Research Article
BibTex RIS Cite

Biochar: Production and Applications

Year 2017, Volume: 5 Issue: 4, 485 - 499, 01.12.2017
https://doi.org/10.15317/Scitech.2017.107

Abstract

The world faces such problems that increasing world population, diminishing energy sources, increasing energy demand and the global warming which is the result of the use of fossil energy resources. Alternative energy sources could provide solutions to these problems. Biomass energy source is one of these solutions. Unlike the classical methods, biomass must be converted into energy-substance forms suitable for today's technology. The pyrolysis method allows biomass to be converted into solid, liquid and gaseous products that are appropriate technologically to use. In this study, the features and usage areas of biochar which is the solid product of pyrolysis technology are discussed. Green coal has a wide range of applications ranging from use in soil treatment, energy storage and use as anodic materials in batteries, and to electromagnetic emission capture in constructions. Green coal has a potential to find a wide range of applications as a carbonaceous material rich in functional groups.

References

  • Abas, N., Kalair, A., Khan, N., 2015, "Review of Fossil Fuels and Future Energy Technologies", Futures, Vol. 69, pp. 31–49.
  • Agirre, I., Griessacher, T., Rösler, G., Antrekowitsch, J., 2013, "Production of Charcoal as an Alternative Reducing Agent from Agricultural Residues using A Semi-Continuous Semi-Pilot Scale Pyrolysis Screw Reactor", Fuel Processing Technology, Vol. 106, pp. 114–121.
  • Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., 2016, "Biomass and Bioenergy Insight into Biochar Properties and İts Cost Analysis", Biomass and Bioenergy, 84, 76–86.
  • Alhashimi, H. A., Aktas, C. B., 2017, "Life Cycle Environmental and Economic Performance of Biochar Compared with activated Carbon: A Meta-analysis", Resources, Conservation and Recycling, Vol. 118, pp. 13–26.
  • Alvarez, J., Lopez, G., Amutio, M., Artetxe, M., Barbarias, I., Arregi, A., Olazar, M., 2016, "Characterization of the Bio-Oil Obtained by Fast Pyrolysis of Sewage Sludge in a conical Spouted Bed Reactor", Fuel Processing Technology, Vol. 149, pp. 169–175.
  • Azadi, P., Khan, S., Strobel, F., Azadi, F., Farnood, R., 2012, "Hydrogen Production from Cellulose , Lignin , Bark and Model Carbohydrates in Supercritical Water Using Nickel and ruthenium Catalysts", Applied Catalysis B, Environmental, Vol. 117–118, pp. 330–338.
  • Balsamo, M., Cimino, S., de Falco, G., Erto, A., Lisi, L., 2016, "ZnO-CuO Supported on Activated Carbon for H2S Removal at Room Temperature", Chemical Engineering Journal, Vol. 304, pp.399–407.
  • Bhandari, P. N., Kumar, A., Huhnke, R. L., 2014, "Simultaneous Removal of Toluene (model tar), NH3, and H 2S, from Biomass-Generated Producer Gas Using Biochar-Based and Mixed-Metal Oxide Catalysts", Energy and Fuels, Vol. 28(3), pp. 1918–1925.
  • Burhenne, L., Messmer, J., Aicher, T. Laborie, M. P., 2013, "The Effect of the Biomass Components Lignin, Cellulose and Hemicellulose on TGA and Fixed Bed Pyrolysis", Journal of Analytical and Applied Pyrolysis, Vol. 101, pp. 177–184.
  • Cao, L., Yuan, X., Li, H., Li, C., Xiao, Z., Jiang, L., Zeng, G. 2015, "Complementary Effects of Torrefaction and Co-Pelletization: Energy Consumption and Characteristics of Pellets", Bioresource Technology, Vol. 185, pp. 254–262.
  • Chen, D., Zheng, Z., Fu, K., Zeng, Z., Wang, J., Lu, M., 2015, "Torrefaction of Biomass Stalk and Its Effect on the Yield and Quality of Pyrolysis Products", Fuel, Vol. 159, pp. 27–32.
  • Ding, G., Wang, B., Chen, L., Zhao, S., 2016, "Simultaneous Adsorption of Methyl Red and Methylene Blue onto Biochar and an Equilibrium Modeling at High Concentration", Chemosphere, Vol. 163, pp. 283–289.
  • Ding, Z., Wan, Y., Hu, X., Wang, S., Zimmerman, A. R., Gao, B., 2015, "Sorption of Lead and Methylene Blue onto Hickory Biochars from Different Pyrolysis Temperatures: Importance of Physicochemical Properties", Journal of Industrial and Engineering Chemistry, Vol. 37, pp. 261–267.
  • Glaser, B., Wiedner, K., Seelig, S., 2014, "Biochar Organic Fertilizers from Natural Resources as Substitute for Mineral Fertilizers", Agron. Sustain. Dev. Vol. 35, pp. 667–678.
  • Gu, L., Huang, S., Zhu, N., Zhang, D., Yuan, H., Lou, Z., 2013, "Influence of Generated Intermediates’ Interaction On Heterogeneous Fenton’s Degradation of an azo dye 1-diazo-2-naphthol-4-sulfonic acid by using Sludge Based Carbon as Catalyst", Journal of Hazardous Materials, Vol. 263, pp. 450–457.
  • Gu, L., Wang, Y., Zhu, N., Zhang, D., Huang, S., Yuan, H., Wang, M., 2013, "Bioresource Technology Preparation of Sewage Sludge Based Activated Carbon by using Fenton ’ s Reagent and Their use in 2-Naphthol Adsorption", Bioresource Technology, Vol. 146, pp. 779–784.
  • Gu, X., Wang, Y., Lai, C., Qiu, J., Li, S., Hou, Y., Zhang, S., 2014, "Microporous Bamboo Biochar for Lithium-sulfur Batteries", Nano Research, Vol. 8(1), pp. 129–139.
  • Guan, H., Liu, S., Duan, Y., Cheng, J., 2006, "Cement Based Electromagnetic Shielding and absorbing Building Materials", Cement & Concrete Composites, Vol. 28, pp. 468–474.
  • Han, S., Zhou, X., Tang, Y., He, M., Zhang, X., Shi, H., Xiang, Y., 2016, "Practical, Highly Sensitive, and regenerable Evanescent-wave Biosensor for Detection of Hg2+ and Pb2+ in Water", Biosensors and Bioelectronics, Vol. 80, pp. 265–272.
  • Hidayat, A., Rochmadi, Wijaya, K., Nurdiawati, A., Kurniawan, W., Hinode, H., Budiman, A., 2015, "Esterification of Palm Fatty Acid Distillate with High Amount of Free Fatty Acids Using Coconut Shell Char Based Catalyst", Energy Procedia, Vol. 75, pp. 969–974.
  • Ho, K., Kim, J., Cho, T., Weon, J.,2012, "Influence of Pyrolysis Temperature on Physicochemical Properties of Biochar Obtained from the Fast Pyrolysis of Pitch Pine ( Pinus rigida )", Bıoresource Technology, Vol. 118, pp. 158–162.
  • Ippolito, J. A., Ducey, T. F., Cantrell, K. B., Novak, J. M., Lentz, R. D., 2016, "Designer, Acidic Biochar İnfluences Calcareous Soil Characteristics", Chemosphere, Vol. 142, pp.184–191.
  • Jang, H. M., Ha, J. H., Kim, M.-S., Kim, J.-O., Kim, Y. M., Park, J. M.,2016, "Effect of Increased Load of High-strength Food Wastewater in Thermophilic and Mesophilic Anaerobic Co-digestion of Waste Activated Sludge on Bacterial Community Structure", Water Research, Vol. 99, pp. 140–148.
  • Jin, H., Wang, X., Gu, Z., Polin, J., 2013, "Carbon Materials from High Ash Biochar for Supercapacitor and Improvement of Capacitance with HNO3 Surface Oxidation", Journal of Power Sources, Vol. 236, pp. 285–292.
  • Jones, G. A., Warner, K. J., 2016, "The 21st century Population-Energy-Climate Nexus", Energy Policy, Vol. 93, pp. 206–212.
  • Jung, C., Oh, J., Yoon, Y., 2015, "Removal of Acetaminophen and Naproxen by Combined Coagulation and Adsorption Using Biochar: Influence of Combined Sewer Overflow Components", Environmental Science and Pollution Research, Vol. 22(13), pp. 10058–10069.
  • Kalyani, P,. Anitha, A., 2013, "Biomass Carbon & Its Prospects in Electrochemical Energy Systems", International Journal of Hydrogen Energy, Vol. 38(10), pp. 4034–4045.
  • Kambo, H. S., Dutta, A., 2015, "A Comparative Review of Biochar and Hydrochar in Terms of Production , Physico-Chemical Properties and Applications", Renewable and Sustainable Energy Reviews, Vol. 45, pp. 359–378.
  • Kan, T., Strezov, V., Evans, T. J., 2016, "Lignocellulosic Biomass Pyrolysis: A Review of Product Properties and Effects of Pyrolysis Parameters", Renewable and Sustainable Energy Reviews, Vol. 57, pp. 126–1140.
  • Kastner, J. R., Miller, J., Geller, D. P., Locklin, J., Keith, L. H., Johnson, T., 2012, "Catalytic Esterification of Fatty Acids Using Solid Acid Catalysts Generated from Biochar and Activated Carbon", Catalysis Today, Vol. 190(1), pp. 122–132.
  • Kiran, B., Pathak, K., Kumar, R., Deshmukh, D., 2016, "Statistical Optimization using Central Composite Design for Biomass and Lipid Productivity of Microalga: A Step Towards Enhanced Biodiesel Production", Ecological Engineering, Vol. 92, pp. 73–81.
  • Konwar, L. J., Boro, J., Deka, D., 2014, "Review on Latest Developments in Biodiesel Production Using Carbon-Based Catalysts", Renewable and Sustainable Energy Reviews, Vol. 29, pp. 546–564.
  • Lehmann, J., Joseph, S., 2009, Biochar Environmental Management, ISBN: 978-1-84407-658-1, Earthscan Yayıncılık, 2. Bölüm, sayfa 18.
  • Lei, O., Zhang, R., 2013, "Effects of Biochars Derived from Different Feedstocks and pyrolysis Temperatures on Soil Physical and Hydraulic Properties", Journal of Soils and Sediments, Vol. 13(9), pp. 1561–1572.
  • Li, M., Zheng, Y., Chen, Y., Zhu, X., 2014, "Biodiesel Production from Waste Cooking Oil Using a Heterogeneous Catalyst from pyrolyzed Rice Husk", Bioresource Technology, Vol. 154, pp.345–348.
  • Lomax, G., Workman, M., Lenton, T,. Shah, N., 2015, "Reframing the Policy Approach to Greenhouse Gas Removal Technologies", Energy Policy, Vol. 78, pp. 125–136.
  • Lorenz, K., Lal, R., 2014, "Biochar Application to Soil for Climate Change Mitigation by Soil Organic Carbon Sequestration", J. Plant Nutr. Soil Sci., Vol. 177, pp. 651–670.
  • Makovíny, I., Makovínyiová, K., 2011, "Shielding of electromagnetic Radiation by Using Wood-Cement Boards Modified with Carbon in Microwave Frequency Band", Eur. J. Wood Prod. Vol. 69, pp.671–673.
  • Mcbeath, A. V, Wurster, C. M. Bird, M. I., 2015, "ScienceDirect Influence of Feedstock Properties and Pyrolysis Conditions on Biochar Carbon Stability as Determined by Hydrogen Pyrolysis" Biomass and Bioenergy, Vol. 73, pp.155–173.
  • Meyer, S., Glaser, B., Quicker, P., 2011, "Technical, Economical and Climate Related Aspects of Biochar Production Technologies: A Literature Review", Environmental Science & Technology, Vol. 45, pp. 9473–9483.
  • Naeem, S., Baheti, V., Tunakova, V., Militky, J. Karthik, D., 2017, "Development of Porous and Electrically Conductive Activated Carbon Web for effective EMI Shielding Applications", Carbon, Vol. 111, pp. 439–447.
  • Nanda, S., Dalai, A. K., Berruti, F., Kozinski, J. A., 2016, "Biochar as an Exceptional Bioresource for Energy , Agronomy , Carbon Sequestration , Activated Carbon and Specialty Materials", Waste and Biomass Valorization, Vol. 7(2), pp. 201–235.
  • Nguyen, M. V., Lee, B. K.,2016, "A Novel Removal of CO2 Using Nitrogen Doped Biochar Beads as a Green Adsorbent", Process Safety and Environmental Protection, Vol. 104, pp.490–498.
  • Niu, Q., Luo, J., Xia, Y., Sun, S., Chen, Q., 2017, "Surface Modification of Bio-char by Dielectric Barrier Discharge Plasma for Hg0 Removal", Fuel Processing Technology, Vol. 156, pp. 310–316.
  • Norgate, T., Haque, N., Somerville, M., Jahanshahi, S., 2012, "Biomass as a Source of Renewable Carbon for Iron and Steelmaking", ISIJ International, Vol. 52(8), pp. 1472–1481.
  • Nowicki, P., Skibiszewska, P., Pietrzak, R., 2014, "Hydrogen Sulphide Removal on carbonaceous Adsorbents Prepared from Coffee İndustry Waste Materials", Chemical Engineering Journal, Vol. 248, pp. 208–215.
  • Park, J., Hung, I., Gan, Z., Rojas, O. J., Lim, K. H., Park, S., 2013, "Activated Carbon from Biochar: Influence of Its Physicochemical Properties on the Sorption Characteristics of Phenanthrene", Bioresource Technology, Vol. 149, pp. 383–389.
  • Qian, K., Kumar, A., Zhang, H., Bellmer, D., Huhnke, R., 2015, "Recent Advances in Utilization of Biochar", Renewable and Sustainable Energy Reviews, Vol. 42, pp. 1055–1064.
  • Rintamäki, H., Rikkonen, P., Tapio, P., 2016, "Carrot or Stick: Impacts of Alternative Climate and Energy Policy Scenarios on Agriculture", Futures, Vol. 83, pp. 64–74.
  • Ryu, D. J., Oh, R. G., Seo, Y. D., Oh, S. Y., Ryu, K. S., 2015, "Recovery and Electrochemical Performance in Lithium Secondary Batteries of Biochar Derived from Rice Straw" Environmental Science and Pollution Research, Vol. 22(14), pp. 10405–10412.
  • Schiffer, H. W., 2008, "WEC Energy Policy Scenarios to 2050", Energy Policy, Vol. 36(7), pp. 2464–2470. Shang, G., Li, Q., Liu, L., Chen, P., Huang, X., 2016, "Adsorption of Hydrogen Sulfide by Biochars Derived from Pyrolysis of Different Agricultural / Forestry Wastes", Journal of the Air & Waste Management Association, Vol. 66(1), pp. 8–16.
  • Shang, G., Shen, G., Liu, L., Chen, Q., Xu, Z., 2013, "Kinetics and Mechanisms of Hydrogen Sulfide Adsorption by Biochars", Bioresource Technology, Vol. 133, pp. 495–499.
  • Sindhu, R., Binod, P., Pandey, A., 2016, "A novel Sono-assisted Acid Pretreatment of Chili Post Harvest Residue for Bioethanol Production", Bioresource Technology, Vol. 213, pp. 58–63.
  • Sun, J., Hoon, S., Jung, S., Ryu, C., Jeon, J., Shin, M., Park, Y., 2016, "Journal of Industrial and Engineering Chemistry Production and Utilization of Biochar : A review. Journal of Industrial and Engineering Chemistry, Vol. 40, pp. 1–15.
  • Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., Yang, Z., 2015, "Application of Biochar for the Removal of Pollutants from Aqueous Solutions" Chemosphere, Vol. 125, pp. 70–85.
  • Tripathi, M., Sahu, J. N., Ganesan, P., 2016, "Effect of Process Parameters on Production of Biochar from Biomass Waste Through Pyrolysis : A review", Renewable and Sustainable Energy Reviews, Vol. 55, pp. 467–481.
  • Xie, T., Reddy, K. R., Wang, C., Yargicoglu, E., Spokas, K., 2014, "Characteristics and Applications of Biochar for Environmental Remediation: A Review", Critical Reviews in Environmental Science and Technology, pp.. 45, 939–969.
  • Xu, X., Cao, X., Zhao, L., Sun, T., 2014, "Comparison of Sewage Sludge- and Pig Manure-derived Biochars for Hydrogen Sulfide Removal", Chemosphere, Vol. 111, pp. 296–303.
  • Yang, J., Zhao, Y., Ma, S., Zhu, B., Zhang, J., Zheng, C., 2016, "Mercury Removal by Magnetic Biochar Derived from Simultaneous Activation and Magnetization of Sawdust", Environmental Science and Technology, Vol. 50(21), pp. 12040–12047.
  • Yang, Y., Brammer, J. G., Mahmood, A. S. N., Hornung, A., 2014, "Intermediate Pyrolysis of Biomass Energy Pellets for Producing Sustainable Liquid, Gaseous and Solid Fuels", Bioresource Technology, Vol. 169, pp. 794–799.
  • Zellagui, S., Schönnenbeck, C., Zouaoui-Mahzoul, N., Leyssens, G., Authier, O., Thunin, E., Brilhac, J. F., 2016, "Pyrolysis of Coal and Woody Biomass under N2 and CO2 Atmospheres using a Drop Tube Furnace - Experimental Study and Kinetic Modeling", Fuel Processing Technology, Vol. 148, pp. 99–109.
  • Zhang, L., Jiang, J., Holm, N., Chen, F., 2014, "Mini-chunk Biochar Supercapacitors", Journal of Applied Electrochemistry, Vol. 44(10), pp. 1145–1151.
  • Zhang, W., Mao, S., Chen, H., Huang, L., Qiu, R., 2013, "Pb(II) and Cr(VI)Sorption by Biochars Pyrolyzed from the Municipal Wastewater Sludge under Different Heating Conditions", Bioresource Technology, Vol. 147, pp.545–552.

BİYOKÖMÜR: ÜRETİMİ ve KULLANIM ALANLARI

Year 2017, Volume: 5 Issue: 4, 485 - 499, 01.12.2017
https://doi.org/10.15317/Scitech.2017.107

Abstract

Artan dünya nüfusu, azalan enerji kaynakları ve fosil enerji kaynaklarının kullanımı sonucu ortaya çıkan küresel ısınma gibi dünyanın karşılaştığı enerji problemlerine alternatif enerji kaynakları ile çözümler sunulmaya çalışılmaktadır. Biyokütle enerji kaynağı bu çözümlerden bir tanesidir. Klasik yöntemlerden farklı olarak biyokütlenin günümüz teknolojisine uygun bir enerji veya madde formlarına dönüştürülmesi gerekmektedir. Piroliz yöntemi, biyokütlenin teknolojiye uygun katı, sıvı ve gaz ürünlere dönüştürülmesini sağlar. Bu çalışmada piroliz teknolojisi ile üretilen katı ürün olan BİYOKÖMÜR’ün (biochar) özellikleri ve kullanım alanları konusu ele alınmıştır. Biyokömürün toprak ıslahında kullanımından enerji depolama ve pillerde anodik materyal olarak kullanımı, yapılarda elektromanyetik emisyon tutulumuna kadar değişen çok farklı uygulama alanları bulunmaktadır. Biyokömür, fonksiyonel gruplarca zengin karbonize materyal olarak çok farklı uygulama alanları bulabilecek bir potansiyeline sahiptir.

References

  • Abas, N., Kalair, A., Khan, N., 2015, "Review of Fossil Fuels and Future Energy Technologies", Futures, Vol. 69, pp. 31–49.
  • Agirre, I., Griessacher, T., Rösler, G., Antrekowitsch, J., 2013, "Production of Charcoal as an Alternative Reducing Agent from Agricultural Residues using A Semi-Continuous Semi-Pilot Scale Pyrolysis Screw Reactor", Fuel Processing Technology, Vol. 106, pp. 114–121.
  • Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., 2016, "Biomass and Bioenergy Insight into Biochar Properties and İts Cost Analysis", Biomass and Bioenergy, 84, 76–86.
  • Alhashimi, H. A., Aktas, C. B., 2017, "Life Cycle Environmental and Economic Performance of Biochar Compared with activated Carbon: A Meta-analysis", Resources, Conservation and Recycling, Vol. 118, pp. 13–26.
  • Alvarez, J., Lopez, G., Amutio, M., Artetxe, M., Barbarias, I., Arregi, A., Olazar, M., 2016, "Characterization of the Bio-Oil Obtained by Fast Pyrolysis of Sewage Sludge in a conical Spouted Bed Reactor", Fuel Processing Technology, Vol. 149, pp. 169–175.
  • Azadi, P., Khan, S., Strobel, F., Azadi, F., Farnood, R., 2012, "Hydrogen Production from Cellulose , Lignin , Bark and Model Carbohydrates in Supercritical Water Using Nickel and ruthenium Catalysts", Applied Catalysis B, Environmental, Vol. 117–118, pp. 330–338.
  • Balsamo, M., Cimino, S., de Falco, G., Erto, A., Lisi, L., 2016, "ZnO-CuO Supported on Activated Carbon for H2S Removal at Room Temperature", Chemical Engineering Journal, Vol. 304, pp.399–407.
  • Bhandari, P. N., Kumar, A., Huhnke, R. L., 2014, "Simultaneous Removal of Toluene (model tar), NH3, and H 2S, from Biomass-Generated Producer Gas Using Biochar-Based and Mixed-Metal Oxide Catalysts", Energy and Fuels, Vol. 28(3), pp. 1918–1925.
  • Burhenne, L., Messmer, J., Aicher, T. Laborie, M. P., 2013, "The Effect of the Biomass Components Lignin, Cellulose and Hemicellulose on TGA and Fixed Bed Pyrolysis", Journal of Analytical and Applied Pyrolysis, Vol. 101, pp. 177–184.
  • Cao, L., Yuan, X., Li, H., Li, C., Xiao, Z., Jiang, L., Zeng, G. 2015, "Complementary Effects of Torrefaction and Co-Pelletization: Energy Consumption and Characteristics of Pellets", Bioresource Technology, Vol. 185, pp. 254–262.
  • Chen, D., Zheng, Z., Fu, K., Zeng, Z., Wang, J., Lu, M., 2015, "Torrefaction of Biomass Stalk and Its Effect on the Yield and Quality of Pyrolysis Products", Fuel, Vol. 159, pp. 27–32.
  • Ding, G., Wang, B., Chen, L., Zhao, S., 2016, "Simultaneous Adsorption of Methyl Red and Methylene Blue onto Biochar and an Equilibrium Modeling at High Concentration", Chemosphere, Vol. 163, pp. 283–289.
  • Ding, Z., Wan, Y., Hu, X., Wang, S., Zimmerman, A. R., Gao, B., 2015, "Sorption of Lead and Methylene Blue onto Hickory Biochars from Different Pyrolysis Temperatures: Importance of Physicochemical Properties", Journal of Industrial and Engineering Chemistry, Vol. 37, pp. 261–267.
  • Glaser, B., Wiedner, K., Seelig, S., 2014, "Biochar Organic Fertilizers from Natural Resources as Substitute for Mineral Fertilizers", Agron. Sustain. Dev. Vol. 35, pp. 667–678.
  • Gu, L., Huang, S., Zhu, N., Zhang, D., Yuan, H., Lou, Z., 2013, "Influence of Generated Intermediates’ Interaction On Heterogeneous Fenton’s Degradation of an azo dye 1-diazo-2-naphthol-4-sulfonic acid by using Sludge Based Carbon as Catalyst", Journal of Hazardous Materials, Vol. 263, pp. 450–457.
  • Gu, L., Wang, Y., Zhu, N., Zhang, D., Huang, S., Yuan, H., Wang, M., 2013, "Bioresource Technology Preparation of Sewage Sludge Based Activated Carbon by using Fenton ’ s Reagent and Their use in 2-Naphthol Adsorption", Bioresource Technology, Vol. 146, pp. 779–784.
  • Gu, X., Wang, Y., Lai, C., Qiu, J., Li, S., Hou, Y., Zhang, S., 2014, "Microporous Bamboo Biochar for Lithium-sulfur Batteries", Nano Research, Vol. 8(1), pp. 129–139.
  • Guan, H., Liu, S., Duan, Y., Cheng, J., 2006, "Cement Based Electromagnetic Shielding and absorbing Building Materials", Cement & Concrete Composites, Vol. 28, pp. 468–474.
  • Han, S., Zhou, X., Tang, Y., He, M., Zhang, X., Shi, H., Xiang, Y., 2016, "Practical, Highly Sensitive, and regenerable Evanescent-wave Biosensor for Detection of Hg2+ and Pb2+ in Water", Biosensors and Bioelectronics, Vol. 80, pp. 265–272.
  • Hidayat, A., Rochmadi, Wijaya, K., Nurdiawati, A., Kurniawan, W., Hinode, H., Budiman, A., 2015, "Esterification of Palm Fatty Acid Distillate with High Amount of Free Fatty Acids Using Coconut Shell Char Based Catalyst", Energy Procedia, Vol. 75, pp. 969–974.
  • Ho, K., Kim, J., Cho, T., Weon, J.,2012, "Influence of Pyrolysis Temperature on Physicochemical Properties of Biochar Obtained from the Fast Pyrolysis of Pitch Pine ( Pinus rigida )", Bıoresource Technology, Vol. 118, pp. 158–162.
  • Ippolito, J. A., Ducey, T. F., Cantrell, K. B., Novak, J. M., Lentz, R. D., 2016, "Designer, Acidic Biochar İnfluences Calcareous Soil Characteristics", Chemosphere, Vol. 142, pp.184–191.
  • Jang, H. M., Ha, J. H., Kim, M.-S., Kim, J.-O., Kim, Y. M., Park, J. M.,2016, "Effect of Increased Load of High-strength Food Wastewater in Thermophilic and Mesophilic Anaerobic Co-digestion of Waste Activated Sludge on Bacterial Community Structure", Water Research, Vol. 99, pp. 140–148.
  • Jin, H., Wang, X., Gu, Z., Polin, J., 2013, "Carbon Materials from High Ash Biochar for Supercapacitor and Improvement of Capacitance with HNO3 Surface Oxidation", Journal of Power Sources, Vol. 236, pp. 285–292.
  • Jones, G. A., Warner, K. J., 2016, "The 21st century Population-Energy-Climate Nexus", Energy Policy, Vol. 93, pp. 206–212.
  • Jung, C., Oh, J., Yoon, Y., 2015, "Removal of Acetaminophen and Naproxen by Combined Coagulation and Adsorption Using Biochar: Influence of Combined Sewer Overflow Components", Environmental Science and Pollution Research, Vol. 22(13), pp. 10058–10069.
  • Kalyani, P,. Anitha, A., 2013, "Biomass Carbon & Its Prospects in Electrochemical Energy Systems", International Journal of Hydrogen Energy, Vol. 38(10), pp. 4034–4045.
  • Kambo, H. S., Dutta, A., 2015, "A Comparative Review of Biochar and Hydrochar in Terms of Production , Physico-Chemical Properties and Applications", Renewable and Sustainable Energy Reviews, Vol. 45, pp. 359–378.
  • Kan, T., Strezov, V., Evans, T. J., 2016, "Lignocellulosic Biomass Pyrolysis: A Review of Product Properties and Effects of Pyrolysis Parameters", Renewable and Sustainable Energy Reviews, Vol. 57, pp. 126–1140.
  • Kastner, J. R., Miller, J., Geller, D. P., Locklin, J., Keith, L. H., Johnson, T., 2012, "Catalytic Esterification of Fatty Acids Using Solid Acid Catalysts Generated from Biochar and Activated Carbon", Catalysis Today, Vol. 190(1), pp. 122–132.
  • Kiran, B., Pathak, K., Kumar, R., Deshmukh, D., 2016, "Statistical Optimization using Central Composite Design for Biomass and Lipid Productivity of Microalga: A Step Towards Enhanced Biodiesel Production", Ecological Engineering, Vol. 92, pp. 73–81.
  • Konwar, L. J., Boro, J., Deka, D., 2014, "Review on Latest Developments in Biodiesel Production Using Carbon-Based Catalysts", Renewable and Sustainable Energy Reviews, Vol. 29, pp. 546–564.
  • Lehmann, J., Joseph, S., 2009, Biochar Environmental Management, ISBN: 978-1-84407-658-1, Earthscan Yayıncılık, 2. Bölüm, sayfa 18.
  • Lei, O., Zhang, R., 2013, "Effects of Biochars Derived from Different Feedstocks and pyrolysis Temperatures on Soil Physical and Hydraulic Properties", Journal of Soils and Sediments, Vol. 13(9), pp. 1561–1572.
  • Li, M., Zheng, Y., Chen, Y., Zhu, X., 2014, "Biodiesel Production from Waste Cooking Oil Using a Heterogeneous Catalyst from pyrolyzed Rice Husk", Bioresource Technology, Vol. 154, pp.345–348.
  • Lomax, G., Workman, M., Lenton, T,. Shah, N., 2015, "Reframing the Policy Approach to Greenhouse Gas Removal Technologies", Energy Policy, Vol. 78, pp. 125–136.
  • Lorenz, K., Lal, R., 2014, "Biochar Application to Soil for Climate Change Mitigation by Soil Organic Carbon Sequestration", J. Plant Nutr. Soil Sci., Vol. 177, pp. 651–670.
  • Makovíny, I., Makovínyiová, K., 2011, "Shielding of electromagnetic Radiation by Using Wood-Cement Boards Modified with Carbon in Microwave Frequency Band", Eur. J. Wood Prod. Vol. 69, pp.671–673.
  • Mcbeath, A. V, Wurster, C. M. Bird, M. I., 2015, "ScienceDirect Influence of Feedstock Properties and Pyrolysis Conditions on Biochar Carbon Stability as Determined by Hydrogen Pyrolysis" Biomass and Bioenergy, Vol. 73, pp.155–173.
  • Meyer, S., Glaser, B., Quicker, P., 2011, "Technical, Economical and Climate Related Aspects of Biochar Production Technologies: A Literature Review", Environmental Science & Technology, Vol. 45, pp. 9473–9483.
  • Naeem, S., Baheti, V., Tunakova, V., Militky, J. Karthik, D., 2017, "Development of Porous and Electrically Conductive Activated Carbon Web for effective EMI Shielding Applications", Carbon, Vol. 111, pp. 439–447.
  • Nanda, S., Dalai, A. K., Berruti, F., Kozinski, J. A., 2016, "Biochar as an Exceptional Bioresource for Energy , Agronomy , Carbon Sequestration , Activated Carbon and Specialty Materials", Waste and Biomass Valorization, Vol. 7(2), pp. 201–235.
  • Nguyen, M. V., Lee, B. K.,2016, "A Novel Removal of CO2 Using Nitrogen Doped Biochar Beads as a Green Adsorbent", Process Safety and Environmental Protection, Vol. 104, pp.490–498.
  • Niu, Q., Luo, J., Xia, Y., Sun, S., Chen, Q., 2017, "Surface Modification of Bio-char by Dielectric Barrier Discharge Plasma for Hg0 Removal", Fuel Processing Technology, Vol. 156, pp. 310–316.
  • Norgate, T., Haque, N., Somerville, M., Jahanshahi, S., 2012, "Biomass as a Source of Renewable Carbon for Iron and Steelmaking", ISIJ International, Vol. 52(8), pp. 1472–1481.
  • Nowicki, P., Skibiszewska, P., Pietrzak, R., 2014, "Hydrogen Sulphide Removal on carbonaceous Adsorbents Prepared from Coffee İndustry Waste Materials", Chemical Engineering Journal, Vol. 248, pp. 208–215.
  • Park, J., Hung, I., Gan, Z., Rojas, O. J., Lim, K. H., Park, S., 2013, "Activated Carbon from Biochar: Influence of Its Physicochemical Properties on the Sorption Characteristics of Phenanthrene", Bioresource Technology, Vol. 149, pp. 383–389.
  • Qian, K., Kumar, A., Zhang, H., Bellmer, D., Huhnke, R., 2015, "Recent Advances in Utilization of Biochar", Renewable and Sustainable Energy Reviews, Vol. 42, pp. 1055–1064.
  • Rintamäki, H., Rikkonen, P., Tapio, P., 2016, "Carrot or Stick: Impacts of Alternative Climate and Energy Policy Scenarios on Agriculture", Futures, Vol. 83, pp. 64–74.
  • Ryu, D. J., Oh, R. G., Seo, Y. D., Oh, S. Y., Ryu, K. S., 2015, "Recovery and Electrochemical Performance in Lithium Secondary Batteries of Biochar Derived from Rice Straw" Environmental Science and Pollution Research, Vol. 22(14), pp. 10405–10412.
  • Schiffer, H. W., 2008, "WEC Energy Policy Scenarios to 2050", Energy Policy, Vol. 36(7), pp. 2464–2470. Shang, G., Li, Q., Liu, L., Chen, P., Huang, X., 2016, "Adsorption of Hydrogen Sulfide by Biochars Derived from Pyrolysis of Different Agricultural / Forestry Wastes", Journal of the Air & Waste Management Association, Vol. 66(1), pp. 8–16.
  • Shang, G., Shen, G., Liu, L., Chen, Q., Xu, Z., 2013, "Kinetics and Mechanisms of Hydrogen Sulfide Adsorption by Biochars", Bioresource Technology, Vol. 133, pp. 495–499.
  • Sindhu, R., Binod, P., Pandey, A., 2016, "A novel Sono-assisted Acid Pretreatment of Chili Post Harvest Residue for Bioethanol Production", Bioresource Technology, Vol. 213, pp. 58–63.
  • Sun, J., Hoon, S., Jung, S., Ryu, C., Jeon, J., Shin, M., Park, Y., 2016, "Journal of Industrial and Engineering Chemistry Production and Utilization of Biochar : A review. Journal of Industrial and Engineering Chemistry, Vol. 40, pp. 1–15.
  • Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., Yang, Z., 2015, "Application of Biochar for the Removal of Pollutants from Aqueous Solutions" Chemosphere, Vol. 125, pp. 70–85.
  • Tripathi, M., Sahu, J. N., Ganesan, P., 2016, "Effect of Process Parameters on Production of Biochar from Biomass Waste Through Pyrolysis : A review", Renewable and Sustainable Energy Reviews, Vol. 55, pp. 467–481.
  • Xie, T., Reddy, K. R., Wang, C., Yargicoglu, E., Spokas, K., 2014, "Characteristics and Applications of Biochar for Environmental Remediation: A Review", Critical Reviews in Environmental Science and Technology, pp.. 45, 939–969.
  • Xu, X., Cao, X., Zhao, L., Sun, T., 2014, "Comparison of Sewage Sludge- and Pig Manure-derived Biochars for Hydrogen Sulfide Removal", Chemosphere, Vol. 111, pp. 296–303.
  • Yang, J., Zhao, Y., Ma, S., Zhu, B., Zhang, J., Zheng, C., 2016, "Mercury Removal by Magnetic Biochar Derived from Simultaneous Activation and Magnetization of Sawdust", Environmental Science and Technology, Vol. 50(21), pp. 12040–12047.
  • Yang, Y., Brammer, J. G., Mahmood, A. S. N., Hornung, A., 2014, "Intermediate Pyrolysis of Biomass Energy Pellets for Producing Sustainable Liquid, Gaseous and Solid Fuels", Bioresource Technology, Vol. 169, pp. 794–799.
  • Zellagui, S., Schönnenbeck, C., Zouaoui-Mahzoul, N., Leyssens, G., Authier, O., Thunin, E., Brilhac, J. F., 2016, "Pyrolysis of Coal and Woody Biomass under N2 and CO2 Atmospheres using a Drop Tube Furnace - Experimental Study and Kinetic Modeling", Fuel Processing Technology, Vol. 148, pp. 99–109.
  • Zhang, L., Jiang, J., Holm, N., Chen, F., 2014, "Mini-chunk Biochar Supercapacitors", Journal of Applied Electrochemistry, Vol. 44(10), pp. 1145–1151.
  • Zhang, W., Mao, S., Chen, H., Huang, L., Qiu, R., 2013, "Pb(II) and Cr(VI)Sorption by Biochars Pyrolyzed from the Municipal Wastewater Sludge under Different Heating Conditions", Bioresource Technology, Vol. 147, pp.545–552.
There are 63 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Gökçen Akgül

Publication Date December 1, 2017
Published in Issue Year 2017 Volume: 5 Issue: 4

Cite

APA Akgül, G. (2017). BİYOKÖMÜR: ÜRETİMİ ve KULLANIM ALANLARI. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, 5(4), 485-499. https://doi.org/10.15317/Scitech.2017.107
AMA Akgül G. BİYOKÖMÜR: ÜRETİMİ ve KULLANIM ALANLARI. sujest. December 2017;5(4):485-499. doi:10.15317/Scitech.2017.107
Chicago Akgül, Gökçen. “BİYOKÖMÜR: ÜRETİMİ Ve KULLANIM ALANLARI”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 5, no. 4 (December 2017): 485-99. https://doi.org/10.15317/Scitech.2017.107.
EndNote Akgül G (December 1, 2017) BİYOKÖMÜR: ÜRETİMİ ve KULLANIM ALANLARI. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 5 4 485–499.
IEEE G. Akgül, “BİYOKÖMÜR: ÜRETİMİ ve KULLANIM ALANLARI”, sujest, vol. 5, no. 4, pp. 485–499, 2017, doi: 10.15317/Scitech.2017.107.
ISNAD Akgül, Gökçen. “BİYOKÖMÜR: ÜRETİMİ Ve KULLANIM ALANLARI”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 5/4 (December 2017), 485-499. https://doi.org/10.15317/Scitech.2017.107.
JAMA Akgül G. BİYOKÖMÜR: ÜRETİMİ ve KULLANIM ALANLARI. sujest. 2017;5:485–499.
MLA Akgül, Gökçen. “BİYOKÖMÜR: ÜRETİMİ Ve KULLANIM ALANLARI”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, vol. 5, no. 4, 2017, pp. 485-99, doi:10.15317/Scitech.2017.107.
Vancouver Akgül G. BİYOKÖMÜR: ÜRETİMİ ve KULLANIM ALANLARI. sujest. 2017;5(4):485-99.

MAKALELERINIZI 

http://sujest.selcuk.edu.tr

uzerinden gonderiniz