecules. Deregulation in the mechanism of apoptotic cell death is the hallmark of cancer. Apoptosis alteration is responsible not only for tumor development and progression, but also for tumor resistance to treatments. Most anticancer drugs currently used in clinical oncology exploit intact apoptotic signaling pathways to induce cancer cell death. In this review, the effects of apoptosis on tumor-inducing and tumor suppressor genes and its functional properties in cancer are outlined.

References

  • Abramson, J. S., Shipp, M. A. (2005). Advances in the biology and therapy of diffuse large B‐cell lymphoma: moving toward a molecularly targeted approach. Blood, 106, 1164‐1174. https://doi.org/10.1182/blood-2005-02-0687
  • Acehan, D., Jiang, X., Morgan, D. G., Heuser, J. E., Wang, X., Akey, C. W. (2002). Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol. Cell, 9, 423–32. https://doi.org/10.1016/S1097-2765(02)00442-2
  • Adams, J. M., Cory, S. (2007). The Bcl‐2 apoptotic switch in cancer development and therapy. Oncogene, 26, 1324‐1337. https://doi.org/10.1038/sj.onc.1210220.
  • Alnemri, E. S., Livingston, D. J., Nicholson, D. W., Salvesen, G., Thornberry, N. A. (1996). Human ICE/ CED-3 protease nomenclature. Cell, 87, 171. https://doi.org/10.1016/S0092-8674(00)81334-3
  • Attardi, L. D., Reczek, E. E., Cosmas, C., Demicco, E. G., McCurrach, M. E., Lowe, S. W., Jacks, T. (2000). PERP, an apoptosi‐associated target of p53, is a novel member of the PMP‐22/gas3 family. Genes Dev., 14, 704‐718.
  • Bagnoli, M., Canevari, S., Mezzanzanica, D. (2010). Cellular FLICE‐inhibitory protein (c‐FLIP) signalling: A key regulator of receptor‐mediated apoptosis in physiologic context and in cancer. Int J Biochem Cell Biol., 42, 210–213. https://doi.org/10.1016/j.biocel.2009.11.015
  • Baldi, A., Santini, D., Russo, P., Catricala, C., Amantea, A., Picardo, M., Tatangelo, F., Botti, G., Dragonetti, E., Murace, R., Tonini, G., Natali, P. G., Baldi, F., Paggi, M. G. (2004). Analysis of APAF‐1 expression in human cutaneous melanoma progression. Exp Dermatol., 13, 93‐97. https://doi.org/10.1111/j.0906-6705.2004.00136.x
  • Bennet, M., Macdonald, K., Chan, S. W., Luzio, J. P., Simari, R. (1998). Cell surface trafficking of Fas: a rapid mechanisms of p53‐mediated apoptosis. Science, 282, 290‐293.
  • Berthelet, J., Dubrez, L. (2013). Regulation of apoptosis by inhibitors of apoptosis (IAPs). Cells, 2, 163‐87. https://doi.org/10.3390/cells2010163
  • Boatright, K. M., Salvesen, G. S. (2003). Mechanisms of caspase activation. Curr Opin Cell Biol., 6, 725‐731. https://doi.org/10.1016/j.ceb.2003.10.009
  • Bose, K. (2015). Proteases in apoptosis: Pathways, protocols and translational advances. Proteases in Apoptosis: Pathways, Protocols and Translational Advances, 1–237.
  • Brentnall, M., Rodriguez-Menocal, L., De Guevara, R. L. (2013). Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biology, 14, 1–9. https://doi.org/10.1186/1471-2121-14-32
  • Brooks, C. L., Gu, W. (2003). Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol., 15, 164‐171. https://doi.org/10.1016/S0955-0674(03)00003-6
  • Budd, R. C., Yeh, W. C., Tschopp, J. (2006). cFLIP regulation of lymphocyte activation and development. Nat. Rev. Immunol, 6, 196–204 [PubMed: 16498450]
  • Cain, K., Bratton, S. B., Cohen, G. M. (2002). The Apaf-1 apoptosome: a large caspase-activating complex. Biochimie, 84, 203–14 [PubMed: 12022951]
  • Chai, J. (2001). Structural basis of caspase-7 inhibition by XIAP. Cell, 104, 769–780.
  • Chi, S. W. (2014). Structural insights into the transcription‐independent apoptotic pathway of p53. BMB Rep., 47, 167‐172.
  • Chun, H. J., Zheng, L., Ahmad, M., Wang, J., Speirs, C. K., (2002). Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature, 419(6905),395–99 [PubMed: 12353035]
  • Clarke, P. G., Clarke, S. (1996). Nineteenth century research on naturally occurring cell death and related phenomena. Anat Embryol, 193: 81–99
  • Cunha, L. D., Silva, A. L. N., Ribeiro, J. M., Mascarenhas, D. P. A., Quirino, G. F. S. (2017). AIM2 engages active but unprocessed caspase-1 to induce noncanonical activation of the NLRP3 inflammasome. Cell Rep., 20, 794–805 [PubMed: 28746866] https://doi.org/10.1016/j.celrep.2017.06.086
  • Danial, N. N., Korsmeyer, S. J. (2004). Cell death: critical control points. Cell, 116, 205–19. https://doi.org/10.1016/S0092-8674(04)00046-7
  • Degterev, A., Boyce, M., Yuan, J. Y. (2003). A decade of caspases. Oncogene, 22, 8543‐8567.
  • Deveraux, Q. L. ve Reed, J. C. (1999). IAP family proteins – suppressors of apoptosis. Genes Dev., 13, 239–252.
  • Eckelman, B. P., Salvesen, G. S., and Scott, F. L. (2006). Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep., 7, 988–994. https://doi.org/10.1038/sj.embor.7400795
  • Eckhart, L., Declercq, W., Ban, J., Rendl, M., Lengauer, B. (2000). Terminal differentiation of human keratinocytes and stratum corneum formation is associated with caspase-14 activation. J. Investig. Dermatol, 115, 1148–51 [PubMed: 11121154]
  • Erovic, B. M., Pelzmann, M., Grasl, M. Ch., Pammer, J., Kornek, G., Brannath, W., Selzer, E., Thurnher, D. (2005). Mcl‐1, vascular endothelial growth factor‐R2, and 14‐3‐3sigma expression might predict primary response against radiotherapy and chemotherapy in patients with locally advanced squamous cell carcinomas of the head and neck. Clin Cancer Res., 11, 8632‐8636. https://doi.org/10.18632/oncotarget.26563
  • Fava, L. L., Schuler, F., Sladky, V., Haschka, M. D., Soratroi, C. (2017). The PIDDosome activates p53 in response to supernumerary centrosomes. Genes Dev., 31, 34–45 [PubMed: 28130345] http://www.genesdev.org/cgi/doi/10.1101/gad.289728.116.
  • Fernald, K., ve Kurokawa, M. (2013). Evading apoptosis in cancer. Trends in Cell Biology, 23, 620633. https://doi.org/10.1016/j.tcb.2013.07.006.Evading.
  • Foreman, K. E., Wrone‐Smith, T., Boise, L. H., Thompson, C. B., Polverini, P. J., Simonian, P. L., Nunez, G., Nickoloff, B. J. (1996). Kaposi’s sarcoma tumor cells preferentially express Bcl‐xL. Am J Pathol., 149, 795‐803.
  • Fulda, S., Debatin, K. M. (2003). Death receptor signaling in cancer therapy. Curr Med Chem Anticancer Agents, 3, 253‐262.
  • Fulda, S. ve Meyer, E. (2000). Debatin KM. Inhibition of TRAIL‐induced apoptosis by Bcl‐2 overexpression. Oncogene, 21, 2283‐2294.
  • Fulda, S. (2009a). Inhibitor of apoptosis proteins in hematological malignancies. Leukemia, 23, 467‐476.
  • Fulda, S. (2009b). Tumor resistance to apoptosis. Int J Cancer, 124, 515‐515.
  • Fulda, S. (2015). Targeting apoptosis for anticancer therapy. Sem Cancer Biol., 31, 84‐88.
  • Galluzzi, L., Lopez-Soto, A., Kumar, S., Kroemer, G. (2016). Caspases connect cell-death signaling to organismal homeostasis. Immunity, 44, 221–31 [PubMed: 26885855]
  • Gandour‐Edwards, R., Mack, P. C., Devere‐White, R. W., Gumerlock, P. H. (2004). Abnormalities of apoptotic and cell cycle regulatory proteins in distinct histopathologic components of benign prostatic hyperplasia. Prost Cancer Prost Dis., 7, 321‐326.
  • Giam, M., Huang, D. C., Bouillet, P. (2008). BH3‐only proteins and their roles in programmed cell death. Oncogene, 27, 128‐36.
  • Green, D. R., Kroemer, G. (2004). The pathophysiology of mitochondrial cell death. Science, 305, 626‐629.
  • Green, D. R. (2018). Cell Death. Apoptosis and Other Means to an End; Cold Spring Harbor Laboratory Press: New York, NY, USA.
  • Gimenez‐Bonafe, P., Tortosa, A., Perez‐Tomas, R. (2009). Overcoming drug resistance by enhancing apoptosis of tumor cells. Curr Cancer Drug Targ., 9, 320‐340.
  • Guicciardi, M. E., ve Gores, G. J. (2009). Life and death by death receptors. The FASEB Journal, 23, 1625–1637. https://doi.org/10.1096/fj.08-111005.
  • Guo, H., Albrecht, S., Bourdeau, M., Petzke, T., Bergeron, C., LeBlanc, A. C. (2004). Active caspase-6 and caspase-6-cleaved tau in neuropil threads, neuritic plaques, and neurofibrillary tangles of Alzheimer’s disease. Am. J. Pathol., 165, 523–31 [PubMed: 15277226]
  • Gurung, P., Anand, P. K., Malireddi, R. K., Vande, W. L., Van Opdenbosch, N. (2014) FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J. Immunol, 192, 1835–46 [PubMed: 24453255]
  • Hacker, G. (2000). The morphology of apoptosis. Cell Tissue Res., 301, 5‐17.
  • Han, J. Y., Hong, E. K., Choi, B. G., Park, J. N., Kim, K. W., Kang, J. H., Jin, J. Y., Park, S. Y., Hong, Y. S., Lee, K. S. (2003). Death receptor 5 and Bcl‐2 protein expression as predictors of tumor response to gemcitabine and cisplatin in patients with advanced non‐small‐cell lung cancers. Med Oncol., 20, 355‐362.
  • Hanahan, D., Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144, 646‐674.
  • Haupt, S., Berger, M., Goldberg, Z., Haupt, Y. (2003). Apoptosis – the p53 network. J Cell Sci., 116, 4077‐4085.
  • Hengartner, M. O. (2000). Apoptosis: corralling the corpses. Cell, 104, 325‐328.
  • Henry, C. M., Martin, S. J. (2017). Caspase-8 acts in a non-enzymatic role as a scaffold for assembly of a pro-inflammatory “FADDosome” complex upon TRAIL stimulation. Mol. Cell, 65, 715–29.e5 [PubMed: 28212752]
  • Horn, S., Hughes, M. A., Schilling, R., Sticht, C., Tenev, T. (2017). Caspase-10 negatively regulates caspase-8-mediated cell death, switching the response to CD95L in favor of NF-κB activation and cell survival. Cell Rep, 19, 785–97 [PubMed: 28445729]
  • Huang, Y. (2001). Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell, 104, 781–790.
  • Irmler, M., Thome, M., Hahne, M., Schneider, P., Hofmann, K., Steiner, V., Bodmer, J. L., Schröter, M., Burns, K., Mattmann, C., Rimoldi, D., French, L. E., Tschopp, J. (1997). Inhibition of death receptor signals by cellular FLIP. Nature, 388, 190‐195.
  • Kale, J., Osterlund, E. J., ve Andrews, D. W. (2018). BCL-2 family proteins: Changing partners in the dance towards death. Cell Death and Differentiation, 25, 65–80. https://doi.org/10.1038/cdd.2017.186.
  • Kang, S., Fernandes-Alnemri, T., Rogers, C., Mayes, L., Wang, Y. (2015). Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3. Nat. Commun., 6, 7515 [PubMed: 26104484]
  • Kashyap, D., Tuli, H. S., Sak, K. (2019). Role of reactive oxygen species in cancer progression. Current Pharmacology Reports, 5, 79–86. https://doi.org/10.3390/biom9110735
  • Kerr, J. F., Wyllie, A. H, Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 26, 239–57.
  • Kesavardhana, S., Kanneganti, T. D. (2017). Mechanisms governing inflammasome activation, assembly and pyroptosis induction. Int. Immunol., 29, 201–10 [PubMed: 28531279] https://doi.org/10.1093/intimm/dxx018
  • Krajewska, M., Krajewski, S., Epstein, J. I. (1996). Immunohistochemical analysis of bcl-2, bax, bcl-X, and mcl-1 expression in prostate cancers. American Journal of Pathology, 148, 1567–1576.
  • Krajewska, M., Moss, S. F., Krajewski, S., Song, K., Holt, P. R, Reed, J. C. (1996). Elevated expression of Bcl‐X and reduced Bak in primary colorectal adenocarcinomas. Cancer Res., 56, 2422‐2427.
  • Kroemer, G., El‐Deiry, W. S., Golstein, P., Peter, M. E., Vaux, D., Vandenabeele, P., Zhivotovsky, B., Blagosklonny, M. V.,
  • Malorni, W., Knight, R. A., Piacentini, M., Nagata, S., Melino, G. (2005). Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Diff., 12, 1463‐1467.
  • Kroemer, G., Galluzzi, L., Brenner, C. (2007). Mitochondrial membrane permeabilisation in cell death. Physiol Rev., 87, 99‐163.
  • Kuribayashi, K., Mayes, P. A., El‐Dery, W. S. (2006). What are caspases 3 and 7 doing upstream of the mitochondria? Cancer Biol Ther., 5, 763‐765.
  • LaCasse, E. C., Mahoney, D. J., Cheung, H. H., Plenchette, S., Baird, S., Korneluk, R. G. (2008). IAP‐targeted therapies for cancer. Oncogene, 27, 6252‐6275.
  • Lamkanfi, M., Declercq, W., Kalai, M., Saelens, X., Vandenabeele, P. (2002). Alice in caspase land: a phylogenetic analysis of caspases from worm to man. Cell Death Differ., 9, 358–61 [PubMed: 11965488]
  • Lamy, L., Ngo, V. N., Emre, N. C., Shaffer, A. L, Yang, Y. (2013). Control of autophagic cell death by caspase-10 in multiple myeloma. Cancer Cell, 23, 435–49 [PubMed: 23541952]
  • Li, J. ve Yuan, J. (2008). Caspases in apoptosis and beyond. Oncogene, 27, 6194‐6206.
  • Lippens, S., Kockx, M., Knaapen, M., Mortier, L., Polakowska, R. (2000). Epidermal differentiation does not involve the pro-apoptotic executioner caspases, but is associated with caspase-14 induction and processing. Cell Death Differ., 7, 1218–24 [PubMed: 11175259]
  • Lockshin, R. A. ve Zakeri, Z. (2001). Programmed cell death and apoptosis: origins of the theory. Nat Rev Mol Cell Biol., 2, 545–50.
  • Mace, P. D., Shirley, S., Day, C. L. (2010). Assembling the building blocks: structure and function of inhibitor of apoptosis proteins. Cell Death Differ., 17, 46‐53.
  • Man, S. M. ve Kanneganti, T. D. (2016). Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat. Rev. Immunol., 16, 7–21 [PubMed: 26655628]
  • Martinon, F., Burns, K., Tschopp, J. (2002). The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell, 10, 417–26 [PubMed:12191486]
  • Michaud, W. A., Nichols, A. C., Mroz, E. A., Faquin, W. C., Clark, J. R., Begum, S., Westra, W. H., Wada, H., Busse, P. M., Ellisen, L. W., Rocco, J. W. (2009). Bcl‐2 blocks cisplatin‐induced apoptosis and predicts poor outcome following chemoradiation treatment in advanced oropharyngeal squamous cell carcinoma. Clin Cancer Res., 15, 1645‐1654.
  • Minn, A. J., Rudin, C. M., Boise, L. H., Thompson, C. B. (1995). Expression of Bcl‐xL can confer a multidrug resistance phenotype. Blood, 86, 1903‐1910.
  • Miquel, C., Borrini, F., Grandjouan, S., Aupérin, A., Viguier, J., Velasco, V., Duvillard, P., Praz, F., Sabourin, J. C. (2005). Role of bax mutations in apoptosis in colorectal cancers with microsatellite instability. Am J Clin Pathol., 23, 562‐570.
  • Muller, M., Wilder, S., Bannasch, D., Israeli, D., Lehlbach, K., Li‐Weber, M., Friedman, S. L., Galle, P. R., Stremmel, W., Oren,
  • M., Krammer, P. H. (1998). P53 activates the CD95 (APO‐1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med., 188, 2033‐2045.
  • Müschen, M., Beckmann, M. W. (2000). CD95 ligand expression as a criterion of malignant transformation in breast cancer. J Pathol., 191, 468‐470.
  • Müschen, M., Rajewsky, K., Krönke, M., Küppers, R. (2002). The origin of CD95‐gene mutations in B‐cell lymphoma. Trends Immunol., 23, 75‐80.
  • Nicholson, D. W. (1999). Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Diff., 6, 1028‐1042.
  • Oberst, A., Dillon, C. P., Weinlich, R., McCormick, L. L., Fitzgerald, P., (2011). Catalytic activity of the caspase-8-FLIPL complex inhibits RIPK3-dependent necrosis. Nature, 471, 363–67 [PubMed:21368763]
  • Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., Taniguchi, T., Tanaka, N. (2000). Noxa, a BH3‐only member of the Bcl‐2 family and candidate mediator of p53‐induced apoptosis. Science, 288, 1053‐1058.
  • Papenfuss, K., Cordier, S. M., Walczak, H. (2008). Death receptors as targets for anti-cancer therapy. Journal of Cellular and Molecular Medicine, 12, 2566–2585. https://doi.org/10.1111/j.1582-4934.2008.00514.x.
  • Park, H. H., Lo, Y. C., Lin, S. C., Wang, L., Yang, J.K., Wu, H. (2007). The death domain superfamily in intracellular signaling of apoptosis and inflammation. Annu. Rev. Immunol, 25, 561–86 [PubMed:17201679]
  • Pepper, C., Hoy, T., Bentley, D. P. (1997). Bcl‐2/Bax ratios in chronic lymphocytic leukaemia and their correlation with in vitro apoptosis and clinical resistance. Br J Cancer, 76, 935‐938.
  • Plati, J., Bucur, O., Khosravi‐Far, R. (2008). Dysregulation of apoptotic signaling in cancer. Molecular mechanisms and therapeutic opportunities. J Cell Biochem.,104, 124‐1149.
  • Pop, C., Salvesen, G. S. (2009). Human caspases: activation, specificity, and regulation. J Biol Chem., 284, 21777‐21781.
  • Raffo, A. J., Perlman, H., Chen, M. W., Day, M. L., Streitman, J. S., Buttyan, R. (1995). Overexpression of bcl‐2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res., 55, 4438
  • Ramirez, M. L. G., Salvesen, G. S. (2018). A primer on caspase mechanisms. Semin. Cell Dev. Biol., 82, 79–85 [PubMed: 29329946]
  • Riedl, S. J. (2001). Structural basis for the inhibition of caspase-3 by XIAP. Cell, 104, 791–800.
  • Ruchaud, S., Korfali, N., Villa, P., Kottke, T. J., Dingwall, C. (2002). Caspase-6 gene disruption reveals a requirement for lamin A cleavage in apoptotic chromatin condensation. EMBO J., 21, 1967–77 [PubMed: 11953316]
  • Salvesen, G. S. ve Duckett, C. S. (2002). IAP proteins: Blocking the road to death’s door. Nat Rev Mol Cell Biol., 3, 401-410.
  • Saraste. A., Pulkki, K. (2000). Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res., 45, 528‐537.
  • Sax, J. K., Fei, P., Murphy, M. E., Bernhard, E., Korsmeyer, S. J., El‐Deiry, W. S. (2002). BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol., 4, 842‐849.
  • Sax, J. K., El‐Deiry, W. S. (2003). P53 downstream targets and chemosensitivity. Cell Death Diff., 10, 413‐417.
  • Schimmer, A. D. (2004). Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res., 64, 7183‐7190.
  • Shamas-Din, A., Kale, J., Leber, B., ve Andrews, D. W. (2013). Mechanisms of action of Bcl-2 family proteins. Cold
  • Spring Harbor Perspectives in Biology, 5, 1–21. https://doi.org/10.1101/cshperspect.a008714.
  • Shi, Y. (2004). Caspase activation: revisiting the induced proximity model. Cell, 117, 855–58 [PubMed: 15210107]
  • Shirley, S., Micheau, O. (2013). Targeting c‐FLIP in cancer. Cancer Lett., 332, 141‐150.
  • Shiozaki, E. N., Chai, J., Shi, Y. (2002). Oligomerization and activation of caspase-9, induced by Apaf-1 CARD. PNAS, 99, 4197–202 [PubMed: 11904389]
  • Shiozaki, E. N., Shi, Y. (2004). Caspases, IAPs and Smac/DIABLO: mechanisms from structural biology. Trends Biochem. Sci., 29, 486–94 [PubMed: 15337122]
  • Shivapurkar, N., Toyooka, S., Eby, M. T., Huang, C. X., Sathyanarayana, U. G., Cunningham, H. T., Reddy, J. L., Brambilla, E., Takahashi, T., Minna, J. D., Chaudhary, P. M., Gazdar, A. F. (2002). Differential inactivation of caspase‐8 in lung cancers. Cancer Biol Ther., 1, 65‐69.
  • Slee, E. A., Adrain, C., Martin, S. J. (1999). Serial killers: ordering caspase activation events in apoptosis. Cell Death Diff., 6, 1067‐1074.
  • Soengas, M. S., Capodieci, P., Polsky, D., Mora, J., Esteller, M., Opitz‐ Araya, X., McCombie, R., Herman, J. G., Gerald, W. L., Lazebnik, Y. A., Cordón‐Cardó, C., Lowe, S. W. (2001). Inactivation of the apoptosis effector Apaf‐1 in malignant melanoma. Nature, 409, 207‐211.
  • Stennicke, H. R., Salvesen, G. S. (2000). Caspases ‐ controlling intracellular signals by protease zymogen activation. Biochim Biophys Acta‐Port Struct Mol Enzimol., 1477, 299‐306.
  • Tait, S. W., Green, D. R. (2010). Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol., 11, 621–32 [PubMed: 20683470]
  • Teitz, T., Wei, T., Valentine, M. B., Vanin, E. F., Grenet, J., Valentine, V. A., Behm, F. G., Look, A. T., Lahti, J. M., Kidd, V. J. (2000). Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med., 6, 529‐535.
  • Thomberry, N. A., Laxebnik, Y. (1998). Caspases: enemies within. Science, 281, 1312‐1316.
  • Thornborrow, E. C., Patel, S., Mastropietro, A. E., Schwartzfarb, E. M., Manfredi, J. J. (2002). A conserved intronic response element mediates direct p53‐dependent transcriptional activation of both the human and murine bax gene. Oncogene, 21, 990‐ 999.
  • Tinel, A., Tschopp, J. (2004). The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science, 304, 843–46 [PubMed: 15073321]
  • Tomita, Y., Marchenko, N., Erster, S., Nemajerova, A., Dehner, A., Klein, C., Pan, H., Kessler, H., Pancoska, P., Moll, U. M. (2006). WT p53, but not tumor‐derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization. JBC, 281, 8600–8606.
  • Tourneur, L., Buzyn, A., Chiocchia, G. (2005). FADD adaptor in cancer. Med Immunol., 4, 1.
  • Tourneur, L., Delluc, S., Levy, V., Valesi, F., Radford‐Weiss, I., Legrand, O., Vargftig, J., Boix, C., Macintyre, E. A., Varet, B., Chiocchia, G., Buzyn, A. (2004). Absence or low expression of fas‐associated protein with death domain in acute myeloid leukemia cells predicts resistance to chemotherapy and poor outcome. Cancer Res., 64, 8101‐8108.
  • Tsujimoto, Y. (1998). Role of Bcl-2 family proteins in apoptosis: Apoptosomes or mitochondria? Genes to Cells, 3, 697–707.
  • Uren, A. G., Coulson, E. J., ve Vaux, D. L. (1998). Conservation of baculovirus inhibitor of apoptosis repeat proteins (BIRPs) in viruses, nematodes, vertebrates and yeasts. Trends Biochem Sci, 23, 159–162.
  • Van Opdenbosch, N., Van Gorp, H., Verdonckt, M., Saavedra, P. H. V., Vasconcelos, N. M. (2017). Caspase-1 engagement and TLR-induced c-FLIP expression suppress ASC/caspase-8-dependent apoptosis by inflammasome sensors NLRP1b and NLRC4. Cell Rep., 21, 3427–44 [PubMed:29262324]
  • Verhagen, A. M., Coulson, E. J., ve Vaux, D. L. (2001). Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs. Genome Biol 2, REVIEWS3009.
  • Vousden, K. H. (2000). P53: Death Star. Cell, 103, 691‐694.
  • Vousden, K. H., Lane, D. P. (2007). P53 in health and disease. Nat Rev Mol Cell Biol., 8, 275–283.
  • Wang, J., Zheng, L., Lobito, A., Chan, F. K., Dale, J. (1999). Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell, 98(1), 47–58 [PubMed: 10412980]
  • Wang, J., Chun, H. J., Wong, W. (2001). Caspase-10 is an initiator caspase in death receptor signaling. Proceedings of the National Academy of Sciences of the United States of America, 98, 13884–13888. https://doi.org/10.1073/pnas.241358198.
  • Wang, C., ve Youle, R. J. (2009). The role of mitochondria in apoptosis. Annual Review of Genetics, 43, 95–118.
  • Wang, X. J., Cao, Q., Zhang, Y., Su, X. D. (2015). Activation and regulation of caspase-6 and its role in neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol, 55:553–72 [PubMed: 25340928]
  • Watanabe, A., Yasuhira, S., Inoue, T., Kasai, S., Shibazaki, M., Takahashi, K., Akasaka, T., Masuda, T., Maesawa, C. (2013). BCL2 and BCLxL are key determinants of resistance to antitubulin chemotherapeutics in melanoma cells. Exp Dermatol., 22, 518‐523.
  • Williams, J., Lucas, P. C., Griffith, K. A., Choi, M., Fogoros, S., Hu, Y. Y., Liu, J. R. (2005). Expression of Bcl‐xL in ovarian carcinoma is associated with chemoresistance and recurrent disease. Gynecol Oncol., 96, 287‐295.
  • Wong, R. S. Y. (2011). Apoptosis in cancer: from pathogenesis to treatment. JECCR, 30:87.
  • Wu, G. S., Burns, T. F., McDonald III, E. R., Jiang, W., Meng, R., Krantz, I. D., Kao, G., Gan, D. D., Zhou, J. Y., Muschel, R., Hamilton, S. R., Spinner, N. B., Matkowitz, S. (1997). KILLER/DR5 is a DNA damage‐induced p53‐regulated death receptor gene. Nat Genet., 17, 141‐143.
  • Yu, J., Wang, Z., Kinzler, K. W., Vogelstein, B., Zhang, L. (2003). PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci USA., 100, 1931‐1936.
  • Zhou, X., Jiang, W., Liu, Z. (2017). Virus infection and death receptor-mediated apoptosis. Viruses, 9, 316. https://doi.org/10.3390/v9110316.
  • Zuzak, T. J., Steinhoff, D. F., Sutton, L. N., Phillips, P. C., Eggert, A., Grotzer, M. A. (2002). Loss of caspase‐8 mRNA expression is common in childhood primitive neuroectodermal brain tumor/medulloblastoma. Eur J Cancer, 38, 83‐91.

Apoptozis

Year 2023, Volume: 49 Issue: 1, 1 - 10, 10.04.2023
https://doi.org/10.35238/sufefd.1210651

Abstract

Apoptoz, programlı hücre ölümü olarak bilinen enerji gerektiren fizyolojik bir süreçtir ayrıca apoptoz embriyolojik gelişim ve erişkin dokuların devamlılığında kritik rol oynar. Programlı hücre ölümü olarak bilinen apoptoz, organizmanın ihtiyaç duymadığı, biyolojik görevini tamamlamış ya da hasarlı hücreleri genetik düzeyde de kontrol ederek yok eden bir mekanizmadır. Apoptoz hızının bozulduğu, yavaşladığı veya arttığı durumlarda çeşitli hastalıklar ortaya çıkmaktadır. Apoptosis süreci genotoksik stres gibi hücre içinden gelen sinyaller veya ligandların hücre yüzeyi ölüm reseptörlerine bağlanması gibi dışsal sinyaller tarafından tetiklenebilir. Apoptosis mekanizması, çeşitli proteinleri ve molekülleri içerir. Apoptotik hücre ölümü mekanizmasındaki kuralsızlaştırma, kanserin ayırt edici özelliğidir. Apoptoz değişikliği sadece tümör gelişimi ve ilerlemesinden değil, aynı zamanda tedavilere karşı tümör direncinden de sorumludur. Şu anda klinik onkolojide kullanılan çoğu antikanser ilacı, kanser hücresi ölümünü tetiklemek için bozulmamış apoptotik sinyal yollarından yararlanır. Bu derlemede, apoptosisin tümör indükleyici ve ayrıca tümör baskılayıcı genlerdeki etkileri ve kanserdeki fonksiyonel özellikleri genel hatlarıyla ifade edilmiştir.

References

  • Abramson, J. S., Shipp, M. A. (2005). Advances in the biology and therapy of diffuse large B‐cell lymphoma: moving toward a molecularly targeted approach. Blood, 106, 1164‐1174. https://doi.org/10.1182/blood-2005-02-0687
  • Acehan, D., Jiang, X., Morgan, D. G., Heuser, J. E., Wang, X., Akey, C. W. (2002). Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol. Cell, 9, 423–32. https://doi.org/10.1016/S1097-2765(02)00442-2
  • Adams, J. M., Cory, S. (2007). The Bcl‐2 apoptotic switch in cancer development and therapy. Oncogene, 26, 1324‐1337. https://doi.org/10.1038/sj.onc.1210220.
  • Alnemri, E. S., Livingston, D. J., Nicholson, D. W., Salvesen, G., Thornberry, N. A. (1996). Human ICE/ CED-3 protease nomenclature. Cell, 87, 171. https://doi.org/10.1016/S0092-8674(00)81334-3
  • Attardi, L. D., Reczek, E. E., Cosmas, C., Demicco, E. G., McCurrach, M. E., Lowe, S. W., Jacks, T. (2000). PERP, an apoptosi‐associated target of p53, is a novel member of the PMP‐22/gas3 family. Genes Dev., 14, 704‐718.
  • Bagnoli, M., Canevari, S., Mezzanzanica, D. (2010). Cellular FLICE‐inhibitory protein (c‐FLIP) signalling: A key regulator of receptor‐mediated apoptosis in physiologic context and in cancer. Int J Biochem Cell Biol., 42, 210–213. https://doi.org/10.1016/j.biocel.2009.11.015
  • Baldi, A., Santini, D., Russo, P., Catricala, C., Amantea, A., Picardo, M., Tatangelo, F., Botti, G., Dragonetti, E., Murace, R., Tonini, G., Natali, P. G., Baldi, F., Paggi, M. G. (2004). Analysis of APAF‐1 expression in human cutaneous melanoma progression. Exp Dermatol., 13, 93‐97. https://doi.org/10.1111/j.0906-6705.2004.00136.x
  • Bennet, M., Macdonald, K., Chan, S. W., Luzio, J. P., Simari, R. (1998). Cell surface trafficking of Fas: a rapid mechanisms of p53‐mediated apoptosis. Science, 282, 290‐293.
  • Berthelet, J., Dubrez, L. (2013). Regulation of apoptosis by inhibitors of apoptosis (IAPs). Cells, 2, 163‐87. https://doi.org/10.3390/cells2010163
  • Boatright, K. M., Salvesen, G. S. (2003). Mechanisms of caspase activation. Curr Opin Cell Biol., 6, 725‐731. https://doi.org/10.1016/j.ceb.2003.10.009
  • Bose, K. (2015). Proteases in apoptosis: Pathways, protocols and translational advances. Proteases in Apoptosis: Pathways, Protocols and Translational Advances, 1–237.
  • Brentnall, M., Rodriguez-Menocal, L., De Guevara, R. L. (2013). Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biology, 14, 1–9. https://doi.org/10.1186/1471-2121-14-32
  • Brooks, C. L., Gu, W. (2003). Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol., 15, 164‐171. https://doi.org/10.1016/S0955-0674(03)00003-6
  • Budd, R. C., Yeh, W. C., Tschopp, J. (2006). cFLIP regulation of lymphocyte activation and development. Nat. Rev. Immunol, 6, 196–204 [PubMed: 16498450]
  • Cain, K., Bratton, S. B., Cohen, G. M. (2002). The Apaf-1 apoptosome: a large caspase-activating complex. Biochimie, 84, 203–14 [PubMed: 12022951]
  • Chai, J. (2001). Structural basis of caspase-7 inhibition by XIAP. Cell, 104, 769–780.
  • Chi, S. W. (2014). Structural insights into the transcription‐independent apoptotic pathway of p53. BMB Rep., 47, 167‐172.
  • Chun, H. J., Zheng, L., Ahmad, M., Wang, J., Speirs, C. K., (2002). Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature, 419(6905),395–99 [PubMed: 12353035]
  • Clarke, P. G., Clarke, S. (1996). Nineteenth century research on naturally occurring cell death and related phenomena. Anat Embryol, 193: 81–99
  • Cunha, L. D., Silva, A. L. N., Ribeiro, J. M., Mascarenhas, D. P. A., Quirino, G. F. S. (2017). AIM2 engages active but unprocessed caspase-1 to induce noncanonical activation of the NLRP3 inflammasome. Cell Rep., 20, 794–805 [PubMed: 28746866] https://doi.org/10.1016/j.celrep.2017.06.086
  • Danial, N. N., Korsmeyer, S. J. (2004). Cell death: critical control points. Cell, 116, 205–19. https://doi.org/10.1016/S0092-8674(04)00046-7
  • Degterev, A., Boyce, M., Yuan, J. Y. (2003). A decade of caspases. Oncogene, 22, 8543‐8567.
  • Deveraux, Q. L. ve Reed, J. C. (1999). IAP family proteins – suppressors of apoptosis. Genes Dev., 13, 239–252.
  • Eckelman, B. P., Salvesen, G. S., and Scott, F. L. (2006). Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep., 7, 988–994. https://doi.org/10.1038/sj.embor.7400795
  • Eckhart, L., Declercq, W., Ban, J., Rendl, M., Lengauer, B. (2000). Terminal differentiation of human keratinocytes and stratum corneum formation is associated with caspase-14 activation. J. Investig. Dermatol, 115, 1148–51 [PubMed: 11121154]
  • Erovic, B. M., Pelzmann, M., Grasl, M. Ch., Pammer, J., Kornek, G., Brannath, W., Selzer, E., Thurnher, D. (2005). Mcl‐1, vascular endothelial growth factor‐R2, and 14‐3‐3sigma expression might predict primary response against radiotherapy and chemotherapy in patients with locally advanced squamous cell carcinomas of the head and neck. Clin Cancer Res., 11, 8632‐8636. https://doi.org/10.18632/oncotarget.26563
  • Fava, L. L., Schuler, F., Sladky, V., Haschka, M. D., Soratroi, C. (2017). The PIDDosome activates p53 in response to supernumerary centrosomes. Genes Dev., 31, 34–45 [PubMed: 28130345] http://www.genesdev.org/cgi/doi/10.1101/gad.289728.116.
  • Fernald, K., ve Kurokawa, M. (2013). Evading apoptosis in cancer. Trends in Cell Biology, 23, 620633. https://doi.org/10.1016/j.tcb.2013.07.006.Evading.
  • Foreman, K. E., Wrone‐Smith, T., Boise, L. H., Thompson, C. B., Polverini, P. J., Simonian, P. L., Nunez, G., Nickoloff, B. J. (1996). Kaposi’s sarcoma tumor cells preferentially express Bcl‐xL. Am J Pathol., 149, 795‐803.
  • Fulda, S., Debatin, K. M. (2003). Death receptor signaling in cancer therapy. Curr Med Chem Anticancer Agents, 3, 253‐262.
  • Fulda, S. ve Meyer, E. (2000). Debatin KM. Inhibition of TRAIL‐induced apoptosis by Bcl‐2 overexpression. Oncogene, 21, 2283‐2294.
  • Fulda, S. (2009a). Inhibitor of apoptosis proteins in hematological malignancies. Leukemia, 23, 467‐476.
  • Fulda, S. (2009b). Tumor resistance to apoptosis. Int J Cancer, 124, 515‐515.
  • Fulda, S. (2015). Targeting apoptosis for anticancer therapy. Sem Cancer Biol., 31, 84‐88.
  • Galluzzi, L., Lopez-Soto, A., Kumar, S., Kroemer, G. (2016). Caspases connect cell-death signaling to organismal homeostasis. Immunity, 44, 221–31 [PubMed: 26885855]
  • Gandour‐Edwards, R., Mack, P. C., Devere‐White, R. W., Gumerlock, P. H. (2004). Abnormalities of apoptotic and cell cycle regulatory proteins in distinct histopathologic components of benign prostatic hyperplasia. Prost Cancer Prost Dis., 7, 321‐326.
  • Giam, M., Huang, D. C., Bouillet, P. (2008). BH3‐only proteins and their roles in programmed cell death. Oncogene, 27, 128‐36.
  • Green, D. R., Kroemer, G. (2004). The pathophysiology of mitochondrial cell death. Science, 305, 626‐629.
  • Green, D. R. (2018). Cell Death. Apoptosis and Other Means to an End; Cold Spring Harbor Laboratory Press: New York, NY, USA.
  • Gimenez‐Bonafe, P., Tortosa, A., Perez‐Tomas, R. (2009). Overcoming drug resistance by enhancing apoptosis of tumor cells. Curr Cancer Drug Targ., 9, 320‐340.
  • Guicciardi, M. E., ve Gores, G. J. (2009). Life and death by death receptors. The FASEB Journal, 23, 1625–1637. https://doi.org/10.1096/fj.08-111005.
  • Guo, H., Albrecht, S., Bourdeau, M., Petzke, T., Bergeron, C., LeBlanc, A. C. (2004). Active caspase-6 and caspase-6-cleaved tau in neuropil threads, neuritic plaques, and neurofibrillary tangles of Alzheimer’s disease. Am. J. Pathol., 165, 523–31 [PubMed: 15277226]
  • Gurung, P., Anand, P. K., Malireddi, R. K., Vande, W. L., Van Opdenbosch, N. (2014) FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J. Immunol, 192, 1835–46 [PubMed: 24453255]
  • Hacker, G. (2000). The morphology of apoptosis. Cell Tissue Res., 301, 5‐17.
  • Han, J. Y., Hong, E. K., Choi, B. G., Park, J. N., Kim, K. W., Kang, J. H., Jin, J. Y., Park, S. Y., Hong, Y. S., Lee, K. S. (2003). Death receptor 5 and Bcl‐2 protein expression as predictors of tumor response to gemcitabine and cisplatin in patients with advanced non‐small‐cell lung cancers. Med Oncol., 20, 355‐362.
  • Hanahan, D., Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144, 646‐674.
  • Haupt, S., Berger, M., Goldberg, Z., Haupt, Y. (2003). Apoptosis – the p53 network. J Cell Sci., 116, 4077‐4085.
  • Hengartner, M. O. (2000). Apoptosis: corralling the corpses. Cell, 104, 325‐328.
  • Henry, C. M., Martin, S. J. (2017). Caspase-8 acts in a non-enzymatic role as a scaffold for assembly of a pro-inflammatory “FADDosome” complex upon TRAIL stimulation. Mol. Cell, 65, 715–29.e5 [PubMed: 28212752]
  • Horn, S., Hughes, M. A., Schilling, R., Sticht, C., Tenev, T. (2017). Caspase-10 negatively regulates caspase-8-mediated cell death, switching the response to CD95L in favor of NF-κB activation and cell survival. Cell Rep, 19, 785–97 [PubMed: 28445729]
  • Huang, Y. (2001). Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell, 104, 781–790.
  • Irmler, M., Thome, M., Hahne, M., Schneider, P., Hofmann, K., Steiner, V., Bodmer, J. L., Schröter, M., Burns, K., Mattmann, C., Rimoldi, D., French, L. E., Tschopp, J. (1997). Inhibition of death receptor signals by cellular FLIP. Nature, 388, 190‐195.
  • Kale, J., Osterlund, E. J., ve Andrews, D. W. (2018). BCL-2 family proteins: Changing partners in the dance towards death. Cell Death and Differentiation, 25, 65–80. https://doi.org/10.1038/cdd.2017.186.
  • Kang, S., Fernandes-Alnemri, T., Rogers, C., Mayes, L., Wang, Y. (2015). Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3. Nat. Commun., 6, 7515 [PubMed: 26104484]
  • Kashyap, D., Tuli, H. S., Sak, K. (2019). Role of reactive oxygen species in cancer progression. Current Pharmacology Reports, 5, 79–86. https://doi.org/10.3390/biom9110735
  • Kerr, J. F., Wyllie, A. H, Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 26, 239–57.
  • Kesavardhana, S., Kanneganti, T. D. (2017). Mechanisms governing inflammasome activation, assembly and pyroptosis induction. Int. Immunol., 29, 201–10 [PubMed: 28531279] https://doi.org/10.1093/intimm/dxx018
  • Krajewska, M., Krajewski, S., Epstein, J. I. (1996). Immunohistochemical analysis of bcl-2, bax, bcl-X, and mcl-1 expression in prostate cancers. American Journal of Pathology, 148, 1567–1576.
  • Krajewska, M., Moss, S. F., Krajewski, S., Song, K., Holt, P. R, Reed, J. C. (1996). Elevated expression of Bcl‐X and reduced Bak in primary colorectal adenocarcinomas. Cancer Res., 56, 2422‐2427.
  • Kroemer, G., El‐Deiry, W. S., Golstein, P., Peter, M. E., Vaux, D., Vandenabeele, P., Zhivotovsky, B., Blagosklonny, M. V.,
  • Malorni, W., Knight, R. A., Piacentini, M., Nagata, S., Melino, G. (2005). Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Diff., 12, 1463‐1467.
  • Kroemer, G., Galluzzi, L., Brenner, C. (2007). Mitochondrial membrane permeabilisation in cell death. Physiol Rev., 87, 99‐163.
  • Kuribayashi, K., Mayes, P. A., El‐Dery, W. S. (2006). What are caspases 3 and 7 doing upstream of the mitochondria? Cancer Biol Ther., 5, 763‐765.
  • LaCasse, E. C., Mahoney, D. J., Cheung, H. H., Plenchette, S., Baird, S., Korneluk, R. G. (2008). IAP‐targeted therapies for cancer. Oncogene, 27, 6252‐6275.
  • Lamkanfi, M., Declercq, W., Kalai, M., Saelens, X., Vandenabeele, P. (2002). Alice in caspase land: a phylogenetic analysis of caspases from worm to man. Cell Death Differ., 9, 358–61 [PubMed: 11965488]
  • Lamy, L., Ngo, V. N., Emre, N. C., Shaffer, A. L, Yang, Y. (2013). Control of autophagic cell death by caspase-10 in multiple myeloma. Cancer Cell, 23, 435–49 [PubMed: 23541952]
  • Li, J. ve Yuan, J. (2008). Caspases in apoptosis and beyond. Oncogene, 27, 6194‐6206.
  • Lippens, S., Kockx, M., Knaapen, M., Mortier, L., Polakowska, R. (2000). Epidermal differentiation does not involve the pro-apoptotic executioner caspases, but is associated with caspase-14 induction and processing. Cell Death Differ., 7, 1218–24 [PubMed: 11175259]
  • Lockshin, R. A. ve Zakeri, Z. (2001). Programmed cell death and apoptosis: origins of the theory. Nat Rev Mol Cell Biol., 2, 545–50.
  • Mace, P. D., Shirley, S., Day, C. L. (2010). Assembling the building blocks: structure and function of inhibitor of apoptosis proteins. Cell Death Differ., 17, 46‐53.
  • Man, S. M. ve Kanneganti, T. D. (2016). Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat. Rev. Immunol., 16, 7–21 [PubMed: 26655628]
  • Martinon, F., Burns, K., Tschopp, J. (2002). The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell, 10, 417–26 [PubMed:12191486]
  • Michaud, W. A., Nichols, A. C., Mroz, E. A., Faquin, W. C., Clark, J. R., Begum, S., Westra, W. H., Wada, H., Busse, P. M., Ellisen, L. W., Rocco, J. W. (2009). Bcl‐2 blocks cisplatin‐induced apoptosis and predicts poor outcome following chemoradiation treatment in advanced oropharyngeal squamous cell carcinoma. Clin Cancer Res., 15, 1645‐1654.
  • Minn, A. J., Rudin, C. M., Boise, L. H., Thompson, C. B. (1995). Expression of Bcl‐xL can confer a multidrug resistance phenotype. Blood, 86, 1903‐1910.
  • Miquel, C., Borrini, F., Grandjouan, S., Aupérin, A., Viguier, J., Velasco, V., Duvillard, P., Praz, F., Sabourin, J. C. (2005). Role of bax mutations in apoptosis in colorectal cancers with microsatellite instability. Am J Clin Pathol., 23, 562‐570.
  • Muller, M., Wilder, S., Bannasch, D., Israeli, D., Lehlbach, K., Li‐Weber, M., Friedman, S. L., Galle, P. R., Stremmel, W., Oren,
  • M., Krammer, P. H. (1998). P53 activates the CD95 (APO‐1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med., 188, 2033‐2045.
  • Müschen, M., Beckmann, M. W. (2000). CD95 ligand expression as a criterion of malignant transformation in breast cancer. J Pathol., 191, 468‐470.
  • Müschen, M., Rajewsky, K., Krönke, M., Küppers, R. (2002). The origin of CD95‐gene mutations in B‐cell lymphoma. Trends Immunol., 23, 75‐80.
  • Nicholson, D. W. (1999). Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Diff., 6, 1028‐1042.
  • Oberst, A., Dillon, C. P., Weinlich, R., McCormick, L. L., Fitzgerald, P., (2011). Catalytic activity of the caspase-8-FLIPL complex inhibits RIPK3-dependent necrosis. Nature, 471, 363–67 [PubMed:21368763]
  • Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., Taniguchi, T., Tanaka, N. (2000). Noxa, a BH3‐only member of the Bcl‐2 family and candidate mediator of p53‐induced apoptosis. Science, 288, 1053‐1058.
  • Papenfuss, K., Cordier, S. M., Walczak, H. (2008). Death receptors as targets for anti-cancer therapy. Journal of Cellular and Molecular Medicine, 12, 2566–2585. https://doi.org/10.1111/j.1582-4934.2008.00514.x.
  • Park, H. H., Lo, Y. C., Lin, S. C., Wang, L., Yang, J.K., Wu, H. (2007). The death domain superfamily in intracellular signaling of apoptosis and inflammation. Annu. Rev. Immunol, 25, 561–86 [PubMed:17201679]
  • Pepper, C., Hoy, T., Bentley, D. P. (1997). Bcl‐2/Bax ratios in chronic lymphocytic leukaemia and their correlation with in vitro apoptosis and clinical resistance. Br J Cancer, 76, 935‐938.
  • Plati, J., Bucur, O., Khosravi‐Far, R. (2008). Dysregulation of apoptotic signaling in cancer. Molecular mechanisms and therapeutic opportunities. J Cell Biochem.,104, 124‐1149.
  • Pop, C., Salvesen, G. S. (2009). Human caspases: activation, specificity, and regulation. J Biol Chem., 284, 21777‐21781.
  • Raffo, A. J., Perlman, H., Chen, M. W., Day, M. L., Streitman, J. S., Buttyan, R. (1995). Overexpression of bcl‐2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res., 55, 4438
  • Ramirez, M. L. G., Salvesen, G. S. (2018). A primer on caspase mechanisms. Semin. Cell Dev. Biol., 82, 79–85 [PubMed: 29329946]
  • Riedl, S. J. (2001). Structural basis for the inhibition of caspase-3 by XIAP. Cell, 104, 791–800.
  • Ruchaud, S., Korfali, N., Villa, P., Kottke, T. J., Dingwall, C. (2002). Caspase-6 gene disruption reveals a requirement for lamin A cleavage in apoptotic chromatin condensation. EMBO J., 21, 1967–77 [PubMed: 11953316]
  • Salvesen, G. S. ve Duckett, C. S. (2002). IAP proteins: Blocking the road to death’s door. Nat Rev Mol Cell Biol., 3, 401-410.
  • Saraste. A., Pulkki, K. (2000). Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res., 45, 528‐537.
  • Sax, J. K., Fei, P., Murphy, M. E., Bernhard, E., Korsmeyer, S. J., El‐Deiry, W. S. (2002). BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol., 4, 842‐849.
  • Sax, J. K., El‐Deiry, W. S. (2003). P53 downstream targets and chemosensitivity. Cell Death Diff., 10, 413‐417.
  • Schimmer, A. D. (2004). Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res., 64, 7183‐7190.
  • Shamas-Din, A., Kale, J., Leber, B., ve Andrews, D. W. (2013). Mechanisms of action of Bcl-2 family proteins. Cold
  • Spring Harbor Perspectives in Biology, 5, 1–21. https://doi.org/10.1101/cshperspect.a008714.
  • Shi, Y. (2004). Caspase activation: revisiting the induced proximity model. Cell, 117, 855–58 [PubMed: 15210107]
  • Shirley, S., Micheau, O. (2013). Targeting c‐FLIP in cancer. Cancer Lett., 332, 141‐150.
  • Shiozaki, E. N., Chai, J., Shi, Y. (2002). Oligomerization and activation of caspase-9, induced by Apaf-1 CARD. PNAS, 99, 4197–202 [PubMed: 11904389]
  • Shiozaki, E. N., Shi, Y. (2004). Caspases, IAPs and Smac/DIABLO: mechanisms from structural biology. Trends Biochem. Sci., 29, 486–94 [PubMed: 15337122]
  • Shivapurkar, N., Toyooka, S., Eby, M. T., Huang, C. X., Sathyanarayana, U. G., Cunningham, H. T., Reddy, J. L., Brambilla, E., Takahashi, T., Minna, J. D., Chaudhary, P. M., Gazdar, A. F. (2002). Differential inactivation of caspase‐8 in lung cancers. Cancer Biol Ther., 1, 65‐69.
  • Slee, E. A., Adrain, C., Martin, S. J. (1999). Serial killers: ordering caspase activation events in apoptosis. Cell Death Diff., 6, 1067‐1074.
  • Soengas, M. S., Capodieci, P., Polsky, D., Mora, J., Esteller, M., Opitz‐ Araya, X., McCombie, R., Herman, J. G., Gerald, W. L., Lazebnik, Y. A., Cordón‐Cardó, C., Lowe, S. W. (2001). Inactivation of the apoptosis effector Apaf‐1 in malignant melanoma. Nature, 409, 207‐211.
  • Stennicke, H. R., Salvesen, G. S. (2000). Caspases ‐ controlling intracellular signals by protease zymogen activation. Biochim Biophys Acta‐Port Struct Mol Enzimol., 1477, 299‐306.
  • Tait, S. W., Green, D. R. (2010). Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol., 11, 621–32 [PubMed: 20683470]
  • Teitz, T., Wei, T., Valentine, M. B., Vanin, E. F., Grenet, J., Valentine, V. A., Behm, F. G., Look, A. T., Lahti, J. M., Kidd, V. J. (2000). Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med., 6, 529‐535.
  • Thomberry, N. A., Laxebnik, Y. (1998). Caspases: enemies within. Science, 281, 1312‐1316.
  • Thornborrow, E. C., Patel, S., Mastropietro, A. E., Schwartzfarb, E. M., Manfredi, J. J. (2002). A conserved intronic response element mediates direct p53‐dependent transcriptional activation of both the human and murine bax gene. Oncogene, 21, 990‐ 999.
  • Tinel, A., Tschopp, J. (2004). The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science, 304, 843–46 [PubMed: 15073321]
  • Tomita, Y., Marchenko, N., Erster, S., Nemajerova, A., Dehner, A., Klein, C., Pan, H., Kessler, H., Pancoska, P., Moll, U. M. (2006). WT p53, but not tumor‐derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization. JBC, 281, 8600–8606.
  • Tourneur, L., Buzyn, A., Chiocchia, G. (2005). FADD adaptor in cancer. Med Immunol., 4, 1.
  • Tourneur, L., Delluc, S., Levy, V., Valesi, F., Radford‐Weiss, I., Legrand, O., Vargftig, J., Boix, C., Macintyre, E. A., Varet, B., Chiocchia, G., Buzyn, A. (2004). Absence or low expression of fas‐associated protein with death domain in acute myeloid leukemia cells predicts resistance to chemotherapy and poor outcome. Cancer Res., 64, 8101‐8108.
  • Tsujimoto, Y. (1998). Role of Bcl-2 family proteins in apoptosis: Apoptosomes or mitochondria? Genes to Cells, 3, 697–707.
  • Uren, A. G., Coulson, E. J., ve Vaux, D. L. (1998). Conservation of baculovirus inhibitor of apoptosis repeat proteins (BIRPs) in viruses, nematodes, vertebrates and yeasts. Trends Biochem Sci, 23, 159–162.
  • Van Opdenbosch, N., Van Gorp, H., Verdonckt, M., Saavedra, P. H. V., Vasconcelos, N. M. (2017). Caspase-1 engagement and TLR-induced c-FLIP expression suppress ASC/caspase-8-dependent apoptosis by inflammasome sensors NLRP1b and NLRC4. Cell Rep., 21, 3427–44 [PubMed:29262324]
  • Verhagen, A. M., Coulson, E. J., ve Vaux, D. L. (2001). Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs. Genome Biol 2, REVIEWS3009.
  • Vousden, K. H. (2000). P53: Death Star. Cell, 103, 691‐694.
  • Vousden, K. H., Lane, D. P. (2007). P53 in health and disease. Nat Rev Mol Cell Biol., 8, 275–283.
  • Wang, J., Zheng, L., Lobito, A., Chan, F. K., Dale, J. (1999). Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell, 98(1), 47–58 [PubMed: 10412980]
  • Wang, J., Chun, H. J., Wong, W. (2001). Caspase-10 is an initiator caspase in death receptor signaling. Proceedings of the National Academy of Sciences of the United States of America, 98, 13884–13888. https://doi.org/10.1073/pnas.241358198.
  • Wang, C., ve Youle, R. J. (2009). The role of mitochondria in apoptosis. Annual Review of Genetics, 43, 95–118.
  • Wang, X. J., Cao, Q., Zhang, Y., Su, X. D. (2015). Activation and regulation of caspase-6 and its role in neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol, 55:553–72 [PubMed: 25340928]
  • Watanabe, A., Yasuhira, S., Inoue, T., Kasai, S., Shibazaki, M., Takahashi, K., Akasaka, T., Masuda, T., Maesawa, C. (2013). BCL2 and BCLxL are key determinants of resistance to antitubulin chemotherapeutics in melanoma cells. Exp Dermatol., 22, 518‐523.
  • Williams, J., Lucas, P. C., Griffith, K. A., Choi, M., Fogoros, S., Hu, Y. Y., Liu, J. R. (2005). Expression of Bcl‐xL in ovarian carcinoma is associated with chemoresistance and recurrent disease. Gynecol Oncol., 96, 287‐295.
  • Wong, R. S. Y. (2011). Apoptosis in cancer: from pathogenesis to treatment. JECCR, 30:87.
  • Wu, G. S., Burns, T. F., McDonald III, E. R., Jiang, W., Meng, R., Krantz, I. D., Kao, G., Gan, D. D., Zhou, J. Y., Muschel, R., Hamilton, S. R., Spinner, N. B., Matkowitz, S. (1997). KILLER/DR5 is a DNA damage‐induced p53‐regulated death receptor gene. Nat Genet., 17, 141‐143.
  • Yu, J., Wang, Z., Kinzler, K. W., Vogelstein, B., Zhang, L. (2003). PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci USA., 100, 1931‐1936.
  • Zhou, X., Jiang, W., Liu, Z. (2017). Virus infection and death receptor-mediated apoptosis. Viruses, 9, 316. https://doi.org/10.3390/v9110316.
  • Zuzak, T. J., Steinhoff, D. F., Sutton, L. N., Phillips, P. C., Eggert, A., Grotzer, M. A. (2002). Loss of caspase‐8 mRNA expression is common in childhood primitive neuroectodermal brain tumor/medulloblastoma. Eur J Cancer, 38, 83‐91.
There are 131 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Review Articles
Authors

Derya Babacan 0000-0001-6758-8556

Publication Date April 10, 2023
Submission Date November 27, 2022
Published in Issue Year 2023 Volume: 49 Issue: 1

Cite

APA Babacan, D. (2023). Apoptozis. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 49(1), 1-10. https://doi.org/10.35238/sufefd.1210651
AMA Babacan D. Apoptozis. sufefd. April 2023;49(1):1-10. doi:10.35238/sufefd.1210651
Chicago Babacan, Derya. “Apoptozis”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 49, no. 1 (April 2023): 1-10. https://doi.org/10.35238/sufefd.1210651.
EndNote Babacan D (April 1, 2023) Apoptozis. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 49 1 1–10.
IEEE D. Babacan, “Apoptozis”, sufefd, vol. 49, no. 1, pp. 1–10, 2023, doi: 10.35238/sufefd.1210651.
ISNAD Babacan, Derya. “Apoptozis”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 49/1 (April 2023), 1-10. https://doi.org/10.35238/sufefd.1210651.
JAMA Babacan D. Apoptozis. sufefd. 2023;49:1–10.
MLA Babacan, Derya. “Apoptozis”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, vol. 49, no. 1, 2023, pp. 1-10, doi:10.35238/sufefd.1210651.
Vancouver Babacan D. Apoptozis. sufefd. 2023;49(1):1-10.

Journal Owner: On behalf of Selçuk University Faculty of Science, Rector Prof. Dr. Hüseyin YILMAZ
Selcuk University Journal of Science Faculty accepts articles in Turkish and English with original results in basic sciences and other applied sciences. The journal may also include compilations containing current innovations.

It was first published in 1981 as "S.Ü. Fen-Edebiyat Fakültesi Dergisi" and was published under this name until 1984 (Number 1-4).
In 1984, its name was changed to "S.Ü. Fen-Edeb. Fak. Fen Dergisi" and it was published under this name as of the 5th issue.
When the Faculty of Letters and Sciences was separated into the Faculty of Science and the Faculty of Letters with the decision of the Council of Ministers numbered 2008/4344 published in the Official Gazette dated 3 December 2008 and numbered 27073, it has been published as "Selcuk University Journal of Science Faculty" since 2009.
It has been scanned in DergiPark since 2016.

88x31.png

Selcuk University Journal of Science Faculty is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.