BibTex RIS Kaynak Göster

Biyouyumlu Hidrojeller: Sentezi ve Jelleşme Üzerinde Çözücü Etkisi

Yıl 2013, Cilt: 1 Sayı: 3, 31 - 36, 01.09.2013

Öz

Son yıllarda biyouyumlu hidrojellere olan ilgi artmıştır. Bu çalışmada biyouyumlu bir materyal olan ve üstün hidrojel özellik gösteren poli hidroksietil metakrilat (PHEMA)’ın jel oluşum şartları araştırılmıştır. Jelleşme işleminde kullanılan çözücülerin çözme kuvvetleri oldukça etkindir. Bundan dolayı PHEMA eldesinde kullandığımız çözücü ortamı olan aseton-su karışım oranının jelleşme üzerine etkisi detaylı olarak araştırılmıştır. Araştırmanın sonucu olarak jelleşmeyi sağlayacak aseton-su karışım limitleri tespit edilmiştir. Hidrojeller su emme özelliği gösteren maddelerdir. Elde ettiğimiz PHEMA hidrojelinin su absorblama özelliği de incelenmiş ve hidrojel örneğinin kendi öz kütlesinin beş katı su emdiği gösterilmiştir.

Kaynakça

  • Anderson J.M. In vivo biocompatibility of implantable delivery systems and biomaterials. Eur. J. Pharm. Biopharm. 40 (1994) 1–8.
  • Anderson J.M., Langone J.J. Issues and perspectives on the biocompatibility and immunotoxicity evaluation of implanted controlled release systems. J. Controlled Release 57 (1999) 107-113.
  • Baldwin S.P., Saltzman W.M. Materials for protein delivery in tissue engineering, Adv. Drug Deliv. Rev. 33 (1998) 71–86.
  • Cooper S., Horbett T., Ratner M., Stayton P. Gels, Genes, Grafts and Giants. Festschrift on the Occasion of the 70th Birthday of Allan S. Hoffman. CRC Press, (2005) p36.
  • Finch C.A. Chemistry and technology of water-soluble polymers. Plenum Press, New York, 1983, pp. 118.
  • Galaev I.Y., Mattiasson B. Smart polymers and what they could do in biotechnology and medicine, Trends Biotechnol. 17 (1999) 335–340.
  • Gehrke S.H., Synthesis and properties of hydrogels used for drug delivery, Drugs Pharm. Sci. 102 (2000) 473–546.
  • Gombotz W.R., Pettit D.K. Biodegradable polymers for protein and peptide drug delivery. Bioconjug. Chem. 6 (1995) 332–351.
  • Guenet J.M. Thermoreversible gelation of polymers and biopolymers. Academic Press, London, 1992.
  • Hennink W.E., C. F. van Nostrum C.F. Noval crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews. 54 (2002) 13-36.
  • Hill-West J.L., Chowdhury S.M., Slepian M.J., Hubbell J.A. Inhibition of thrombosis and intimal thickening by in situ photopolymerization of thin hydrogel barriers, PNAS USA 91 (1994) 5967–5971
  • Işık B. Swelling behavior of acrylamide-2- Hydroxyethyl methacrylate hydrogels. Turk J Chem. 24 (2000) 147-156.
  • Jeong B., Choi Y.K., Bae Y.H., Zentner G., Kim S.W. New biodegradable polymers for injectable drug delivery systems. J. Controlled Release. 62 (1999) 109–114.
  • Jeong B., Lee D.S., Shon J.I., Bae Y.H., Kim S.W. Thermoreversible gelation of poly(ethylene oxide) biodegradable polyester block copolymers, J. Polym. Sci. Polym. Chem. 37 (1999) 751–760.
  • Park H, Park K. Biocompatibility issues of implantable drug delivery systems, Pharm. Res. 13 (1996) 1770–1776.
  • Park K., Shalaby W.S.W., Park H. (Eds.), Biodegradable hydrogels for drug delivery. Technomic, Basle, 1993.
  • Peppas N.A. (Ed.), Hydrogels in Medicine and Pharmacy. Vol. I, II, III, CRC Press, Boca Raton, FL, 1986.
  • Peppas N.A., Bures P., Leobandung W., Ichikawa H. Hydro- gels in pharmaceutical formulations, Eur. J. Pharm. Bio- pharm. 50 (2000) 27–46.
  • Rosiak J.M., Yoshii F. Hydrogels and their medical applications. Nucl. Instrum. Methods Phys. Res. Sec. B 151 (1999) 56–64.
  • Smetana K. Cell biology of hydrogels. Biomaterials 14 (1993) 1046–1050.
  • Stile R.A., Burghardt W.R., Healy K.E. Synthesis and characterization of injectable poly(N- isopropylacrylamide)- based hydrogels that support tissue formation in vitro. Macromolecules. 32 (1999) 7370–7379.
  • Yoshida T., Takahashi M., Hatakeyama T., Hatakeyama H. Annealing induced gelation of xanthan / water systems, Poly- mer. 39 (1998) 1119–1122.

BIOCOMPATIBLE HYDROGELS: SYNTHESIS, SWELLING PROPERTY AND SOLVENT EFFECT ON GELATION

Yıl 2013, Cilt: 1 Sayı: 3, 31 - 36, 01.09.2013

Öz

Biocompatible hydrogels have an increasing interest in recent years. Poly (2-hydroxyethyl methacrylate, PHEMA) is widely studied with its biocompatible property. In this study, we have shown the gelation conditions to produce PHEMA hydrogels which have an excellent hydrogel property. Since dissolution forces by solvents are so important in gelation process, we studied the effect of solvent combination of acetone and water mixture in detail. As a result of investigation, the available acetone-water ratio limits were stated in order to obtain PHEMA hydrogels. The swelling property of PHEMA hydrogel was also shown. In our study, PHEMA samples imbibe water as much as five times of their own weight.

Kaynakça

  • Anderson J.M. In vivo biocompatibility of implantable delivery systems and biomaterials. Eur. J. Pharm. Biopharm. 40 (1994) 1–8.
  • Anderson J.M., Langone J.J. Issues and perspectives on the biocompatibility and immunotoxicity evaluation of implanted controlled release systems. J. Controlled Release 57 (1999) 107-113.
  • Baldwin S.P., Saltzman W.M. Materials for protein delivery in tissue engineering, Adv. Drug Deliv. Rev. 33 (1998) 71–86.
  • Cooper S., Horbett T., Ratner M., Stayton P. Gels, Genes, Grafts and Giants. Festschrift on the Occasion of the 70th Birthday of Allan S. Hoffman. CRC Press, (2005) p36.
  • Finch C.A. Chemistry and technology of water-soluble polymers. Plenum Press, New York, 1983, pp. 118.
  • Galaev I.Y., Mattiasson B. Smart polymers and what they could do in biotechnology and medicine, Trends Biotechnol. 17 (1999) 335–340.
  • Gehrke S.H., Synthesis and properties of hydrogels used for drug delivery, Drugs Pharm. Sci. 102 (2000) 473–546.
  • Gombotz W.R., Pettit D.K. Biodegradable polymers for protein and peptide drug delivery. Bioconjug. Chem. 6 (1995) 332–351.
  • Guenet J.M. Thermoreversible gelation of polymers and biopolymers. Academic Press, London, 1992.
  • Hennink W.E., C. F. van Nostrum C.F. Noval crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews. 54 (2002) 13-36.
  • Hill-West J.L., Chowdhury S.M., Slepian M.J., Hubbell J.A. Inhibition of thrombosis and intimal thickening by in situ photopolymerization of thin hydrogel barriers, PNAS USA 91 (1994) 5967–5971
  • Işık B. Swelling behavior of acrylamide-2- Hydroxyethyl methacrylate hydrogels. Turk J Chem. 24 (2000) 147-156.
  • Jeong B., Choi Y.K., Bae Y.H., Zentner G., Kim S.W. New biodegradable polymers for injectable drug delivery systems. J. Controlled Release. 62 (1999) 109–114.
  • Jeong B., Lee D.S., Shon J.I., Bae Y.H., Kim S.W. Thermoreversible gelation of poly(ethylene oxide) biodegradable polyester block copolymers, J. Polym. Sci. Polym. Chem. 37 (1999) 751–760.
  • Park H, Park K. Biocompatibility issues of implantable drug delivery systems, Pharm. Res. 13 (1996) 1770–1776.
  • Park K., Shalaby W.S.W., Park H. (Eds.), Biodegradable hydrogels for drug delivery. Technomic, Basle, 1993.
  • Peppas N.A. (Ed.), Hydrogels in Medicine and Pharmacy. Vol. I, II, III, CRC Press, Boca Raton, FL, 1986.
  • Peppas N.A., Bures P., Leobandung W., Ichikawa H. Hydro- gels in pharmaceutical formulations, Eur. J. Pharm. Bio- pharm. 50 (2000) 27–46.
  • Rosiak J.M., Yoshii F. Hydrogels and their medical applications. Nucl. Instrum. Methods Phys. Res. Sec. B 151 (1999) 56–64.
  • Smetana K. Cell biology of hydrogels. Biomaterials 14 (1993) 1046–1050.
  • Stile R.A., Burghardt W.R., Healy K.E. Synthesis and characterization of injectable poly(N- isopropylacrylamide)- based hydrogels that support tissue formation in vitro. Macromolecules. 32 (1999) 7370–7379.
  • Yoshida T., Takahashi M., Hatakeyama T., Hatakeyama H. Annealing induced gelation of xanthan / water systems, Poly- mer. 39 (1998) 1119–1122.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA47CS95DY
Bölüm Makaleler
Yazarlar

Mehmet Ulaşan Bu kişi benim

Yunus Çengeloğlu Bu kişi benim

Mustafa Selman Yavuz Bu kişi benim

Yayımlanma Tarihi 1 Eylül 2013
Yayımlandığı Sayı Yıl 2013 Cilt: 1 Sayı: 3

Kaynak Göster

APA Ulaşan, M., Çengeloğlu, Y., & Yavuz, M. S. (2013). Biyouyumlu Hidrojeller: Sentezi ve Jelleşme Üzerinde Çözücü Etkisi. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, 1(3), 31-36.
AMA Ulaşan M, Çengeloğlu Y, Yavuz MS. Biyouyumlu Hidrojeller: Sentezi ve Jelleşme Üzerinde Çözücü Etkisi. sujest. Eylül 2013;1(3):31-36.
Chicago Ulaşan, Mehmet, Yunus Çengeloğlu, ve Mustafa Selman Yavuz. “Biyouyumlu Hidrojeller: Sentezi Ve Jelleşme Üzerinde Çözücü Etkisi”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 1, sy. 3 (Eylül 2013): 31-36.
EndNote Ulaşan M, Çengeloğlu Y, Yavuz MS (01 Eylül 2013) Biyouyumlu Hidrojeller: Sentezi ve Jelleşme Üzerinde Çözücü Etkisi. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 1 3 31–36.
IEEE M. Ulaşan, Y. Çengeloğlu, ve M. S. Yavuz, “Biyouyumlu Hidrojeller: Sentezi ve Jelleşme Üzerinde Çözücü Etkisi”, sujest, c. 1, sy. 3, ss. 31–36, 2013.
ISNAD Ulaşan, Mehmet vd. “Biyouyumlu Hidrojeller: Sentezi Ve Jelleşme Üzerinde Çözücü Etkisi”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 1/3 (Eylül 2013), 31-36.
JAMA Ulaşan M, Çengeloğlu Y, Yavuz MS. Biyouyumlu Hidrojeller: Sentezi ve Jelleşme Üzerinde Çözücü Etkisi. sujest. 2013;1:31–36.
MLA Ulaşan, Mehmet vd. “Biyouyumlu Hidrojeller: Sentezi Ve Jelleşme Üzerinde Çözücü Etkisi”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, c. 1, sy. 3, 2013, ss. 31-36.
Vancouver Ulaşan M, Çengeloğlu Y, Yavuz MS. Biyouyumlu Hidrojeller: Sentezi ve Jelleşme Üzerinde Çözücü Etkisi. sujest. 2013;1(3):31-6.

MAKALELERINIZI 

http://sujest.selcuk.edu.tr

uzerinden gonderiniz