Araştırma Makalesi
BibTex RIS Kaynak Göster

APPROXIMATE DYNAMIC PROGRAMMING FOR OPTIMAL SEARCH WITH AN OBSTACLE

Yıl 2019, Cilt: 7 Sayı: 1, 89 - 104, 01.03.2019
https://doi.org/10.15317/Scitech.2019.184

Öz

In this paper, we study a class of optimal
search problems where the search region includes a target and an obstacle, each
of which has some shape. The search region is divided into small grid cells and
the searcher examines one of those cells at each time period with the objective
of finding the target with minimum expected cost. The searcher may either take
an action that is quick but risky, or another one that is slow but safe, and
incurs different cost for these actions. We formulate these problems as Markov
Decision Processes (MDPs), but because of the intractability of the state
space, we approximately solve the MDPs using an Approximate Dynamic Programming
(ADP) technique and compare its performance against heuristic decision rules.
Our numerical experiments reveal that the ADP technique outperforms heuristics
on majority of problem instances. Specifically, the ADP technique performs
better than the best heuristic policy in 17 out of 24 problem sets. The percent
improvement in those 17 problem sets is on average 7.3%. 

Kaynakça

  • Adelman D. “Price-directed replenishment of subsets: methodology and its application to inventory routing”. Manufacturing and Service Operations Management. 5, 4, 348-371, 2003.
  • Adelman D. “A price-directed approach to stochastic inventory routing”. Operations Research. 52, 4, 499-514, 2004.
  • Benkoski S J. Monticino, M. G., Weisinger, J. R.. “A survey of the search theory literature”. Naval Research Logistics. 38, 469-494, 1991.
  • Bertsekas D, Tsitsiklis J. “Neuro-Dynamic Programming”, Athena Scientific, 1996.
  • Botea A, Baier J, Harabor D, Hernandez C. “Moving target search with compressed path databases”. In Proceedings of ICAPS-13, 2013.
  • Chang HS, Fu MC, Hu J, Marcus SI. “Simulation-based algorithms for Markov Decision Processes”, Springer, 2007.
  • Chung TH, Burdick JW. “A decision-making framework for control strategies in probabilistic search”. Proceedings of IEEE International Conference on Robotics and Automation, 2007.
  • Chung TH. “On probabilistic search decisions under searcher motion constraints”. Algorithmic Foundations of Robotics, 2010.
  • De Farias DP, Roy BV. “The linear programming approach to Approximate Dynamic Programming”. Operations Research. 51, 850-865, 2003.
  • Dell RF, Eagle JN. Martins, G. H. A., Santos, A. G. “Using multiple searchers in constrained-path, moving-target search problems”. Naval Research Logistics. 43, 463-480, 1996.
  • Derr K, Manic, M. “Multi-robot, multi-target particle swarm optimization search in noisy wireless environments”. Proceedings of the 2nd conference on human system interactions, Catania, Italy, 2009.
  • Dobbie JM. “A survey of search theory”. Operations Research. 16(3), 527–537, 1968.
  • Eagle JN, Yee JR. “An optimal branch-and-bound procedure for the constrained path, moving target search problem”, Operations Research. 38, 110-114, 1990.
  • El-Hadidy, M. A. A., El-Bagoury, A. A. H., “Optimal search strategy for a three-dimensional randomly located target”, International Journal of Operational Research. 29, 2015.
  • El-Hadidy, M. A. A. “Fuzzy Optimal Search Plan for N-Dimensional Randomly Moving Target”, International Journal of Computational Methods. 13, 2016.
  • Gabal, H. M. A., El-Hadidy, M. A. A., “Optimal searching for a randomly located target in a bounded known region”, International Journal of Computing Science and Mathematics. 6, 2015.
  • Haley WB, Stone LD. “Search Theory and Applications”, Plenum Press, New York, 1980.
  • Kulich M, Preucil L, Jose J, Bront M. “Single robot search for a stationary object in an unknown environment”, IEEE International Conference on Robotics Automation, 2014.
  • Lossner U, Wegener I. “Discrete sequential search with positive switch cost”. Mathematics of Operations Research. 7(3), 426–440, 1982.
  • Maxwell MS, Henderson SG, and Topaloglu H. “Tuning Approximate Dynamic Programming Policies for Ambulance Redeployment via Direct Search”. Stochastic Systems. 3, 1-40, 2013.
  • Najemnik J, Geisler WS. “Eye movement statistics in humans are consistent with an optimal search strategy”, J. Vis. 8, 1-14, 2008.
  • Nitinawarat, S., Veeravalli, V. V., “Universal scheme for optimal search and stop”, Bernoulli. 23, 1759-1783, 2017.
  • Powell WB. “Approximate Dynamic Programming: Solving the Curses of Dimensionality”, Wiley, 2007.
  • Ross SM. “A problem in optimal search and stop”. Operations Research. 17, 984–992, 1969.
  • Shechter SM, Ghassemi F, Gocgun Y, Puterman ML. “Trading off quick versus slow actions in optimal search”. Operations Research. 63, 353-362, 2015.
  • Singh S., Krishnamurthy, V. “The optimal search for a markovian target when the search path is constrained: the infinite-horizon case”. IEEE Transactions on Automatic Control, 2003.
  • Snider J. “Optimal random search for a single hidden target”. Physical Review. 83, 011105, 2011.
  • Stone LD. “Theory of Optimal Search”, Academic Press, 1975.
  • Suman B, Kumar B. “A survey of simulated annealing as a tool for single and multiobjective optimization”. Journal of the Operational Research Society. 57, 1143–1160, 2006.
  • Sutton RS, Barto AG. “Reinforcement Learning : an introduction”, MIT Press, 1998.
  • Washburn A.” Search and Detection”, Fourth Edition, Institute for Operations Research and the Management Sciences, 2002.
  • Wegener I. “The discrete sequential search problem with nonrandom cost and overlook probabilities”. Mathematics of Operations Research. 5, 373–380, 1980.
  • Wettergren TA. “Performance of search via track-before-detect for distributed sensor networks”, IEEE Transactions on Aerospace and Electronic Systems, 44, 2008.
  • Zhao Y, Patek SD, Beling PA. “Decentralized Bayesian Search Using Approximate Dynamic Programming Methods”. IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, 38, 2008.

Engelli Optimal Arama için Yaklaşımsal Dinamik Programlama

Yıl 2019, Cilt: 7 Sayı: 1, 89 - 104, 01.03.2019
https://doi.org/10.15317/Scitech.2019.184

Öz

Bu makalede her biri bir şekle
sahip olan, arama bölgesi hedef ve engel içeren optimal arama problemlerini
çalışmaktayız. Arama bölgesi küçük grid hücrelerine bölünmüştür ve araştırmacı
her bir zaman peryodunda minimum maliyetle hedefi bulma amacıyla bu hücrelerden
birini inceler. Araştırmacı hızlı ama riskli eylemi veya yavaş fakat güvenilir
olanı seçebilir ve bu eylemler için farklı ücret öder. Bu problemleri Markov
Karar Süreçleri (MKS) ile formüle etmekteyiz, fakat durum uzayının
çetinliğinden dolayı MKS’leri bir Yaklaşımsal Dinamik Programlama (YDP) tekniği
kullanarak yaklaşık olarak çözmekteyiz ve onun performansını sezgisel karar
kurallarıyla karşılaştırmaktayız. Nümerik deneylerimiz problem örneklerinin
çoğunda YDP tekniğinin sezgisel yöntemlerden üstün olduğunu ortaya çıkarmıştır
. Spesifik olarak YDP
tekniği 24 problem kümesinden 17’sinde en iyi sezgisel yöntemden daha iyi sonuç
vermektedir. Bu 17 problem kümesindeki yüzde gelişme ortalama %7,3’tür.

Kaynakça

  • Adelman D. “Price-directed replenishment of subsets: methodology and its application to inventory routing”. Manufacturing and Service Operations Management. 5, 4, 348-371, 2003.
  • Adelman D. “A price-directed approach to stochastic inventory routing”. Operations Research. 52, 4, 499-514, 2004.
  • Benkoski S J. Monticino, M. G., Weisinger, J. R.. “A survey of the search theory literature”. Naval Research Logistics. 38, 469-494, 1991.
  • Bertsekas D, Tsitsiklis J. “Neuro-Dynamic Programming”, Athena Scientific, 1996.
  • Botea A, Baier J, Harabor D, Hernandez C. “Moving target search with compressed path databases”. In Proceedings of ICAPS-13, 2013.
  • Chang HS, Fu MC, Hu J, Marcus SI. “Simulation-based algorithms for Markov Decision Processes”, Springer, 2007.
  • Chung TH, Burdick JW. “A decision-making framework for control strategies in probabilistic search”. Proceedings of IEEE International Conference on Robotics and Automation, 2007.
  • Chung TH. “On probabilistic search decisions under searcher motion constraints”. Algorithmic Foundations of Robotics, 2010.
  • De Farias DP, Roy BV. “The linear programming approach to Approximate Dynamic Programming”. Operations Research. 51, 850-865, 2003.
  • Dell RF, Eagle JN. Martins, G. H. A., Santos, A. G. “Using multiple searchers in constrained-path, moving-target search problems”. Naval Research Logistics. 43, 463-480, 1996.
  • Derr K, Manic, M. “Multi-robot, multi-target particle swarm optimization search in noisy wireless environments”. Proceedings of the 2nd conference on human system interactions, Catania, Italy, 2009.
  • Dobbie JM. “A survey of search theory”. Operations Research. 16(3), 527–537, 1968.
  • Eagle JN, Yee JR. “An optimal branch-and-bound procedure for the constrained path, moving target search problem”, Operations Research. 38, 110-114, 1990.
  • El-Hadidy, M. A. A., El-Bagoury, A. A. H., “Optimal search strategy for a three-dimensional randomly located target”, International Journal of Operational Research. 29, 2015.
  • El-Hadidy, M. A. A. “Fuzzy Optimal Search Plan for N-Dimensional Randomly Moving Target”, International Journal of Computational Methods. 13, 2016.
  • Gabal, H. M. A., El-Hadidy, M. A. A., “Optimal searching for a randomly located target in a bounded known region”, International Journal of Computing Science and Mathematics. 6, 2015.
  • Haley WB, Stone LD. “Search Theory and Applications”, Plenum Press, New York, 1980.
  • Kulich M, Preucil L, Jose J, Bront M. “Single robot search for a stationary object in an unknown environment”, IEEE International Conference on Robotics Automation, 2014.
  • Lossner U, Wegener I. “Discrete sequential search with positive switch cost”. Mathematics of Operations Research. 7(3), 426–440, 1982.
  • Maxwell MS, Henderson SG, and Topaloglu H. “Tuning Approximate Dynamic Programming Policies for Ambulance Redeployment via Direct Search”. Stochastic Systems. 3, 1-40, 2013.
  • Najemnik J, Geisler WS. “Eye movement statistics in humans are consistent with an optimal search strategy”, J. Vis. 8, 1-14, 2008.
  • Nitinawarat, S., Veeravalli, V. V., “Universal scheme for optimal search and stop”, Bernoulli. 23, 1759-1783, 2017.
  • Powell WB. “Approximate Dynamic Programming: Solving the Curses of Dimensionality”, Wiley, 2007.
  • Ross SM. “A problem in optimal search and stop”. Operations Research. 17, 984–992, 1969.
  • Shechter SM, Ghassemi F, Gocgun Y, Puterman ML. “Trading off quick versus slow actions in optimal search”. Operations Research. 63, 353-362, 2015.
  • Singh S., Krishnamurthy, V. “The optimal search for a markovian target when the search path is constrained: the infinite-horizon case”. IEEE Transactions on Automatic Control, 2003.
  • Snider J. “Optimal random search for a single hidden target”. Physical Review. 83, 011105, 2011.
  • Stone LD. “Theory of Optimal Search”, Academic Press, 1975.
  • Suman B, Kumar B. “A survey of simulated annealing as a tool for single and multiobjective optimization”. Journal of the Operational Research Society. 57, 1143–1160, 2006.
  • Sutton RS, Barto AG. “Reinforcement Learning : an introduction”, MIT Press, 1998.
  • Washburn A.” Search and Detection”, Fourth Edition, Institute for Operations Research and the Management Sciences, 2002.
  • Wegener I. “The discrete sequential search problem with nonrandom cost and overlook probabilities”. Mathematics of Operations Research. 5, 373–380, 1980.
  • Wettergren TA. “Performance of search via track-before-detect for distributed sensor networks”, IEEE Transactions on Aerospace and Electronic Systems, 44, 2008.
  • Zhao Y, Patek SD, Beling PA. “Decentralized Bayesian Search Using Approximate Dynamic Programming Methods”. IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, 38, 2008.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Yasin Göçgün

Yayımlanma Tarihi 1 Mart 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 1

Kaynak Göster

APA Göçgün, Y. (2019). APPROXIMATE DYNAMIC PROGRAMMING FOR OPTIMAL SEARCH WITH AN OBSTACLE. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, 7(1), 89-104. https://doi.org/10.15317/Scitech.2019.184
AMA Göçgün Y. APPROXIMATE DYNAMIC PROGRAMMING FOR OPTIMAL SEARCH WITH AN OBSTACLE. sujest. Mart 2019;7(1):89-104. doi:10.15317/Scitech.2019.184
Chicago Göçgün, Yasin. “APPROXIMATE DYNAMIC PROGRAMMING FOR OPTIMAL SEARCH WITH AN OBSTACLE”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 7, sy. 1 (Mart 2019): 89-104. https://doi.org/10.15317/Scitech.2019.184.
EndNote Göçgün Y (01 Mart 2019) APPROXIMATE DYNAMIC PROGRAMMING FOR OPTIMAL SEARCH WITH AN OBSTACLE. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 7 1 89–104.
IEEE Y. Göçgün, “APPROXIMATE DYNAMIC PROGRAMMING FOR OPTIMAL SEARCH WITH AN OBSTACLE”, sujest, c. 7, sy. 1, ss. 89–104, 2019, doi: 10.15317/Scitech.2019.184.
ISNAD Göçgün, Yasin. “APPROXIMATE DYNAMIC PROGRAMMING FOR OPTIMAL SEARCH WITH AN OBSTACLE”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 7/1 (Mart 2019), 89-104. https://doi.org/10.15317/Scitech.2019.184.
JAMA Göçgün Y. APPROXIMATE DYNAMIC PROGRAMMING FOR OPTIMAL SEARCH WITH AN OBSTACLE. sujest. 2019;7:89–104.
MLA Göçgün, Yasin. “APPROXIMATE DYNAMIC PROGRAMMING FOR OPTIMAL SEARCH WITH AN OBSTACLE”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, c. 7, sy. 1, 2019, ss. 89-104, doi:10.15317/Scitech.2019.184.
Vancouver Göçgün Y. APPROXIMATE DYNAMIC PROGRAMMING FOR OPTIMAL SEARCH WITH AN OBSTACLE. sujest. 2019;7(1):89-104.

MAKALELERINIZI 

http://sujest.selcuk.edu.tr

uzerinden gonderiniz