Research Article
BibTex RIS Cite

Effect of the Annealing and Growth Time on Graphene Synthesis via Chemical Vapor Deposition Method

Year 2019, Volume: 7 Issue: 2, 263 - 271, 01.06.2019
https://doi.org/10.15317/Scitech.2019.197

Abstract

Due to its superior properties
such as, has high conductivity, high durability and transparency, graphene is
one of the most attractive material in recent years. The important parameters that
affects graphene synthesis using chemical vapour deposition technique are
growth temperature, growth time, annealing time, pressure, growth substrate,
gas purity and gas flows. Among these parameters the growth time and annealing
time are the most important parameters for graphene growth, thus in this study
the effect of growth and annealing time on homogenous single layer graphene were
investigated. The grown graphene films by using different growth and annealing
time were characterized via Raman Spectroscopy technique and as a result single
layer graphene growth process were optimized. In general, there was no
significant change in the quality of the graphene in the experimental groups
where the annealing time was increased from 20 minutes to 40 minutes. In the experimental
groups where the growth time was increased, it was determined that the graphene
quality improved with the time increases up to 40 minutes.

References

  • Ago, H., Ogawa, Y., Tsuji, M., Mizuno, S. ve Hibino, H., 2012, Catalytic growth of graphene: toward large-area single-crystalline graphene, The journal of physical chemistry letters, 3 (16), 2228-2236.
  • Aïssa, B., Memon, N. K., Ali, A. ve Khraisheh, M. K., 2015, Recent progress in the growth and applications of graphene as a smart material: A review, Frontiers in Materials, 2, 58.
  • Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H. R. ve Song, Y. I., 2010, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature nanotechnology, 5 (8), 574.
  • Bonaccorso, F., Colombo, L., Yu, G., Stoller, M., Tozzini, V., Ferrari, A. C., Ruoff, R. S. ve Pellegrini, V., 2015, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage, Science, 347 (6217), 1246501.
  • Capasso, A., Dikonimos, T., Sarto, F., Tamburrano, A., De Bellis, G., Sarto, M. S., Faggio, G., Malara, A., Messina, G. ve Lisi, N., 2015, Nitrogen-doped graphene films from chemical vapor deposition of pyridine: influence of process parameters on the electrical and optical properties, Beilstein journal of nanotechnology, 6, 2028.
  • Chae, S. J., Güneş, F., Kim, K. K., Kim, E. S., Han, G. H., Kim, S. M., Shin, H. J., Yoon, S. M., Choi, J. Y. ve Park, M. H., 2009, Synthesis of large‐area graphene layers on poly‐nickel substrate by chemical vapor deposition: wrinkle formation, Advanced Materials, 21 (22), 2328-2333.
  • Choi, W., Lahiri, I., Seelaboyina, R. ve Kang, Y. S., 2010, Synthesis of graphene and its applications: a review, Critical Reviews in Solid State and Materials Sciences, 35 (1), 52-71.
  • Ferrari, A. C., Meyer, J., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. ve Roth, S., 2006, Raman spectrum of graphene and graphene layers, Physical review letters, 97 (18), 187401.
  • Geim, A. K. ve Novoselov, K. S., 2007, The rise of graphene, Nature materials, 6 (3), 183.
  • Hao, Y., Wang, Y., Wang, L., Ni, Z., Wang, Z., Wang, R., Koo, C. K., Shen, Z. ve Thong, J. T., 2010, Probing layer number and stacking order of few‐layer graphene by Raman spectroscopy, small, 6 (2), 195-200.
  • Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I. ve Tutuc, E., 2009, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 324 (5932), 1312-1314.
  • Li, Z., Wu, P., Wang, C., Fan, X., Zhang, W., Zhai, X., Zeng, C., Li, Z., Yang, J. ve Hou, J., 2011, Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources, ACS nano, 5 (4), 3385-3390.
  • Liang, X., Sperling, B. A., Calizo, I., Cheng, G., Hacker, C. A., Zhang, Q., Obeng, Y., Yan, K., Peng, H. ve Li, Q., 2011, Toward clean and crackless transfer of graphene, ACS nano, 5 (11), 9144-9153.
  • Mattevi, C., Kim, H. ve Chhowalla, M., 2011, A review of chemical vapour deposition of graphene on copper, Journal of Materials Chemistry, 21 (10), 3324-3334.
  • Wu, X., Zhong, G., D'arsié, L., Sugime, H., Esconjauregui, S., Robertson, A. W. ve Robertson, J., 2016, Growth of continuous monolayer graphene with millimeter-sized domains using industrially safe conditions, Scientific reports, 6, 21152.

KİMYASAL BUHAR BİRİKTİRME YÖNTEMİ İLE GRAFEN SENTEZİNE TAVLAMA VE BÜYÜTME SÜRELERİNİN ETKİSİ

Year 2019, Volume: 7 Issue: 2, 263 - 271, 01.06.2019
https://doi.org/10.15317/Scitech.2019.197

Abstract

Son yılların en ilgi çekici
malzemelerinden biri olan grafen yüksek iletkenlik, yüksek dayanım ve saydamlık
gibi birçok üstün özelliğe sahiptir. Grafenin kimyasal buhar biriktirme tekniği
kullanılarak sentezlenmesinde, büyütme sıcaklığı, büyütme süresi, tavlama
süresi, basınç, kullanılan alt-taş, kullanılan gazların saflıkları ve akış
miktarları gibi birçok parametre etkilidir. Bu parametrelerden büyütme ve
tavlama süreleri grafen sentezinde en önemli parametrelerdendir, bu nedenle bu
çalışmada büyütme ve tavlama sürelerinin tek katmanlı homojen grafen sentezine
olan etkisi araştırılmıştır. Farklı büyütme ve tavlama süreleri kullanılarak
üretilen grafen filmler Raman Spektroskopisi tekniği kullanılarak karakterize
edilmiş olup tek tabakalı homojen grafen sentezi için üretim süreci optimize edilmiştir.
Genel anlamda tavlama sürelerinin 20 dakikadan 40 dakikaya kadar arttırıldığı
deney gruplarında grafen kalitesinde ciddi bir değişim gözlenmemiştir. Büyütme
sürelerinin arttırıldığı deney gruplarında ise 40 dakikaya kadar olan süre
artışlarıyla doğru orantılı olarak grafen kalitesinin iyileştiği tespit
edilmiştir.

References

  • Ago, H., Ogawa, Y., Tsuji, M., Mizuno, S. ve Hibino, H., 2012, Catalytic growth of graphene: toward large-area single-crystalline graphene, The journal of physical chemistry letters, 3 (16), 2228-2236.
  • Aïssa, B., Memon, N. K., Ali, A. ve Khraisheh, M. K., 2015, Recent progress in the growth and applications of graphene as a smart material: A review, Frontiers in Materials, 2, 58.
  • Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H. R. ve Song, Y. I., 2010, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature nanotechnology, 5 (8), 574.
  • Bonaccorso, F., Colombo, L., Yu, G., Stoller, M., Tozzini, V., Ferrari, A. C., Ruoff, R. S. ve Pellegrini, V., 2015, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage, Science, 347 (6217), 1246501.
  • Capasso, A., Dikonimos, T., Sarto, F., Tamburrano, A., De Bellis, G., Sarto, M. S., Faggio, G., Malara, A., Messina, G. ve Lisi, N., 2015, Nitrogen-doped graphene films from chemical vapor deposition of pyridine: influence of process parameters on the electrical and optical properties, Beilstein journal of nanotechnology, 6, 2028.
  • Chae, S. J., Güneş, F., Kim, K. K., Kim, E. S., Han, G. H., Kim, S. M., Shin, H. J., Yoon, S. M., Choi, J. Y. ve Park, M. H., 2009, Synthesis of large‐area graphene layers on poly‐nickel substrate by chemical vapor deposition: wrinkle formation, Advanced Materials, 21 (22), 2328-2333.
  • Choi, W., Lahiri, I., Seelaboyina, R. ve Kang, Y. S., 2010, Synthesis of graphene and its applications: a review, Critical Reviews in Solid State and Materials Sciences, 35 (1), 52-71.
  • Ferrari, A. C., Meyer, J., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. ve Roth, S., 2006, Raman spectrum of graphene and graphene layers, Physical review letters, 97 (18), 187401.
  • Geim, A. K. ve Novoselov, K. S., 2007, The rise of graphene, Nature materials, 6 (3), 183.
  • Hao, Y., Wang, Y., Wang, L., Ni, Z., Wang, Z., Wang, R., Koo, C. K., Shen, Z. ve Thong, J. T., 2010, Probing layer number and stacking order of few‐layer graphene by Raman spectroscopy, small, 6 (2), 195-200.
  • Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I. ve Tutuc, E., 2009, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 324 (5932), 1312-1314.
  • Li, Z., Wu, P., Wang, C., Fan, X., Zhang, W., Zhai, X., Zeng, C., Li, Z., Yang, J. ve Hou, J., 2011, Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources, ACS nano, 5 (4), 3385-3390.
  • Liang, X., Sperling, B. A., Calizo, I., Cheng, G., Hacker, C. A., Zhang, Q., Obeng, Y., Yan, K., Peng, H. ve Li, Q., 2011, Toward clean and crackless transfer of graphene, ACS nano, 5 (11), 9144-9153.
  • Mattevi, C., Kim, H. ve Chhowalla, M., 2011, A review of chemical vapour deposition of graphene on copper, Journal of Materials Chemistry, 21 (10), 3324-3334.
  • Wu, X., Zhong, G., D'arsié, L., Sugime, H., Esconjauregui, S., Robertson, A. W. ve Robertson, J., 2016, Growth of continuous monolayer graphene with millimeter-sized domains using industrially safe conditions, Scientific reports, 6, 21152.
There are 15 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Recep Zan

Gülcan Utku This is me

Ali Altuntepe

Publication Date June 1, 2019
Published in Issue Year 2019 Volume: 7 Issue: 2

Cite

APA Zan, R., Utku, G., & Altuntepe, A. (2019). KİMYASAL BUHAR BİRİKTİRME YÖNTEMİ İLE GRAFEN SENTEZİNE TAVLAMA VE BÜYÜTME SÜRELERİNİN ETKİSİ. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, 7(2), 263-271. https://doi.org/10.15317/Scitech.2019.197
AMA Zan R, Utku G, Altuntepe A. KİMYASAL BUHAR BİRİKTİRME YÖNTEMİ İLE GRAFEN SENTEZİNE TAVLAMA VE BÜYÜTME SÜRELERİNİN ETKİSİ. sujest. June 2019;7(2):263-271. doi:10.15317/Scitech.2019.197
Chicago Zan, Recep, Gülcan Utku, and Ali Altuntepe. “KİMYASAL BUHAR BİRİKTİRME YÖNTEMİ İLE GRAFEN SENTEZİNE TAVLAMA VE BÜYÜTME SÜRELERİNİN ETKİSİ”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 7, no. 2 (June 2019): 263-71. https://doi.org/10.15317/Scitech.2019.197.
EndNote Zan R, Utku G, Altuntepe A (June 1, 2019) KİMYASAL BUHAR BİRİKTİRME YÖNTEMİ İLE GRAFEN SENTEZİNE TAVLAMA VE BÜYÜTME SÜRELERİNİN ETKİSİ. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 7 2 263–271.
IEEE R. Zan, G. Utku, and A. Altuntepe, “KİMYASAL BUHAR BİRİKTİRME YÖNTEMİ İLE GRAFEN SENTEZİNE TAVLAMA VE BÜYÜTME SÜRELERİNİN ETKİSİ”, sujest, vol. 7, no. 2, pp. 263–271, 2019, doi: 10.15317/Scitech.2019.197.
ISNAD Zan, Recep et al. “KİMYASAL BUHAR BİRİKTİRME YÖNTEMİ İLE GRAFEN SENTEZİNE TAVLAMA VE BÜYÜTME SÜRELERİNİN ETKİSİ”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 7/2 (June 2019), 263-271. https://doi.org/10.15317/Scitech.2019.197.
JAMA Zan R, Utku G, Altuntepe A. KİMYASAL BUHAR BİRİKTİRME YÖNTEMİ İLE GRAFEN SENTEZİNE TAVLAMA VE BÜYÜTME SÜRELERİNİN ETKİSİ. sujest. 2019;7:263–271.
MLA Zan, Recep et al. “KİMYASAL BUHAR BİRİKTİRME YÖNTEMİ İLE GRAFEN SENTEZİNE TAVLAMA VE BÜYÜTME SÜRELERİNİN ETKİSİ”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, vol. 7, no. 2, 2019, pp. 263-71, doi:10.15317/Scitech.2019.197.
Vancouver Zan R, Utku G, Altuntepe A. KİMYASAL BUHAR BİRİKTİRME YÖNTEMİ İLE GRAFEN SENTEZİNE TAVLAMA VE BÜYÜTME SÜRELERİNİN ETKİSİ. sujest. 2019;7(2):263-71.

MAKALELERINIZI 

http://sujest.selcuk.edu.tr

uzerinden gonderiniz