BibTex RIS Cite

Biyouyumlu Hidrojeller: Sentezi ve Jelleşme Üzerinde Çözücü Etkisi

Year 2013, Volume: 1 Issue: 3, 31 - 36, 01.09.2013

Abstract

Son yıllarda biyouyumlu hidrojellere olan ilgi artmıştır. Bu çalışmada biyouyumlu bir materyal olan ve üstün hidrojel özellik gösteren poli hidroksietil metakrilat (PHEMA)’ın jel oluşum şartları araştırılmıştır. Jelleşme işleminde kullanılan çözücülerin çözme kuvvetleri oldukça etkindir. Bundan dolayı PHEMA eldesinde kullandığımız çözücü ortamı olan aseton-su karışım oranının jelleşme üzerine etkisi detaylı olarak araştırılmıştır. Araştırmanın sonucu olarak jelleşmeyi sağlayacak aseton-su karışım limitleri tespit edilmiştir. Hidrojeller su emme özelliği gösteren maddelerdir. Elde ettiğimiz PHEMA hidrojelinin su absorblama özelliği de incelenmiş ve hidrojel örneğinin kendi öz kütlesinin beş katı su emdiği gösterilmiştir.

References

  • Anderson J.M. In vivo biocompatibility of implantable delivery systems and biomaterials. Eur. J. Pharm. Biopharm. 40 (1994) 1–8.
  • Anderson J.M., Langone J.J. Issues and perspectives on the biocompatibility and immunotoxicity evaluation of implanted controlled release systems. J. Controlled Release 57 (1999) 107-113.
  • Baldwin S.P., Saltzman W.M. Materials for protein delivery in tissue engineering, Adv. Drug Deliv. Rev. 33 (1998) 71–86.
  • Cooper S., Horbett T., Ratner M., Stayton P. Gels, Genes, Grafts and Giants. Festschrift on the Occasion of the 70th Birthday of Allan S. Hoffman. CRC Press, (2005) p36.
  • Finch C.A. Chemistry and technology of water-soluble polymers. Plenum Press, New York, 1983, pp. 118.
  • Galaev I.Y., Mattiasson B. Smart polymers and what they could do in biotechnology and medicine, Trends Biotechnol. 17 (1999) 335–340.
  • Gehrke S.H., Synthesis and properties of hydrogels used for drug delivery, Drugs Pharm. Sci. 102 (2000) 473–546.
  • Gombotz W.R., Pettit D.K. Biodegradable polymers for protein and peptide drug delivery. Bioconjug. Chem. 6 (1995) 332–351.
  • Guenet J.M. Thermoreversible gelation of polymers and biopolymers. Academic Press, London, 1992.
  • Hennink W.E., C. F. van Nostrum C.F. Noval crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews. 54 (2002) 13-36.
  • Hill-West J.L., Chowdhury S.M., Slepian M.J., Hubbell J.A. Inhibition of thrombosis and intimal thickening by in situ photopolymerization of thin hydrogel barriers, PNAS USA 91 (1994) 5967–5971
  • Işık B. Swelling behavior of acrylamide-2- Hydroxyethyl methacrylate hydrogels. Turk J Chem. 24 (2000) 147-156.
  • Jeong B., Choi Y.K., Bae Y.H., Zentner G., Kim S.W. New biodegradable polymers for injectable drug delivery systems. J. Controlled Release. 62 (1999) 109–114.
  • Jeong B., Lee D.S., Shon J.I., Bae Y.H., Kim S.W. Thermoreversible gelation of poly(ethylene oxide) biodegradable polyester block copolymers, J. Polym. Sci. Polym. Chem. 37 (1999) 751–760.
  • Park H, Park K. Biocompatibility issues of implantable drug delivery systems, Pharm. Res. 13 (1996) 1770–1776.
  • Park K., Shalaby W.S.W., Park H. (Eds.), Biodegradable hydrogels for drug delivery. Technomic, Basle, 1993.
  • Peppas N.A. (Ed.), Hydrogels in Medicine and Pharmacy. Vol. I, II, III, CRC Press, Boca Raton, FL, 1986.
  • Peppas N.A., Bures P., Leobandung W., Ichikawa H. Hydro- gels in pharmaceutical formulations, Eur. J. Pharm. Bio- pharm. 50 (2000) 27–46.
  • Rosiak J.M., Yoshii F. Hydrogels and their medical applications. Nucl. Instrum. Methods Phys. Res. Sec. B 151 (1999) 56–64.
  • Smetana K. Cell biology of hydrogels. Biomaterials 14 (1993) 1046–1050.
  • Stile R.A., Burghardt W.R., Healy K.E. Synthesis and characterization of injectable poly(N- isopropylacrylamide)- based hydrogels that support tissue formation in vitro. Macromolecules. 32 (1999) 7370–7379.
  • Yoshida T., Takahashi M., Hatakeyama T., Hatakeyama H. Annealing induced gelation of xanthan / water systems, Poly- mer. 39 (1998) 1119–1122.

BIOCOMPATIBLE HYDROGELS: SYNTHESIS, SWELLING PROPERTY AND SOLVENT EFFECT ON GELATION

Year 2013, Volume: 1 Issue: 3, 31 - 36, 01.09.2013

Abstract

Biocompatible hydrogels have an increasing interest in recent years. Poly (2-hydroxyethyl methacrylate, PHEMA) is widely studied with its biocompatible property. In this study, we have shown the gelation conditions to produce PHEMA hydrogels which have an excellent hydrogel property. Since dissolution forces by solvents are so important in gelation process, we studied the effect of solvent combination of acetone and water mixture in detail. As a result of investigation, the available acetone-water ratio limits were stated in order to obtain PHEMA hydrogels. The swelling property of PHEMA hydrogel was also shown. In our study, PHEMA samples imbibe water as much as five times of their own weight.

References

  • Anderson J.M. In vivo biocompatibility of implantable delivery systems and biomaterials. Eur. J. Pharm. Biopharm. 40 (1994) 1–8.
  • Anderson J.M., Langone J.J. Issues and perspectives on the biocompatibility and immunotoxicity evaluation of implanted controlled release systems. J. Controlled Release 57 (1999) 107-113.
  • Baldwin S.P., Saltzman W.M. Materials for protein delivery in tissue engineering, Adv. Drug Deliv. Rev. 33 (1998) 71–86.
  • Cooper S., Horbett T., Ratner M., Stayton P. Gels, Genes, Grafts and Giants. Festschrift on the Occasion of the 70th Birthday of Allan S. Hoffman. CRC Press, (2005) p36.
  • Finch C.A. Chemistry and technology of water-soluble polymers. Plenum Press, New York, 1983, pp. 118.
  • Galaev I.Y., Mattiasson B. Smart polymers and what they could do in biotechnology and medicine, Trends Biotechnol. 17 (1999) 335–340.
  • Gehrke S.H., Synthesis and properties of hydrogels used for drug delivery, Drugs Pharm. Sci. 102 (2000) 473–546.
  • Gombotz W.R., Pettit D.K. Biodegradable polymers for protein and peptide drug delivery. Bioconjug. Chem. 6 (1995) 332–351.
  • Guenet J.M. Thermoreversible gelation of polymers and biopolymers. Academic Press, London, 1992.
  • Hennink W.E., C. F. van Nostrum C.F. Noval crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews. 54 (2002) 13-36.
  • Hill-West J.L., Chowdhury S.M., Slepian M.J., Hubbell J.A. Inhibition of thrombosis and intimal thickening by in situ photopolymerization of thin hydrogel barriers, PNAS USA 91 (1994) 5967–5971
  • Işık B. Swelling behavior of acrylamide-2- Hydroxyethyl methacrylate hydrogels. Turk J Chem. 24 (2000) 147-156.
  • Jeong B., Choi Y.K., Bae Y.H., Zentner G., Kim S.W. New biodegradable polymers for injectable drug delivery systems. J. Controlled Release. 62 (1999) 109–114.
  • Jeong B., Lee D.S., Shon J.I., Bae Y.H., Kim S.W. Thermoreversible gelation of poly(ethylene oxide) biodegradable polyester block copolymers, J. Polym. Sci. Polym. Chem. 37 (1999) 751–760.
  • Park H, Park K. Biocompatibility issues of implantable drug delivery systems, Pharm. Res. 13 (1996) 1770–1776.
  • Park K., Shalaby W.S.W., Park H. (Eds.), Biodegradable hydrogels for drug delivery. Technomic, Basle, 1993.
  • Peppas N.A. (Ed.), Hydrogels in Medicine and Pharmacy. Vol. I, II, III, CRC Press, Boca Raton, FL, 1986.
  • Peppas N.A., Bures P., Leobandung W., Ichikawa H. Hydro- gels in pharmaceutical formulations, Eur. J. Pharm. Bio- pharm. 50 (2000) 27–46.
  • Rosiak J.M., Yoshii F. Hydrogels and their medical applications. Nucl. Instrum. Methods Phys. Res. Sec. B 151 (1999) 56–64.
  • Smetana K. Cell biology of hydrogels. Biomaterials 14 (1993) 1046–1050.
  • Stile R.A., Burghardt W.R., Healy K.E. Synthesis and characterization of injectable poly(N- isopropylacrylamide)- based hydrogels that support tissue formation in vitro. Macromolecules. 32 (1999) 7370–7379.
  • Yoshida T., Takahashi M., Hatakeyama T., Hatakeyama H. Annealing induced gelation of xanthan / water systems, Poly- mer. 39 (1998) 1119–1122.
There are 22 citations in total.

Details

Other ID JA47CS95DY
Journal Section Articles
Authors

Mehmet Ulaşan This is me

Yunus Çengeloğlu This is me

Mustafa Selman Yavuz This is me

Publication Date September 1, 2013
Published in Issue Year 2013 Volume: 1 Issue: 3

Cite

APA Ulaşan, M., Çengeloğlu, Y., & Yavuz, M. S. (2013). Biyouyumlu Hidrojeller: Sentezi ve Jelleşme Üzerinde Çözücü Etkisi. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, 1(3), 31-36.
AMA Ulaşan M, Çengeloğlu Y, Yavuz MS. Biyouyumlu Hidrojeller: Sentezi ve Jelleşme Üzerinde Çözücü Etkisi. sujest. September 2013;1(3):31-36.
Chicago Ulaşan, Mehmet, Yunus Çengeloğlu, and Mustafa Selman Yavuz. “Biyouyumlu Hidrojeller: Sentezi Ve Jelleşme Üzerinde Çözücü Etkisi”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 1, no. 3 (September 2013): 31-36.
EndNote Ulaşan M, Çengeloğlu Y, Yavuz MS (September 1, 2013) Biyouyumlu Hidrojeller: Sentezi ve Jelleşme Üzerinde Çözücü Etkisi. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 1 3 31–36.
IEEE M. Ulaşan, Y. Çengeloğlu, and M. S. Yavuz, “Biyouyumlu Hidrojeller: Sentezi ve Jelleşme Üzerinde Çözücü Etkisi”, sujest, vol. 1, no. 3, pp. 31–36, 2013.
ISNAD Ulaşan, Mehmet et al. “Biyouyumlu Hidrojeller: Sentezi Ve Jelleşme Üzerinde Çözücü Etkisi”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 1/3 (September 2013), 31-36.
JAMA Ulaşan M, Çengeloğlu Y, Yavuz MS. Biyouyumlu Hidrojeller: Sentezi ve Jelleşme Üzerinde Çözücü Etkisi. sujest. 2013;1:31–36.
MLA Ulaşan, Mehmet et al. “Biyouyumlu Hidrojeller: Sentezi Ve Jelleşme Üzerinde Çözücü Etkisi”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, vol. 1, no. 3, 2013, pp. 31-36.
Vancouver Ulaşan M, Çengeloğlu Y, Yavuz MS. Biyouyumlu Hidrojeller: Sentezi ve Jelleşme Üzerinde Çözücü Etkisi. sujest. 2013;1(3):31-6.

MAKALELERINIZI 

http://sujest.selcuk.edu.tr

uzerinden gonderiniz