BibTex RIS Cite

Ülkelerin Gelir Düzeylerine Göre Gayri Safi Yurtiçi Hasılaları ile Elektrik Tüketimleri Arasındaki Nedensellik İlişkilerinin Genelleştirilmiş Tahmin Denklemleri ile Modellenmesi

Year 2018, Issue: 39, 191 - 200, 01.02.2018

Abstract

Ülkelerinin ekonomik değerlendirmelerinde gayri safi yurtiçi hasıla GSYİH ve enerji tüketimi kalkınmanın iki temel unsuru olarak görülmektedir. Son yıllarda enerji kaynaklarına duyulan ihtiyaç, ülkeleri teknolojiye yaklaştırdığı gibi bazende onları yok edebilecek savaşlara sebep olabilmektedir. Enerjinin temini, kullanımı ve ihtiyaç nedeni gibi bir çok açıdan ele alınabilirliği kadar enerji tüketiminin ekonomik karşılığının tespit edilebilmesi de son derece önemlidir. Son 20 yılda enerji kaynaklı yaşanan krizler incelendiğinde, enerjinin ülkelerin vazgeçilmez bir ihtiyacı ve dinamiği olduğu gerçeği bir kez daha görülmektedir. Tüketilen enerjinin ülke ekonomisine etkisininin ne olduğuna bakılacak olursa, ilk karşılaşılacak ekonomik değişken GSYİH olacaktır. Bir ülkenin GSYİH’nın ekonomik göstergelerdeki yorumlanması ve değerlendirilmesi son derece etkin sonuçlar vermektedir. Literatürde farklı ülkeler için enerji tüketimi miktarları sektörlere göre, kullanılan enerji türlerine göre, teminine göre ve benzeri ile ülke ekonomisinin en önemli göstergelerinden biri olan GSYİH değerleri arasındaki nedensellik ilişkilerini incelemek üzere yapılan bir çok çalışma mevcuttur. Yapılan çalışmalarda farklı ülkeler için kimi zaman enerji tüketiminin GSYİH’nın bir nedeni olduğu, kimi zamansa GSYİH’nın enerji tüketiminin bir nedeni olduğu gösterilmiştir. Bu iki değişken arasında çift yönlü bir nedensellik ilişkisinin saptandığı çalışmalar da mevcuttur. Öte yandan, değişkenler arasında her zaman bir nedensellik ilişkisi tespit edilemese de, uygun bir regresyon modeli kurularak değişkenler arasındaki açıklayıcılık incelenebilir. Bununla birlikte, kurulan her regresyon modelinde de bir nedensellik ilişkisi aramak doğru değildir. Bu çalışmada öncelikle 1980-2014 yılları arasında 5 farklı gelir düzeyine göre kategorize edilmiş ülkelerin GSYİH değerleri ile enerji tüketimleri arasındaki nedensellik ilişkileri Granger nedensellik testi kullanılarak tespit edilmiştir. Nedensellik testi sonuçlarına bakıldığında, sadece gelişmiş ülkeler için GSYİH’ları ile enerji tüketimleri arasında bir nedensellik ilişkisi olduğu tespit edilmiştir. Yapılan bu nedensellik testinin sonucuna göre, kurulacak genelleştirilmiş tahmin denklemleri GEE için hangi değişkenin bağımlı, hangi değişkenin bağımsız olduğuna karar verilmiştir. Bu bağlamda, çalışmada kullanılan QIC ve QICC bilgi kriterlerinin de en düşük değerleri, değişkenler arasında belirlenen nedensellik ilişkisinin yönü doğrultusunda elde edilmiştir. Aynı nedensellik ilişkisi değerlendirmesi gelir düzeylerine göre kategorize edilmiş ülkelerin gayri safi milli hasılaları GSMH ile enerji tüketimleri için de yapılmış olup, belirlenen nedensellik yönü doğrultusunda kurulan GEE modellerinin veriyi çok daha iyi modellediği sonucuna varılmıştır. Çalışmadan elde edilen bu sonuç bize istatistiksel olarak veriyi modelleyebilmek için bağımlı ve bağımsız değişken seçiminde yetersiz bilgiye sahip olduğumuz durumlarda nedensellik testinin yönlendirici bir kılavuz olduğunu göstermektedir.

References

  • Agresti, A. (2015). Foundations of linear and generalized linear models: John Wiley & Sons.
  • Aydın, F. F. (2010). Enerji tüketimi ve ekonomik büyüme. Erciyes Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi(35), 317-340.
  • Chiou-Wei, S. Z., Chen, C.-F., & Zhu, Z. (2008). Economic growth and energy consumption revisited—evidence from linear and nonlinear Granger causality. Energy economics, 30(6), 3063-3076.
  • Davis, C. S. (2002). Statistical methods for the analysis of repeated measurements: Springer Science & Business Media.
  • Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American statistical association, 74(366a), 427-431.
  • Dobson, A. J., & Barnett, A. (2008). An introduction to generalized linear models: CRC press.
  • Florens, J.-P., & Mouchart, M. (1982). A note on noncausality. Econometrica: Journal of the Econometric Society, 583-591.
  • Fox, J. (2015). Applied regression analysis and generalized linear models: Sage Publications.
  • Glasure, Y. U. (2002). Energy and national income in Korea: further evidence on the role of omitted variables. Energy economics, 24(4), 355-365.
  • Granger, C. W. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica: Journal of the Econometric Society, 424-438.
  • Gujarati, D. N. (2003). Basic Economics”. 4th. In: McGraw Hill, New York.
  • Hamilton, J. D. (1983). Oil and the macroeconomy since World War II. Journal of political economy, 91(2), 228-248.
  • Hardin, J. W. (2005). Generalized estimating equations (GEE): Wiley Online Library.
  • Hossain, S. (2014). Multivariate granger causality between economic growth, electricity consumption, exports and remittance for the panel of three SAARC countries. European Scientific Journal, ESJ, 8(1).
  • Hwang, D. B., & Gum, B. (1991). The causal relationship between energy and GNP: the case of Taiwan. The Journal of Energy and Development, 219-226.
  • Işığıçok, E. (1994). Zaman serilerinde nedensellik çözümlemesi: Türkiye'de para arzı ve enflasyon üzerine amprik bir araştırma: Uludağ Üniversitesi Basımevi.
  • İyit, N., Yonar, H., & Genç, A. (2016). Generalized Linear Models for European Union Countries Energy Data. Acta Physica Polonica, A., 130(1).
  • Jang, M. J. (2011). Working correlation selection in generalized estimating equations: The University of Iowa.
  • McCullagh, P. (1984). Generalized linear models. European Journal of Operational Research, 16(3), 285-292.
  • Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to linear regression analysis (Vol. 821): John Wiley & Sons.
  • Nelder, J. A., & Baker, R. J. (1972). Generalized linear models: Wiley Online Library.
  • Ozturk, I., Aslan, A., & Kalyoncu, H. (2010). Energy consumption and economic growth relationship: Evidence from panel data for low and middle income countries. Energy Policy, 38(8), 4422-4428.
  • Pan, W. (2001). Akaike's information criterion in generalized estimating equations. Biometrics, 57(1), 120-125.
  • Saidi, K., & Mbarek, M. B. (2016). Nuclear energy, renewable energy, CO 2 emissions, and economic growth for nine developed countries: Evidence from panel Granger causality tests. Progress in Nuclear Energy, 88, 364-374.
  • Shahbaz, M., Lean, H. H., & Shabbir, M. S. (2012). Environmental Kuznets curve hypothesis in Pakistan: cointegration and Granger causality. Renewable and Sustainable Energy Reviews, 16(5), 2947-2953.
  • Wang, Y. G., & Carey, V. (2003). Working correlation structure misspecification, estimation and covariate design: implications for generalised estimating equations performance. Biometrika, 90(1), 29-41.
  • Yang, H.-Y. (2000). A note on the causal relationship between energy and GDP in Taiwan. Energy economics, 22(3), 309-317.
  • Yu, E. S., & Choi, J.-Y. (1985). The causal relationship between energy and GNP: an international comparison. The Journal of Energy and Development, 10(2), 249-272.

Modeling The Causality Relationships Between Gdp/Gni and Electricity Consumption According to Income Levels of Countries By Generalized Estimating Equations

Year 2018, Issue: 39, 191 - 200, 01.02.2018

Abstract

Gross domestic product GDP and energy consumption in the economic evaluations of countries are seen as two basic concepts of development. The need for energy resources in recent years has brought countries closer to technology, but in some cases, it causes problems such as wars. It is also important to determine the economic feasibility of energy consumption as well as the feasibility of many aspects such as the origin, usage, and necessity of energy. When we look at the crises that have taken place in the last 20 years, it is once again seen that energy is the dynamism and indispensable necessity of the countries.If we look at the effect of the consumed energy on the country's economy, the first economic variable will be GDP. Interpretation and evaluation of GDP, which reveals steady growth, will give effective results on economic indicators of the country.A lot of research has been done in the literature between the amount of energy consumption according to the sectors, type of energy used, supply, and etc. and the GDP which is the most important indicator of the country's economy. The final relationship between these two variables has been examined in details for different countries and energy concepts. In previous studies, it is sometimes observed that energy consumption is a cause of GDP or vice versa, and sometimes a two-way causality between them is determined. On the other hand, a causality relationship can not be always determined between the variables. In this case a suitable regression model can be established without looking for causality. In this study, the causality relationship between the GDP values, categorized by five income levels, and the energy consumptions of the countries between 1980 and 2014 is determined by using the Granger causality test. When we look at the results of the causality test, we find that only one causality relationship exists between high income level countries by GDP and the energy consumption of them. According to the causality test result, dependent and independent variable are determined before generalized estimating equations GEE method is used for modelling the data. In GEE method, the smallest values of QIC and QICC information criteria are found in the direction of causality relationships. The same causality assessment is done between gross national incomes GNI of countries categorized by income levels and energy consumptions, and it is concluded that the GEE models established according to the causality relationship direction are much better fit to the data. These findings obtained from this study suggests that causality test is a guide for us when we have insufficient knowledge in determining dependent and independent variables before fitting regression models to the data

References

  • Agresti, A. (2015). Foundations of linear and generalized linear models: John Wiley & Sons.
  • Aydın, F. F. (2010). Enerji tüketimi ve ekonomik büyüme. Erciyes Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi(35), 317-340.
  • Chiou-Wei, S. Z., Chen, C.-F., & Zhu, Z. (2008). Economic growth and energy consumption revisited—evidence from linear and nonlinear Granger causality. Energy economics, 30(6), 3063-3076.
  • Davis, C. S. (2002). Statistical methods for the analysis of repeated measurements: Springer Science & Business Media.
  • Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American statistical association, 74(366a), 427-431.
  • Dobson, A. J., & Barnett, A. (2008). An introduction to generalized linear models: CRC press.
  • Florens, J.-P., & Mouchart, M. (1982). A note on noncausality. Econometrica: Journal of the Econometric Society, 583-591.
  • Fox, J. (2015). Applied regression analysis and generalized linear models: Sage Publications.
  • Glasure, Y. U. (2002). Energy and national income in Korea: further evidence on the role of omitted variables. Energy economics, 24(4), 355-365.
  • Granger, C. W. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica: Journal of the Econometric Society, 424-438.
  • Gujarati, D. N. (2003). Basic Economics”. 4th. In: McGraw Hill, New York.
  • Hamilton, J. D. (1983). Oil and the macroeconomy since World War II. Journal of political economy, 91(2), 228-248.
  • Hardin, J. W. (2005). Generalized estimating equations (GEE): Wiley Online Library.
  • Hossain, S. (2014). Multivariate granger causality between economic growth, electricity consumption, exports and remittance for the panel of three SAARC countries. European Scientific Journal, ESJ, 8(1).
  • Hwang, D. B., & Gum, B. (1991). The causal relationship between energy and GNP: the case of Taiwan. The Journal of Energy and Development, 219-226.
  • Işığıçok, E. (1994). Zaman serilerinde nedensellik çözümlemesi: Türkiye'de para arzı ve enflasyon üzerine amprik bir araştırma: Uludağ Üniversitesi Basımevi.
  • İyit, N., Yonar, H., & Genç, A. (2016). Generalized Linear Models for European Union Countries Energy Data. Acta Physica Polonica, A., 130(1).
  • Jang, M. J. (2011). Working correlation selection in generalized estimating equations: The University of Iowa.
  • McCullagh, P. (1984). Generalized linear models. European Journal of Operational Research, 16(3), 285-292.
  • Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to linear regression analysis (Vol. 821): John Wiley & Sons.
  • Nelder, J. A., & Baker, R. J. (1972). Generalized linear models: Wiley Online Library.
  • Ozturk, I., Aslan, A., & Kalyoncu, H. (2010). Energy consumption and economic growth relationship: Evidence from panel data for low and middle income countries. Energy Policy, 38(8), 4422-4428.
  • Pan, W. (2001). Akaike's information criterion in generalized estimating equations. Biometrics, 57(1), 120-125.
  • Saidi, K., & Mbarek, M. B. (2016). Nuclear energy, renewable energy, CO 2 emissions, and economic growth for nine developed countries: Evidence from panel Granger causality tests. Progress in Nuclear Energy, 88, 364-374.
  • Shahbaz, M., Lean, H. H., & Shabbir, M. S. (2012). Environmental Kuznets curve hypothesis in Pakistan: cointegration and Granger causality. Renewable and Sustainable Energy Reviews, 16(5), 2947-2953.
  • Wang, Y. G., & Carey, V. (2003). Working correlation structure misspecification, estimation and covariate design: implications for generalised estimating equations performance. Biometrika, 90(1), 29-41.
  • Yang, H.-Y. (2000). A note on the causal relationship between energy and GDP in Taiwan. Energy economics, 22(3), 309-317.
  • Yu, E. S., & Choi, J.-Y. (1985). The causal relationship between energy and GNP: an international comparison. The Journal of Energy and Development, 10(2), 249-272.
There are 28 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Harun Yonar This is me

Neslihan İyit This is me

Publication Date February 1, 2018
Published in Issue Year 2018 Issue: 39

Cite

APA Yonar, H., & İyit, N. (2018). Modeling The Causality Relationships Between Gdp/Gni and Electricity Consumption According to Income Levels of Countries By Generalized Estimating Equations. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi(39), 191-200.

24108 28027 

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License