Research Article
PDF EndNote BibTex Cite

Year 2020, Volume 10, Issue 2, 162 - 175, 11.01.2021
https://doi.org/10.46893/talent.847543

Abstract

References

  • Abdelmoula, M., Chakroun, W., & Akrout, F. (2015). The effect of sample size and the number of items on reliability coefficients: Alpha and Rhô: A meta-analysis. International Journal of Numerical Methods and Applications, 13(1), 1–20. https://doi.org/10.17654/ijnmamar2015_001_020
  • Alloway, T. P., & Alloway, R. G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 106(1), 20–29. https://doi.org/10.1016/j.jecp.2009.11.003
  • Andrew, D. M., & Bird, C. (1938). A comparison of two new-type questions: recall and recognition. Journal of Educational Psychology, 29(3), 175–193. https://doi.org/10.1037/h0062394
  • Bower, G. H. (2000). A brief history of memory research. In E. Tulving & F. I. M. Craik (Eds.), The Oxford handbook of memory (pp. 3–32). Oxford University Press.
  • Cleary, A. M. (2019). Dependent measures in memory research: From free recall to recognition. In H. Otani & B. L. Schwartz (Eds.), Handbook of research methods in human memory (1st ed., pp. 19–35). Routledge.
  • Chubala, C. M., Guitard, D., Neath, I., Saint-Aubin, J., & Surprenant, A. M. (2020). Visual similarity effects in immediate serial recall and (sometimes) in immediate serial recognition. Memory & Cognition, 48(3), 411–425. https://doi.org/10.3758/s13421-019-00979-5
  • Chubala, C. M., Neath, I., & Surprenant, A. M. (2019). A comparison of immediate serial recall and immediate serial recognition. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 73(1), 5–27. https://doi.org/10.1037/cep0000158
  • Chubala, C., Surprenant, A. M., Neath, I., & Quinlan, P. T. (2018). Does dynamic visual noise eliminate the concreteness effect in working memory? Journal of Memory and Language, 102, 97–114. https://doi.org/10.1016/j.jml.2018.05.009
  • Cowan, N. (1999). An embedded-processes model of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 62–101). https://doi.org/10.1017/CBO9781139174909.006
  • Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–114. https://doi.org/10.1017/s0140525x01003922
  • Dehn, M. J. (2008). Working memory and academic learning: Assessment and intervention (1st ed.). Wiley.
  • Dehn, M. J. (2015). Essentials of working memory assessment and intervention (1st ed.). Wiley.
  • DeVellis, R. F. (2017). Scale development: Theory and applications (4th ed.). Sage Publications, Inc.
  • Diedenhofen, B., & Musch, J. (2015). cocor: A Comprehensive Solution for the Statistical Comparison of Correlations. PLOS ONE, 10(4), e0121945. https://doi.org/10.1371/journal.pone.0121945
  • Diedenhofen, B., & Musch, J. (2016). cocron: A web interface and R package for the statistical comparison of cronbach’s alpha coefficients. International Journal of Internet Science, 11(1), 51–60.
  • Dunn, O. J., & Clark, V. (1969). Correlation coefficients measured on the same individuals. Journal of the American Statistical Association, 64(325), 366–377. https://doi.org/10.1080/01621459.1969.10500981
  • Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology: General, 128(3), 309–331. https://doi.org/10.1037/0096-3445.128.3.309
  • Ertürk, S. (2013). Eğitimde "program" geliştirme (6. Basım). Edge akademi.
  • Field (2020, March 1). The brain learns in unexpected ways. Scientific American. https://www.scientificamerican.com/article/the-brain-learns-in-unexpected-ways/
  • Fry, A. F., & Hale, S. (1996). Processing speed, working memory, and fluid intelligence: Evidence for a developmental cascade. Psychological Science, 7(4), 237–241. https://doi.org/10.1111/j.1467-9280.1996.tb00366.x
  • Gatewood, R. D., Feild, H. S., & Barrick, M. R. (2011). Human resource selection (7th ed.). Cengage Learning.
  • Gisselgård, J., Uddén, J., Ingvar, M., & Petersson, K. M. (2007). Disruption of order information by irrelevant items: A serial recognition paradigm. Acta Psychologica, 124(3), 356–369. https://doi.org/10.1016/j.actpsy.2006.04.002
  • Hasan, M., Kanna, M. S., Jun, W., Ramkrishnan, A. S., Iqbal, Z., Lee, Y., & Li, Y. (2019). Schema‐like learning and memory consolidation acting through myelination. The FASEB Journal, 33(11), 11758–11775. https://doi.org/10.1096/fj.201900910r
  • Heacox, D., & Cash, R. M. (2014). Differentiation for gifted learners: Going beyond the basics. Free Spirit Publishing.
  • Heitz, R. P., Unsworth, N., & Engle, R. W. (2005). Working memory capacity, attention control, and fluid intelligence. In O. Wilhelm & R. W. Engle (Eds.), Handbook of understanding and measuring intelligence (pp. 61–77). Sage Publications.
  • Hittner, J. B., May, K., & Silver, N. C. (2003). A Monte Carlo evaluation of tests for comparing dependent correlations. The Journal of General Psychology, 130(2), 149–168. https://doi.org/10.1080/00221300309601282
  • Ho, R. (2014). Handbook of univariate and multivariate data analysis with IBM SPSS (2nd ed.). CRC Press.
  • Kane, M. J., Hambrick, D. Z., & Conway, A. R. A. (2005). Working memory capacity and fluid intelligence are strongly related constructs: Comment on Ackerman, Beier, and Boyle (2005). Psychological Bulletin, 131(1), 66–71. https://doi.org/10.1037/0033-2909.131.1.66
  • Kintsch, W. (1970). Models for free recall and recognition. In D. A. Norman (Ed.), Models of human memory (pp. 331–373). https://doi.org/10.1016/b978-0-12-521350-9.50016-4
  • Kyllonen, P. C. (1993). Aptitude testing inspired by information processing: A test of the four-sources model. The Journal of General Psychology, 120(3), 375–405. https://doi.org/10.1080/00221309.1993.9711154
  • Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity?! Intelligence, 14(4), 389–433. https://doi.org/10.1016/s0160-2896(05)80012-1
  • Lakens, D. (2017). Equivalence tests: A practical primer for t tests, correlations, and meta-analyses. Social Psychological and Personality Science, 8(4), 355–362. https://doi.org/10.1177/1948550617697177
  • Liu, H. Y., & Weng, L. J. (2009). An effect size index for comparing two independent alpha coefficients. British Journal of Mathematical and Statistical Psychology, 62(2), 385–400. https://doi.org/10.1348/000711008X315518
  • Margolis, L. J. (1992). Do recall and recognition rely on qualitatively different processes? [Doctoral dissertation, The American University]. American University Digital Research Archive. https://dra.american.edu/islandora/object/thesesdissertations:2673
  • Murray, T., & Arroyo, I. (2002, June 2-7). Toward measuring and maintaining the zone of proximal development in adaptive instructional systems. Intelligent Tutoring Systems, 6th International Conference, ITS 2002, Biarritz, France and San Sebastian, Spain. https://doi.org/10.1007/3-540-47987-2_75
  • Nutley, S. B., & Söderqvist, S. (2017). How is working memory training likely to influence academic performance? Current evidence and methodological considerations. Frontiers in Psychology, 8, 1–12. https://doi.org/10.3389/fpsyg.2017.00069
  • Radvansky, G. A. (2017). Formal models of memory. In Human memory (3rd ed., pp. 325–355). Routledge. https://doi.org/10.4324/9781315542768-10
  • Ramseyer, G. C. (1979). Testing the difference between dependent correlations using the Fisher Z. The Journal of Experimental Education, 47(4), 307-310. https://doi.org/10.1080/00220973.1979.11011698
  • Sak, U., Bal-Sezerel, B., Ayas, M. B., Tokmak, F., Özdemir, N. N., Demirel-Gürbüz, Ş., & Öpengin, E. (2016). Anadolu Sak Zeka Ölçeği: ASİS uygulayıcı kitabı. Anadolu Üniversitesi ÜYEP Merkezi, Eskişehir.
  • Schneider, W. J. ve McGrew, K. S. (2018). The Cattell–Horn–Carroll theory of cognitive abilities. In D. P. Flanagan & E. M. McDonough (Eds.), Contemporary intellectual assessment (4th ed., pp. 73–163). Guilford Press.
  • Schwartz, B. L. (2018). Introduction to the study of memory. In B. L. Schwartz (Ed.), Memory: Foundations and applications (3rd ed., pp. 1–33). Sage.
  • Shevlin, M., Miles, J. N. V., Davies, M. N. O., & Walker, S. (2000). Coefficient alpha: A useful indicator of reliability? Personality and Individual Differences, 28(2), 229–237. https://doi.org/10.1016/s0191-8869(99)00093-8
  • Silver, N. C., Hittner, J. B., & May, K. (2004). Testing dependent correlations with nonoverlapping variables: A monte carlo simulation. The Journal of Experimental Education, 73(1), 53-69. https://doi.org/10.3200/jexe.71.1.53-70
  • Süß, H.-M., Oberauer, K., Wittmann, W. W., Wilhelm, O., & Schulze, R. (2002). Working-memory capacity explains reasoning ability - and a little bit more. Intelligence, 30(3), 261–288. https://doi.org/10.1016/s0160-2896(01)00100-3
  • Tse, C.-S., Li, Y., & Altarriba, J. (2011). The effect of semantic relatedness on immediate serial recall and serial recognition. Quarterly Journal of Experimental Psychology, 64(12), 2425–2437. https://doi.org/10.1080/17470218.2011.604787
  • Unsworth, N., & Engle, R. W. (2007). The nature of individual differences in working memory capacity: Active maintenance in primary memory and controlled search from secondary memory. Psychological Review, 114(1), 104–132. https://doi.org/10.1037/0033-295X.114.1.104
  • VanTassel-Baska, J. (2007). An overview of alternative assessment measures for gifted learners and the issues that surround their use. In J. VanTassel-Baska (Ed.), Alternative assessments with gifted and talented students (pp. 1–15). Prufrock Press.
  • Vogel, S., & Schwabe, L. (2016). Learning and memory under stress: Implications for the classroom. Npj Science of Learning, 1–10. https://doi.org/10.1038/npjscilearn.2016.11
  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes (M. Cole, V. John-Steiner, S. Scribner, & E. Souberman, Eds.). Harvard University Press.
  • Zou, G. Y. (2007). Toward using confidence intervals to compare correlations. Psychological Methods, 12(4), 399–413. https://doi.org/10.1037/1082-989x.12.4.399

A Comparative Analysis of Psychometric Properties of Memory Tasks and Their Relationships with Higher-Order Thinking Skills: Recognition Versus Recall

Year 2020, Volume 10, Issue 2, 162 - 175, 11.01.2021
https://doi.org/10.46893/talent.847543

Abstract

This study aims to compare the psychometric properties of recognition and recall task measurements and to examine their relationships with other higher-order thinking skills. Memory measurements made with recognition and recall tasks were based on the Visual Span Memory (VSM) subtest of the ASIS intelligence scale. The participants of the study consisted of 228 students attending first and second grade in a primary school in the city center of Eskişehir. The data were collected by administering the recognition and recall task forms to the students individually. The findings reveal a statistically significant difference between the average scores of recall and recognition tasks. The mean scores of the recognition task measurements are significantly higher than the mean scores of the recall task measurements (t(227) = 5.79, p <0.01; Cohen d = 0.435, Cohen dz = 0.38). In addition, there is a significant difference between the reliability coefficients of recognition and recall task score in favor of the recall task score (χ2(1) = 6.181, p <.02). It was also found that the mean item-total correlations of the recall task measurements (r=.41) were higher than the recognition task measurements (r=.27), and the item-total correlations of the 5th, 6th, 7th, 8th, 11th, and 14th items differed significantly in favor of the recall task measurements. The correlation of the recall task score with the other 5 subtests in the ASIS intelligence scale was higher than that of the recognition task score. The findings show that the psychometric properties of the measurement performed with the recall task are stronger.

References

  • Abdelmoula, M., Chakroun, W., & Akrout, F. (2015). The effect of sample size and the number of items on reliability coefficients: Alpha and Rhô: A meta-analysis. International Journal of Numerical Methods and Applications, 13(1), 1–20. https://doi.org/10.17654/ijnmamar2015_001_020
  • Alloway, T. P., & Alloway, R. G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 106(1), 20–29. https://doi.org/10.1016/j.jecp.2009.11.003
  • Andrew, D. M., & Bird, C. (1938). A comparison of two new-type questions: recall and recognition. Journal of Educational Psychology, 29(3), 175–193. https://doi.org/10.1037/h0062394
  • Bower, G. H. (2000). A brief history of memory research. In E. Tulving & F. I. M. Craik (Eds.), The Oxford handbook of memory (pp. 3–32). Oxford University Press.
  • Cleary, A. M. (2019). Dependent measures in memory research: From free recall to recognition. In H. Otani & B. L. Schwartz (Eds.), Handbook of research methods in human memory (1st ed., pp. 19–35). Routledge.
  • Chubala, C. M., Guitard, D., Neath, I., Saint-Aubin, J., & Surprenant, A. M. (2020). Visual similarity effects in immediate serial recall and (sometimes) in immediate serial recognition. Memory & Cognition, 48(3), 411–425. https://doi.org/10.3758/s13421-019-00979-5
  • Chubala, C. M., Neath, I., & Surprenant, A. M. (2019). A comparison of immediate serial recall and immediate serial recognition. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 73(1), 5–27. https://doi.org/10.1037/cep0000158
  • Chubala, C., Surprenant, A. M., Neath, I., & Quinlan, P. T. (2018). Does dynamic visual noise eliminate the concreteness effect in working memory? Journal of Memory and Language, 102, 97–114. https://doi.org/10.1016/j.jml.2018.05.009
  • Cowan, N. (1999). An embedded-processes model of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 62–101). https://doi.org/10.1017/CBO9781139174909.006
  • Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–114. https://doi.org/10.1017/s0140525x01003922
  • Dehn, M. J. (2008). Working memory and academic learning: Assessment and intervention (1st ed.). Wiley.
  • Dehn, M. J. (2015). Essentials of working memory assessment and intervention (1st ed.). Wiley.
  • DeVellis, R. F. (2017). Scale development: Theory and applications (4th ed.). Sage Publications, Inc.
  • Diedenhofen, B., & Musch, J. (2015). cocor: A Comprehensive Solution for the Statistical Comparison of Correlations. PLOS ONE, 10(4), e0121945. https://doi.org/10.1371/journal.pone.0121945
  • Diedenhofen, B., & Musch, J. (2016). cocron: A web interface and R package for the statistical comparison of cronbach’s alpha coefficients. International Journal of Internet Science, 11(1), 51–60.
  • Dunn, O. J., & Clark, V. (1969). Correlation coefficients measured on the same individuals. Journal of the American Statistical Association, 64(325), 366–377. https://doi.org/10.1080/01621459.1969.10500981
  • Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology: General, 128(3), 309–331. https://doi.org/10.1037/0096-3445.128.3.309
  • Ertürk, S. (2013). Eğitimde "program" geliştirme (6. Basım). Edge akademi.
  • Field (2020, March 1). The brain learns in unexpected ways. Scientific American. https://www.scientificamerican.com/article/the-brain-learns-in-unexpected-ways/
  • Fry, A. F., & Hale, S. (1996). Processing speed, working memory, and fluid intelligence: Evidence for a developmental cascade. Psychological Science, 7(4), 237–241. https://doi.org/10.1111/j.1467-9280.1996.tb00366.x
  • Gatewood, R. D., Feild, H. S., & Barrick, M. R. (2011). Human resource selection (7th ed.). Cengage Learning.
  • Gisselgård, J., Uddén, J., Ingvar, M., & Petersson, K. M. (2007). Disruption of order information by irrelevant items: A serial recognition paradigm. Acta Psychologica, 124(3), 356–369. https://doi.org/10.1016/j.actpsy.2006.04.002
  • Hasan, M., Kanna, M. S., Jun, W., Ramkrishnan, A. S., Iqbal, Z., Lee, Y., & Li, Y. (2019). Schema‐like learning and memory consolidation acting through myelination. The FASEB Journal, 33(11), 11758–11775. https://doi.org/10.1096/fj.201900910r
  • Heacox, D., & Cash, R. M. (2014). Differentiation for gifted learners: Going beyond the basics. Free Spirit Publishing.
  • Heitz, R. P., Unsworth, N., & Engle, R. W. (2005). Working memory capacity, attention control, and fluid intelligence. In O. Wilhelm & R. W. Engle (Eds.), Handbook of understanding and measuring intelligence (pp. 61–77). Sage Publications.
  • Hittner, J. B., May, K., & Silver, N. C. (2003). A Monte Carlo evaluation of tests for comparing dependent correlations. The Journal of General Psychology, 130(2), 149–168. https://doi.org/10.1080/00221300309601282
  • Ho, R. (2014). Handbook of univariate and multivariate data analysis with IBM SPSS (2nd ed.). CRC Press.
  • Kane, M. J., Hambrick, D. Z., & Conway, A. R. A. (2005). Working memory capacity and fluid intelligence are strongly related constructs: Comment on Ackerman, Beier, and Boyle (2005). Psychological Bulletin, 131(1), 66–71. https://doi.org/10.1037/0033-2909.131.1.66
  • Kintsch, W. (1970). Models for free recall and recognition. In D. A. Norman (Ed.), Models of human memory (pp. 331–373). https://doi.org/10.1016/b978-0-12-521350-9.50016-4
  • Kyllonen, P. C. (1993). Aptitude testing inspired by information processing: A test of the four-sources model. The Journal of General Psychology, 120(3), 375–405. https://doi.org/10.1080/00221309.1993.9711154
  • Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity?! Intelligence, 14(4), 389–433. https://doi.org/10.1016/s0160-2896(05)80012-1
  • Lakens, D. (2017). Equivalence tests: A practical primer for t tests, correlations, and meta-analyses. Social Psychological and Personality Science, 8(4), 355–362. https://doi.org/10.1177/1948550617697177
  • Liu, H. Y., & Weng, L. J. (2009). An effect size index for comparing two independent alpha coefficients. British Journal of Mathematical and Statistical Psychology, 62(2), 385–400. https://doi.org/10.1348/000711008X315518
  • Margolis, L. J. (1992). Do recall and recognition rely on qualitatively different processes? [Doctoral dissertation, The American University]. American University Digital Research Archive. https://dra.american.edu/islandora/object/thesesdissertations:2673
  • Murray, T., & Arroyo, I. (2002, June 2-7). Toward measuring and maintaining the zone of proximal development in adaptive instructional systems. Intelligent Tutoring Systems, 6th International Conference, ITS 2002, Biarritz, France and San Sebastian, Spain. https://doi.org/10.1007/3-540-47987-2_75
  • Nutley, S. B., & Söderqvist, S. (2017). How is working memory training likely to influence academic performance? Current evidence and methodological considerations. Frontiers in Psychology, 8, 1–12. https://doi.org/10.3389/fpsyg.2017.00069
  • Radvansky, G. A. (2017). Formal models of memory. In Human memory (3rd ed., pp. 325–355). Routledge. https://doi.org/10.4324/9781315542768-10
  • Ramseyer, G. C. (1979). Testing the difference between dependent correlations using the Fisher Z. The Journal of Experimental Education, 47(4), 307-310. https://doi.org/10.1080/00220973.1979.11011698
  • Sak, U., Bal-Sezerel, B., Ayas, M. B., Tokmak, F., Özdemir, N. N., Demirel-Gürbüz, Ş., & Öpengin, E. (2016). Anadolu Sak Zeka Ölçeği: ASİS uygulayıcı kitabı. Anadolu Üniversitesi ÜYEP Merkezi, Eskişehir.
  • Schneider, W. J. ve McGrew, K. S. (2018). The Cattell–Horn–Carroll theory of cognitive abilities. In D. P. Flanagan & E. M. McDonough (Eds.), Contemporary intellectual assessment (4th ed., pp. 73–163). Guilford Press.
  • Schwartz, B. L. (2018). Introduction to the study of memory. In B. L. Schwartz (Ed.), Memory: Foundations and applications (3rd ed., pp. 1–33). Sage.
  • Shevlin, M., Miles, J. N. V., Davies, M. N. O., & Walker, S. (2000). Coefficient alpha: A useful indicator of reliability? Personality and Individual Differences, 28(2), 229–237. https://doi.org/10.1016/s0191-8869(99)00093-8
  • Silver, N. C., Hittner, J. B., & May, K. (2004). Testing dependent correlations with nonoverlapping variables: A monte carlo simulation. The Journal of Experimental Education, 73(1), 53-69. https://doi.org/10.3200/jexe.71.1.53-70
  • Süß, H.-M., Oberauer, K., Wittmann, W. W., Wilhelm, O., & Schulze, R. (2002). Working-memory capacity explains reasoning ability - and a little bit more. Intelligence, 30(3), 261–288. https://doi.org/10.1016/s0160-2896(01)00100-3
  • Tse, C.-S., Li, Y., & Altarriba, J. (2011). The effect of semantic relatedness on immediate serial recall and serial recognition. Quarterly Journal of Experimental Psychology, 64(12), 2425–2437. https://doi.org/10.1080/17470218.2011.604787
  • Unsworth, N., & Engle, R. W. (2007). The nature of individual differences in working memory capacity: Active maintenance in primary memory and controlled search from secondary memory. Psychological Review, 114(1), 104–132. https://doi.org/10.1037/0033-295X.114.1.104
  • VanTassel-Baska, J. (2007). An overview of alternative assessment measures for gifted learners and the issues that surround their use. In J. VanTassel-Baska (Ed.), Alternative assessments with gifted and talented students (pp. 1–15). Prufrock Press.
  • Vogel, S., & Schwabe, L. (2016). Learning and memory under stress: Implications for the classroom. Npj Science of Learning, 1–10. https://doi.org/10.1038/npjscilearn.2016.11
  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes (M. Cole, V. John-Steiner, S. Scribner, & E. Souberman, Eds.). Harvard University Press.
  • Zou, G. Y. (2007). Toward using confidence intervals to compare correlations. Psychological Methods, 12(4), 399–413. https://doi.org/10.1037/1082-989x.12.4.399

Details

Primary Language English
Subjects Education, Scientific Disciplines, Education, Special
Journal Section Research Articles
Authors

Gamze KAYACAN> (Primary Author)
ORDU UNIVERSITY
0000-0001-9378-9175
Türkiye


N. Nazlı ATEŞGÖZ>
ANADOLU UNIVERSITY
0000-0001-5944-937X
Türkiye


Uğur SAK>
ANADOLU UNIVERSITY
0000-0001-6312-5239
Türkiye

Publication Date January 11, 2021
Application Date December 26, 2020
Acceptance Date January 7, 2021
Published in Issue Year 2020, Volume 10, Issue 2

Cite

APA Kayacan, G. , Ateşgöz, N. N. & Sak, U. (2021). A Comparative Analysis of Psychometric Properties of Memory Tasks and Their Relationships with Higher-Order Thinking Skills: Recognition Versus Recall . Talent , 10 (2) , 162-175 . DOI: 10.46893/talent.847543