BibTex RIS Cite

Turkish Adaptation, Validity and Reliability Studies of Teaching Mathematics in Inclusive Settings Survey

Year 2016, , 97 - 107, 16.08.2016
https://doi.org/10.19126/suje.05095

Abstract

The aim of the research is to adapt the Teaching Mathematics in Inclusive Settings (TMIS) survey into Turkish and determine their psychometric properties over the country sample. The research was performed with 338 general education teachers who are responsible teaching mathematics to inclusive students. The scale in which linguistic equivalence and face validity were achieved was a measuring tool of 9-point grading type including 12 items and two sub fields. CFA results (x2/df=4.4, RMSEA=.07, SRMR=.04,  GFI=.92, AGFI=.86, NFI=.98, NNFI=.96, RFI=.96, IFI=.97 and CFI=.98) indicated that the scale had an acceptable goodness of fit. It was observed that the scale achieved criterion related validity. It was determined that Cronbach’s alpha internal consistency reliability and split-half reliabilities were high, item total correlations were high and the differences between %27 upper-lower groups were significant. In the light of the findings, it can be stated that TMIS survey can be used as a valid and reliable measuring tool in determining the efficacy of general education teachers in Turkey for teaching mathematics to inclusive students.

References

  • Aerni, P.W. (2008). Teacher self-efficacy and beliefs for teaching mathematics in inclusion settings. Unpublished doctoral dissertation. The College of William and Mary in Virginia. UMI number: 3353198
  • Anderson, J. C. & Gerbing, D. W. (1984). The effect of sampling error on convergence, improper solu-tions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis. Psy-chometrika, 49, 155-173.
  • Avramidis, E., Bayliss, P., & Burden, R. (2000). A survey into mainstream teachers’ attitudes towards the inclusion of children with special education needs in ordinary school in local education au-thority. Educational Psychology, 20(2), 191-211.
  • Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman.
  • Bley, N. S. & Thornton C. A. (2001). Teaching mathematics to student with learning disabilities (Fourth Edi-tion). USA: Pro ed Press.
  • Brown, M. G. (2007). Virginia teachers’ perception and knowledge of test accommodations for students with disabilities. Proquest Information And Learning Company (UMI No.3254404)
  • Byrne, B. M. (2006). Structural equation modeling with EQS. Mahwah, NJ: Lawrence Erlbaum.
  • Büyüköztürk, Ş. (2004). Data analysis hand book (Veri analizi el kitabi). Ankara: Pegem A Pub.
  • Cole, D. A. (1987). Utility of confirmatory factor analysis in test validation research. Journal of Consult-ing and Clinical Psychology, 55, 1019-1031.
  • DeSimone, J.R. (2004). Middle school mathematics teachers’ beliefs and knowledge about inclusion of students with learning disabilities. Ed.D. dissertation, St. John’s University (New York). Re-trieved April 3, 2007, Dissertations & Theses: Full Text database. (Publication No. AAT 31357785).
  • Gülbahar, Y., & Büyüköztürk, Ş. (2008). Adaptation of assessment preferences inventory to Turkish (Değerlendirme tercihleri ölçeğinin Türkçeye uyarlanması). Hacettepe University Journal of Edu-cation, 35, 148-161.
  • Gürsel, O. (1990). Alt özel son sinif öğrencilerin ritmik sayma, doğal sayilar, toplama ve çikarma işlemlerindeki amaçlari gerçekleştirme düzeylerinin değerlendirilmesi. I. Özel Eğitim Günleri, Eskişehir: Anadolu Üniversitesi Yayınları.
  • Hambleton, R.K., Merenda, P.F., & Spielberg, C.D. (2005). Adapting Educational and Psychological Tests for Cross-Cultural Assessment. NJ: Lawrence Erlbaum Associates.
  • Hollender, I. (2011). The development and validation of a teacher efficacy for inclusion scale. Unpublished Doc-toral Dissertation. The City University of New York. UMI Microform Number: 3443933.
  • Hoy, A.W. (2000). Changes in teacher efficacy during the early years of teaching. Paper presented at the Annual Meeting of the American Educational Research Association, New Orleans, LA.
  • Hu, L.T., & Bentler, P.M. (1999). Cutoff criteria for fit indexes in covariance structural analysis: Con-ventional criteria versus new alternatives. Structural Equation Modeling, 6,1-55.
  • Jöreskog, K. ve Sörbom, D. (1993). LISREL 8: Structural equation modeling with the SIMPLIS command language. Lincolnwood, USA: Scientific Software International, Inc.
  • Lewandowski, K.L. (2005). A study on the relationship of teachers’s self-efficacy and the impact of leadership and professional development. D.Ed. dissertation. Retrieved March 21, 2007, from Dissertation & Theses: Full Text database. (Publication No. AAT 3164696).
  • MacCallum, R.C., Browne, M.W., & Sugawara, H.M, (1996). Power analysis and determination of sam-ple size for cavariance structure modeling. Psychological Methods, 1, 130-149.
  • Marsh, H. W., Balla, J.R., & McDonald, R.P. (1988). Goodness-of-fit indexes in confirmatory factor anal-ysis: The effect of sample size. Psychological Bulletin, 103, 391-410.
  • Meral, B.F., & Bilgiç, E., (2012). Turkish adaptation, validity and reliability study of the teacher effica-cy for ınclusion scale (kaynaştirmada öğretmen yeterliği ölçeği’nin Türkçe uyarlama, geçerlik ve güvenirlik çalışması). International Journal of Human Sciences [Online]. (9)2: 253-263.
  • Özgüven, İ.E., (2000). Psychological tests (Psikolojik testler), 4. Ed., Ankara, PDREM Pub.
  • Podell, D.M., & Soodak, L.C. (1993). Teacher efficacy and bias in special education referral. Journal of Educational Research, 86, 247-253.
  • Rimm-Kaufman, S.E., & Sawyer, B.E. (2004). Primary-grade teachers’ self-efficacy beliefs, attitudes toward teaching, and discipline and teaching practice priorities in relation to the Responsive Classroom Approach. Elementary School Journal, 104(4), 321-341.
  • Schermelleh-Engel, K., Moosbrugger, H. & Müller, H. (2003). Evaluating the fit of structural equation models: Test of significance and descprictive goodness-of-fit measures. Methods of Psychological Research Online, 8(2), 23-74.
  • Şimşek, Ö.F. (2007). Entering the structural equation modeling, basic principals and LISREL applications (Yapısal eşitlik modellemesine giriş, temel ilkeler ve LISREL uygulamaları). Ankara: Ekinoks Education Pub.
  • Tekin, H. (2004). Assessment and evaluation in education (Eğitimde ölçme ve değerlendirme). 17. Ed., Ankara: Yargı Yayınevi.
  • Tschannen-Moran, M., & Woolfolk-Hoy, A. (2001). Teacher efficacy: Capturing an elusive construct. Teaching and Teacher Education, 17(7), 783-805. doi: 10.1016/S0742-051X(01)00036-1

Teaching Mathematics in Inclusive Settings Survey

Year 2016, , 97 - 107, 16.08.2016
https://doi.org/10.19126/suje.05095

Abstract

Araştırmanın amacı Kaynaştırma Uygulamalarında Matematik Öğretimi (KUMÖ) Ölçeğinin Türkçeye uyarlanması ve ülke örneklemi üzerinden psikometrik özelliklerinin belirlenmesidir. Araştırma kaynaştırma öğrencilerine matematik öğretiminden sorumlu 338 sınıf öğretmeni ile gerçekleştirilmiştir. On iki soru ve iki alt alandan oluşan dokuzlu derecelendirme tipi ölçme aracının dilsel eşdeğerliği ve görünüm geçerliği elde edilmiştir. Doğrulayıcı faktör analizi sonuçları (x2/sd=4.4, RMSEA=.10, SRMR=.04, GFI=.90, AGFI=.85, NFI=.98, NNFI=.97, RFI=.97, IFI=.98, CFI=.98) ölçeğin iyi düzeyde uyum iyiliğine sahip olduğunu göstermektedir. Ölçeğin ölçüt bağıntılı geçerliliği sağladığı gözlenmiştir. Ölçeğin Cronbach’s alfa iç tutarlık güvenirliği ve iki yarı güvenirliğinin yüksek, madde toplam korelasyonlarının yüksek ve %27 alt-üst grup ortalamaları arasındaki farkın anlamlı olduğu belirlenmiştir. Bulgular ışığında, KUMÖ ölçeğinin Türkiye’de kaynaştırma öğrencilerine matematik öğretiminde genel eğitim (sınıf) öğretmenlerinin yeterliklerinin belirlenmesinde geçerli ve güvenilir bir ölçme aracı olarak kullanılabileceği ifade edilebilir

References

  • Aerni, P.W. (2008). Teacher self-efficacy and beliefs for teaching mathematics in inclusion settings. Unpublished doctoral dissertation. The College of William and Mary in Virginia. UMI number: 3353198
  • Anderson, J. C. & Gerbing, D. W. (1984). The effect of sampling error on convergence, improper solu-tions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis. Psy-chometrika, 49, 155-173.
  • Avramidis, E., Bayliss, P., & Burden, R. (2000). A survey into mainstream teachers’ attitudes towards the inclusion of children with special education needs in ordinary school in local education au-thority. Educational Psychology, 20(2), 191-211.
  • Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman.
  • Bley, N. S. & Thornton C. A. (2001). Teaching mathematics to student with learning disabilities (Fourth Edi-tion). USA: Pro ed Press.
  • Brown, M. G. (2007). Virginia teachers’ perception and knowledge of test accommodations for students with disabilities. Proquest Information And Learning Company (UMI No.3254404)
  • Byrne, B. M. (2006). Structural equation modeling with EQS. Mahwah, NJ: Lawrence Erlbaum.
  • Büyüköztürk, Ş. (2004). Data analysis hand book (Veri analizi el kitabi). Ankara: Pegem A Pub.
  • Cole, D. A. (1987). Utility of confirmatory factor analysis in test validation research. Journal of Consult-ing and Clinical Psychology, 55, 1019-1031.
  • DeSimone, J.R. (2004). Middle school mathematics teachers’ beliefs and knowledge about inclusion of students with learning disabilities. Ed.D. dissertation, St. John’s University (New York). Re-trieved April 3, 2007, Dissertations & Theses: Full Text database. (Publication No. AAT 31357785).
  • Gülbahar, Y., & Büyüköztürk, Ş. (2008). Adaptation of assessment preferences inventory to Turkish (Değerlendirme tercihleri ölçeğinin Türkçeye uyarlanması). Hacettepe University Journal of Edu-cation, 35, 148-161.
  • Gürsel, O. (1990). Alt özel son sinif öğrencilerin ritmik sayma, doğal sayilar, toplama ve çikarma işlemlerindeki amaçlari gerçekleştirme düzeylerinin değerlendirilmesi. I. Özel Eğitim Günleri, Eskişehir: Anadolu Üniversitesi Yayınları.
  • Hambleton, R.K., Merenda, P.F., & Spielberg, C.D. (2005). Adapting Educational and Psychological Tests for Cross-Cultural Assessment. NJ: Lawrence Erlbaum Associates.
  • Hollender, I. (2011). The development and validation of a teacher efficacy for inclusion scale. Unpublished Doc-toral Dissertation. The City University of New York. UMI Microform Number: 3443933.
  • Hoy, A.W. (2000). Changes in teacher efficacy during the early years of teaching. Paper presented at the Annual Meeting of the American Educational Research Association, New Orleans, LA.
  • Hu, L.T., & Bentler, P.M. (1999). Cutoff criteria for fit indexes in covariance structural analysis: Con-ventional criteria versus new alternatives. Structural Equation Modeling, 6,1-55.
  • Jöreskog, K. ve Sörbom, D. (1993). LISREL 8: Structural equation modeling with the SIMPLIS command language. Lincolnwood, USA: Scientific Software International, Inc.
  • Lewandowski, K.L. (2005). A study on the relationship of teachers’s self-efficacy and the impact of leadership and professional development. D.Ed. dissertation. Retrieved March 21, 2007, from Dissertation & Theses: Full Text database. (Publication No. AAT 3164696).
  • MacCallum, R.C., Browne, M.W., & Sugawara, H.M, (1996). Power analysis and determination of sam-ple size for cavariance structure modeling. Psychological Methods, 1, 130-149.
  • Marsh, H. W., Balla, J.R., & McDonald, R.P. (1988). Goodness-of-fit indexes in confirmatory factor anal-ysis: The effect of sample size. Psychological Bulletin, 103, 391-410.
  • Meral, B.F., & Bilgiç, E., (2012). Turkish adaptation, validity and reliability study of the teacher effica-cy for ınclusion scale (kaynaştirmada öğretmen yeterliği ölçeği’nin Türkçe uyarlama, geçerlik ve güvenirlik çalışması). International Journal of Human Sciences [Online]. (9)2: 253-263.
  • Özgüven, İ.E., (2000). Psychological tests (Psikolojik testler), 4. Ed., Ankara, PDREM Pub.
  • Podell, D.M., & Soodak, L.C. (1993). Teacher efficacy and bias in special education referral. Journal of Educational Research, 86, 247-253.
  • Rimm-Kaufman, S.E., & Sawyer, B.E. (2004). Primary-grade teachers’ self-efficacy beliefs, attitudes toward teaching, and discipline and teaching practice priorities in relation to the Responsive Classroom Approach. Elementary School Journal, 104(4), 321-341.
  • Schermelleh-Engel, K., Moosbrugger, H. & Müller, H. (2003). Evaluating the fit of structural equation models: Test of significance and descprictive goodness-of-fit measures. Methods of Psychological Research Online, 8(2), 23-74.
  • Şimşek, Ö.F. (2007). Entering the structural equation modeling, basic principals and LISREL applications (Yapısal eşitlik modellemesine giriş, temel ilkeler ve LISREL uygulamaları). Ankara: Ekinoks Education Pub.
  • Tekin, H. (2004). Assessment and evaluation in education (Eğitimde ölçme ve değerlendirme). 17. Ed., Ankara: Yargı Yayınevi.
  • Tschannen-Moran, M., & Woolfolk-Hoy, A. (2001). Teacher efficacy: Capturing an elusive construct. Teaching and Teacher Education, 17(7), 783-805. doi: 10.1016/S0742-051X(01)00036-1
There are 28 citations in total.

Details

Journal Section Articles
Authors

Bekir Fatih Meral

Mithat Takunyacı This is me

Publication Date August 16, 2016
Published in Issue Year 2016

Cite

APA Meral, B. F., & Takunyacı, M. (2016). Turkish Adaptation, Validity and Reliability Studies of Teaching Mathematics in Inclusive Settings Survey. Sakarya University Journal of Education, 6(2), 97-107. https://doi.org/10.19126/suje.05095