BibTex RIS Cite

Matlab Yazılımıyla Hiyerarşik Bulanık TOPSIS Yöntemine Dayalı Seçmeli Dersin Belirlenmesi

Year 2016, Issue: 35, 103 - 114, 01.02.2016

Abstract

Seçtikleri ders öğrencilerin ilgilendikleri alanda uzmanlaşmalarına imkan tanıdığı için lisans eğitiminde seçmeli dersin belirlenmesi önemli bir karar verme sürecidir. Bu çalışmanın amacı, seçmeli dersin belirlenmesine bulanık bir çok kriterli karar verme yöntemi olarak Hiyerarşik Bulanık TOPSIS HBTOPSIS ’i uygulamak ve bu karar verme sürecine ilişkin MATLAB yazılımında geliştirilen programı tanıtmaktır. Bu çalışmada bir devlet üniversitesinin iktisat bölümünde eğitim gören üçüncü sınıf öğrencilerinin altıncı dönemine ilişkin seçmeli ders belirleme sürecine dayanan bir karar modeli geliştirilmiştir. İlgili öğrencilerin seçmeli ders belirlemesinde kullanılan ana ve alt kriterlerinin önem ağırlığının değerlendirilmesi ve altıncı dönemde açılan seçmeli derslerin alt kriterler yoluyla değerlendirilmesi dilsel değişkenlerle gerçekleştirilmiştir. Daha sonra, bu sözel veriler üçgen bulanık sayılara çevrilerek HBTOPSIS yöntemine ait iki farklı algoritma kullanılmış, ilgili süreç programlanmış ve iki algoritmanın sonuçları karşılaştırılmıştır. Çalışmada seçmeli dersin belirlenmesi için en önemli karar kriterinin öğretim elemanına ilişkin unsurlar 0.76, 0.96, 1.00 olduğu sonucuna ulaşılmıştır. Aday dersler her iki algoritmaya göre hesaplanan yakınlık katsayıları dikkate alınarak en iyiden en kötüye doğru sıralanmıştır. Üç alternatif dersin sıralaması çalışmada ele alınan iki yaklaşıma göre benzerlik göstermektedir ve A1>A3> A2 şeklindedir. Birinci yaklaşıma göre 0.821, ikinci yaklaşıma göre 0.819 olan yakınlık katsayısıyla en uygun seçmeli dersin A1 olduğu görülmüştür. A1 seçmeli dersinin yakınlık katsayısı yoluyla seçimin risk içerip içermediği değerlendirildiğinde seçilen alternatifin “kabul edilebilir ve kesinlikle tercih edilebilir” olduğu ifade edilebilir.

References

  • Ateş, Nüfer Yasin, Çevik, Sezi, Kahraman, Cengiz, Gülbay, Murat, & Erdoğan, S. Ayça (2006). “Multi Attribute Performance Evaluation Using a Hierarchical Fuzzy TOPSIS Method”, StudFuzz, 201, p.537-572.
  • Bao, Qiong, Ruan, Da, Shen, Yongjun, & Hermans, Elke (2010). “Creating a Composite Road Safety Performance Index by a Hierarchical Fuzzy TOPSIS Approach”, Intelligent Systems and Knowledge Engineering (ISKE) International Conference, Hangzhou, 15-16 November, p.458-463.
  • Bülbül, Serpil, & Köse, Ali (2009). “Türk Gıda Şirketlerinin Finansal Performansının Çok Amaçlı Karar Verme Yöntemleriyle Değerlendirilmesi”, 10. Ekonometri ve İstatistik Sempozyumu, Erzurum, Turkey, 27-29 Mayıs, http://iletisim.atauni.edu.tr/ eisemp/html/tammetinler/152.pdf, Access Date: 24.02.2016.
  • Chang, J. R., Ho, T. H., Cheng, C. H., & Chen, A. P. (2006). “Dynamic Fuzzy OWA Model for Group Multiple Criteria Decision Making”, Soft Computing, 10, p.543-554.
  • Chen, Chen Tung (2000). “Extensions of the TOPSIS for Group Decision-Making under Fuzzy Environment”, Fuzzy Sets and Systems, Volume: 114, Issue: 1, p.1-9.
  • Chen, Chen Tung, Lin, Ching Torng, & Huang, Sue Fn (2006). “A Fuzzy Approach for Supplier Evaluation and Selection in Supply Chain Management”, Journal of Production Economics, 102, p.289-301.
  • Demir, Ayhan, & Ok, Ahmet (1996). “Orta Doğu Teknik Üniversitesindeki Öğretim Üye ve Öğrencilerinin Seçmeli Dersler Hakkındaki Görüşleri”, Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 12, s.121-125.
  • Dündar, Süleyman (2008). “Ders Seçiminde Analitik Hiyerarşi Proses Uygulaması”, Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, Cilt: 13, Sayı: 2, s.217-226.
  • Ersöz, Filiz, Kabak, Mehmet, & Yılmaz, Zafer (2011). “Lisansüstü Öğreniminde Ders Seçimine Yönelik Bir Model Önerisi”, Afyon Kocatepe Üniversitesi İİBF Dergisi, Cilt: 13, Sayı: 2, s.227-249.
  • Golec, Adem, & Kahya, Esra (2007). “A Fuzzy Model for Competency-Based Employee Evaluation and Selection”, Computers & Industrial Engineering, 52, p.143-161.
  • Kahraman, Cengiz, Ateş, Nüfer Yasin, Çevik, Sezi, Gülbay, Murat, & Erdoğan, S. Ayça (2007a). “Hierarchical Fuzzy TOPSIS Model for Selection among Logistics Information Technologies”, Journal of Enterprise Information Management, 20 (2), p.143-168.
  • Kahraman, Cengiz, Ateş, Nüfer Yasin, Çevik, Sezi, & Gülbay, Murat (2007b). “Fuzzy Multi-Attribute Cost–Benefit Analysis of E-Services”, International Journal of Intelligent Systems, Vol: 22, p.547-565.
  • Kahraman, Cengiz, Büyüközkan, Gülçin, & Ateş, Nüfer Yasin (2007c). “A Two Phase Multi-Attribute Decision-Making Approach for New Product Introduction”, Information Sciences, 177, p.1567-1582.
  • Karsak, E. Ertuğrul (2001). “Personnel Selection Using a Fuzzy MCDM Approach Based on Ideal and Anti-Ideal Solutions”. (Edited by: Murat Köksalan and Stanley Zionts). Multi Criteria Decision Making in the New Millennium, London, Springer-Verlag London Limited, p.393-402.
  • Kelemenis, Alecos, Ergazakis, Kostas, & Askounis, Dimitrios (2011). “Support Managers’ Selection Using an Extension of Fuzzy Topsis”, Expert Systems with Applications, 38, p.2774-2782.
  • Kwak, Wikil, Shi, Yong, & Jung, Koyul (2003). “Human Resource Allocation in a CPA Firm: A Fuzzy Set Approach”, Review of Quantitative Finance and Accounting, 20, p.277-290.
  • Kwak, Wikil. “A Fuzzy Set Approach in Audit Staff Planning Problems”, http://www.wseas.us/e-library/conferences/jamaica2000/papers/157.pdf, Access Date: 21.12.2015.
  • Li, Deng Feng, & Yang, Jian Bo (2004). “Fuzzy Linear Programming Technique for Multiatrribute Group Decision Making in Fuzzy Environments”, Information Sciences, 158, p.263-275.
  • Özdemir, Ali İhsan, & Deste, Mustafa (2009). “Gri İlişkisel Analiz İle Çok Kriterli Tedarikçi Seçimi: Otomotiv Sektöründe Bir Uygulama”, İstanbul Üniversitesi İşletme Fakültesi Dergisi, 38 (2), s.147-156.
  • Paksoy, Turan, Yapıcı Pehlivan, Nimet, & Kahraman, Cengiz (2012). “Organizational Strategy Development in Distribution Channel Management Using Fuzzy AHP and Hierarchical Fuzzy TOPSIS”, Expert Systems with Applications, 39, p.2822–2841.
  • Perçin, Selçuk (2008). “Fuzzy Multi-Criteria Risk-Benefit Analysis of Business Process Outsourcing (BPO)”, Information Management & Computer Security, Vol: 16 No: 3, p.213-234.
  • Taghavifard, Mohammad Taghi, & Mirheydari, Danial (2008). “A New Framework for Evaluation and Prioritization of Suppliers Using a Hierarchical Fuzzy TOPSIS”, Proceedings of World Academy of Science, Engineering and Technology, Volume 31, p.605-611.
  • Taghavifard, Mohammadtaghi, Rostami, Mostafa, & Mousavi, Seyed Mahdi Makhzan (2011). “A Hierarchical Fuzzy TOPSIS Model for Evaluating Technology Transfer of Medical Equipment”, International Journal of Academic Research, Vol: 3, No: 3, p.511-519.
  • Tezcan, Habibe, & Gümüş, Yeliz (2008). “Üniversite Öğrencilerinin Seçmeli Ders Tercihlerine Etki Eden Faktörlerin Araştırılması”, Gazi Üniversitesi Eğitim Fakültesi Dergisi, Cilt: 28, Sayı: 1, s.1-17.
  • Tolga, A. Çagri (2008). “Fuzzy Multicriteria R&D Project Selection with a Real Options Valuation Model”, Journal of Intelligent & Fuzzy Systems, 19, p.359-371.
  • Wang, Ying Ming, & Elhag, Taha M. S. (2006). “Fuzzy TOPSIS Method Based on Alpha Level Sets with an “”, Expert Systems with Applications, 31, p.309-319.

Determination Of Elective Course Based On Hierarchical Fuzzy Topsis Method With Matlab Software

Year 2016, Issue: 35, 103 - 114, 01.02.2016

Abstract

The determination of elective course in undergraduate education is an important decision making process, because the course chosen allows the students to specialize in the area they are interested in. The aim of this study is to apply Hierarchical Fuzzy TOPSIS HFTOPSIS method in determining elective course as a fuzzy multi-criteria decision making FMCDM technique and introduce the programme developed in MATLAB software related to this decision making process. In this study, a decision model based on the process of determining elective course belonging to the sixth semester of third year students receiving education in economics department at a state university is developed. The assessments of the importance weights of the main and sub-criteria used in determining elective course and the assessments of the elective courses opened in the sixth semester in terms of the sub-criteria are performed by using linguistic variables. Then, these linguistic data are transformed into triangular fuzzy numbers, used in two different algorithms of HFTOPSIS and, relevant process is programmed, and the results of the two algorithms are compared. In the study it is concluded that the most important decision criteria for determining the elective course is elements relating to the lecturer 0.76, 0.96, 1.00 . According to the two algorithms, the candidate elective courses are ranked from the best to the worst with respect to the calculated closeness coefficients. The ranking order of three alternative elective courses is similar according to the two approaches handled in the study, and it is as A1>A3> A2. It is seen that the most appropriate elective course is A1 with a closeness coefficient 0.821 according to the first approach and 0.819 according to the second approach. When the evaluation about whether the choice is risky or not via the closeness coefficient of elective course A1is made, it can be expressed that the alternative chosen is “approved and preferred”

References

  • Ateş, Nüfer Yasin, Çevik, Sezi, Kahraman, Cengiz, Gülbay, Murat, & Erdoğan, S. Ayça (2006). “Multi Attribute Performance Evaluation Using a Hierarchical Fuzzy TOPSIS Method”, StudFuzz, 201, p.537-572.
  • Bao, Qiong, Ruan, Da, Shen, Yongjun, & Hermans, Elke (2010). “Creating a Composite Road Safety Performance Index by a Hierarchical Fuzzy TOPSIS Approach”, Intelligent Systems and Knowledge Engineering (ISKE) International Conference, Hangzhou, 15-16 November, p.458-463.
  • Bülbül, Serpil, & Köse, Ali (2009). “Türk Gıda Şirketlerinin Finansal Performansının Çok Amaçlı Karar Verme Yöntemleriyle Değerlendirilmesi”, 10. Ekonometri ve İstatistik Sempozyumu, Erzurum, Turkey, 27-29 Mayıs, http://iletisim.atauni.edu.tr/ eisemp/html/tammetinler/152.pdf, Access Date: 24.02.2016.
  • Chang, J. R., Ho, T. H., Cheng, C. H., & Chen, A. P. (2006). “Dynamic Fuzzy OWA Model for Group Multiple Criteria Decision Making”, Soft Computing, 10, p.543-554.
  • Chen, Chen Tung (2000). “Extensions of the TOPSIS for Group Decision-Making under Fuzzy Environment”, Fuzzy Sets and Systems, Volume: 114, Issue: 1, p.1-9.
  • Chen, Chen Tung, Lin, Ching Torng, & Huang, Sue Fn (2006). “A Fuzzy Approach for Supplier Evaluation and Selection in Supply Chain Management”, Journal of Production Economics, 102, p.289-301.
  • Demir, Ayhan, & Ok, Ahmet (1996). “Orta Doğu Teknik Üniversitesindeki Öğretim Üye ve Öğrencilerinin Seçmeli Dersler Hakkındaki Görüşleri”, Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 12, s.121-125.
  • Dündar, Süleyman (2008). “Ders Seçiminde Analitik Hiyerarşi Proses Uygulaması”, Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, Cilt: 13, Sayı: 2, s.217-226.
  • Ersöz, Filiz, Kabak, Mehmet, & Yılmaz, Zafer (2011). “Lisansüstü Öğreniminde Ders Seçimine Yönelik Bir Model Önerisi”, Afyon Kocatepe Üniversitesi İİBF Dergisi, Cilt: 13, Sayı: 2, s.227-249.
  • Golec, Adem, & Kahya, Esra (2007). “A Fuzzy Model for Competency-Based Employee Evaluation and Selection”, Computers & Industrial Engineering, 52, p.143-161.
  • Kahraman, Cengiz, Ateş, Nüfer Yasin, Çevik, Sezi, Gülbay, Murat, & Erdoğan, S. Ayça (2007a). “Hierarchical Fuzzy TOPSIS Model for Selection among Logistics Information Technologies”, Journal of Enterprise Information Management, 20 (2), p.143-168.
  • Kahraman, Cengiz, Ateş, Nüfer Yasin, Çevik, Sezi, & Gülbay, Murat (2007b). “Fuzzy Multi-Attribute Cost–Benefit Analysis of E-Services”, International Journal of Intelligent Systems, Vol: 22, p.547-565.
  • Kahraman, Cengiz, Büyüközkan, Gülçin, & Ateş, Nüfer Yasin (2007c). “A Two Phase Multi-Attribute Decision-Making Approach for New Product Introduction”, Information Sciences, 177, p.1567-1582.
  • Karsak, E. Ertuğrul (2001). “Personnel Selection Using a Fuzzy MCDM Approach Based on Ideal and Anti-Ideal Solutions”. (Edited by: Murat Köksalan and Stanley Zionts). Multi Criteria Decision Making in the New Millennium, London, Springer-Verlag London Limited, p.393-402.
  • Kelemenis, Alecos, Ergazakis, Kostas, & Askounis, Dimitrios (2011). “Support Managers’ Selection Using an Extension of Fuzzy Topsis”, Expert Systems with Applications, 38, p.2774-2782.
  • Kwak, Wikil, Shi, Yong, & Jung, Koyul (2003). “Human Resource Allocation in a CPA Firm: A Fuzzy Set Approach”, Review of Quantitative Finance and Accounting, 20, p.277-290.
  • Kwak, Wikil. “A Fuzzy Set Approach in Audit Staff Planning Problems”, http://www.wseas.us/e-library/conferences/jamaica2000/papers/157.pdf, Access Date: 21.12.2015.
  • Li, Deng Feng, & Yang, Jian Bo (2004). “Fuzzy Linear Programming Technique for Multiatrribute Group Decision Making in Fuzzy Environments”, Information Sciences, 158, p.263-275.
  • Özdemir, Ali İhsan, & Deste, Mustafa (2009). “Gri İlişkisel Analiz İle Çok Kriterli Tedarikçi Seçimi: Otomotiv Sektöründe Bir Uygulama”, İstanbul Üniversitesi İşletme Fakültesi Dergisi, 38 (2), s.147-156.
  • Paksoy, Turan, Yapıcı Pehlivan, Nimet, & Kahraman, Cengiz (2012). “Organizational Strategy Development in Distribution Channel Management Using Fuzzy AHP and Hierarchical Fuzzy TOPSIS”, Expert Systems with Applications, 39, p.2822–2841.
  • Perçin, Selçuk (2008). “Fuzzy Multi-Criteria Risk-Benefit Analysis of Business Process Outsourcing (BPO)”, Information Management & Computer Security, Vol: 16 No: 3, p.213-234.
  • Taghavifard, Mohammad Taghi, & Mirheydari, Danial (2008). “A New Framework for Evaluation and Prioritization of Suppliers Using a Hierarchical Fuzzy TOPSIS”, Proceedings of World Academy of Science, Engineering and Technology, Volume 31, p.605-611.
  • Taghavifard, Mohammadtaghi, Rostami, Mostafa, & Mousavi, Seyed Mahdi Makhzan (2011). “A Hierarchical Fuzzy TOPSIS Model for Evaluating Technology Transfer of Medical Equipment”, International Journal of Academic Research, Vol: 3, No: 3, p.511-519.
  • Tezcan, Habibe, & Gümüş, Yeliz (2008). “Üniversite Öğrencilerinin Seçmeli Ders Tercihlerine Etki Eden Faktörlerin Araştırılması”, Gazi Üniversitesi Eğitim Fakültesi Dergisi, Cilt: 28, Sayı: 1, s.1-17.
  • Tolga, A. Çagri (2008). “Fuzzy Multicriteria R&D Project Selection with a Real Options Valuation Model”, Journal of Intelligent & Fuzzy Systems, 19, p.359-371.
  • Wang, Ying Ming, & Elhag, Taha M. S. (2006). “Fuzzy TOPSIS Method Based on Alpha Level Sets with an “”, Expert Systems with Applications, 31, p.309-319.
There are 26 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Burcu Doğanalp This is me

Serkan Doğanalp This is me

Publication Date February 1, 2016
Published in Issue Year 2016 Issue: 35

Cite

APA Doğanalp, B., & Doğanalp, S. (2016). Determination Of Elective Course Based On Hierarchical Fuzzy Topsis Method With Matlab Software. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi(35), 103-114.

24108 28027 

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License