BibTex RIS Cite

PLANT BREEDING PROGRESS AND GENETİC DİVERSİTY FROM DE NOVO VARIATION AND ELEVATED EPISTASIS

Year 2001, Volume: 10 Issue: 1-2, - , 01.06.2001

Abstract

Breeding programs in major crops normally restrict the use of parents to those improved for a variety of traits. Gain from utilising these good x good crosses appears to be high, and improvements are sufficient to encourage continued breeding within narrow gene pools even though each cycle is expected to lead to reduced genetic variability. These finely tuned programs have gradually limited the amount of new diversity introduced into the breeding gene pool. This breeding strategy has led to a genetic gap where there is a large difference in the favourable gene freguency between the improved and unimproved lines and to a narrovving of genetic diversity vvithin elite gene pools. At the same time, evidence has accumulated in plant breeding programs and long-term selection experiments in several organisms that the genome is more plastic and amenable to selection than previously assumed. in the barley (Hordeum vulgare L.) case study reported here, incremental genetic gains were made for several traits in what appears, based on pedigree analysis, to be a narrow gene pool. Given this situation, we call for an examination of the generally held belief that the variation on which selection is based in elite gene pools is provided almost exclusively from the original parents. Classical and molecular genetic analyses have shown that many mechanisms exist to generate variation de novo, such as gene amplification and transposable elements. Accordingly, we put forward the hypothesis that newly generated variation makes an important contribution.  We also hypothesize that gene interaction, epistasis, is more important than commonly viewed and that it arises from de novo generated diversity as well as the original diversity.

References

  • Akkaya, M.S., A.B. Bhagwat, and P.B. Cregan. 1992. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132:1131-1139.
  • Allard, R.W. 1960. Principles of plant breeding. John Wiley & Sons New York.
  • Bhattacharyya, M., C. Martin, and A. Smith. 1993. The importance of starch biosyntheses in the wrinkled seed shape character of peas studied by Mendel. Plant Mol. Biol. 22.525-531.
  • Brink, R.A. 1973. Paramutation. Annu. Rev. Genet. 7:129-152.
  • Brovvn, J., and V. Sundaresen. 1991. A recombination hotspot in the maize Al intragenic region. Theor. Appl. Genet. 81:185-188.
  • Burr, B. 1994. Some concepts and new methods for molecular mapping in plants. p. 1-7. in R.L. Phillips and I.K. Vasil (ed.) DNA-based markers in plants. Kluvver Academic Publishers, Dordrecht, the Netherlands.
  • Cedar, H. 1988. DNA methylation and gene activity. Celi 53:3-4.
  • Chandler, V.L. 1995. A review of paramutation at b: An allellic interaction that causes heritable changes in transcription. p. 109-118. in K. Oono and F. Takaiwa (ed.) Modification of gene expression and non-Mendelian inheritance. Natl. Inst. Agrobiol. Resources, Tsukuba, Japan.
  • Chandler, V.L., and V. Walbot. 1986. DNA modification of a maize transposable element correlates with loss of activity. Proc. Natl. Acad. Sci. USA 83:1767-1771.
  • Civardi, L., Y. Xia, K.J. Edwards, P. Schnable, and B.J. Nikolow. 1994. The relationship betvveen genetic and physical distances in the cloned al-sh.2 interval of the Zea mays L. Genome. Proc. Natl. Acad. Sci. USA 91:8268-8272.
  • Coe, E.H. 1966. The properties, origin, and mechanism of conversion-type inheritance at the p locus in maize. Genetics 53:1035-1063.
  • Coulondre, C, J.H. Miller, P.J. Farabaugh, and W. Gilbert. 1978. Molecular basis of base substitution hotspots in Escherichia coli. Nature (London) 274:775-780.
  • Delannay, X., D.M. Rodgers, and R.G. Palmer. 1983. Relative genetic contributions among ancestral lines to North American soybean cultivars. Crop Sci. 23:944-949.
  • Doebley, J., A.Stec, and C. Gustus. 1995. teosinte branchedl and the origin of maize: Evidence for epistasis and the evolution of dominance. Genetics 141:333-346.
  • Donn, G., E. Tischer, J.A. Smith, and H.M. Goddman. 1984. Herbicide-resistant alfalfa cells: An example of gene amplification in plants. J. Molec. Appl. Genet. 2:621-635.
  • Dooner, H.K. 1986. Genetic fine structure of the bronze locus in maize. Genetics 113:1021-
  • Dudley, J.W., and R.J. Lambert. 1992. Ninety generations of selection for oil and protein in maize. Maydica 37:81-87.
  • Duvick, D.N. 1984. Genetic diversity in majör farm crops on the farm and in reserve. Econ. Bot. 38:157-174.
  • Enfield, F.D. 1980. Long-term effects of selection: The limits to response. p. 69-86. in Alan Robertson (ed.) Proc.Symp. Selection Experiments in Laboratory and Domestic Animals. Harrogate, UK. 21-22 July 1979. Commonvvalth Agric. Bureau, Farnham Royal, UK.
  • Enfield, F.D., and O. Braskerud. 1989. Mutational variance for pupa weight in Tribolium castaneum. Theor. Appl. Genet. 77:416-420.
  • Fischbeck, G. 1992. Barley cultivar development in Europe-Success in the past and possible changes in the future. p. 885-901. in L. Munck (ed.) Proc. 6"1 Int. Barley Genet. Symp. 22-27 July 1991. Helsingborg, Svveden. Munksgaard Intl. Publ. Ltd., Copenhagen K, Denmark.
  • Freeling, M. 1976. Intragenic recombination in maize: Pollen analysis methods and the effect of parental Adh+ isoalleles. Genetics 83:701-717.
  • Geiger, H.H. 1988. Epistasis and heterosis. p. 395-399. in B.S. Weir et al. (ed.) of the 2nd Int. Conf. on Quantitative Genetics. Raleigh, NC. 1987. North Carolina State Univ., Raleigh.
  • Gilmour, R., S. Broughton, and W.J.R. Boyd. 1995. Barley breeding. p. 97-109. in M. Hovves (ed.) The barley book. Bull. 4300. Department of Agriculture, Perth, Australia.
  • Gruenbaum, T., T. Naveh-Many, H. Cedar, and A. Razin. 1981. Sequence specificity of methylation in higher plant DNA. Nature (London) 292:860-862.
  • Hallauer, A.R. 1981. Progress to date in the use of exotic materials in conventional maize breeding programs. South African Maize Symp. Proc. 4:35-40.
  • Holley, R.N., and M.M. Goodman. 1988. Yield potential of tropical hybrid maize derivatives. Crop Sci. 28:213-218.
  • Holliday, R. 1987. The inheritance of epigenetic defects. Science (Washington, DC) 238:163-170.
  • Horsley, R.D., P.B. Schwarz, and J.J. Hammond. 1995. Genetic diversity in malt quality of North American six-rowed spring barley. Crop Sci. 35:113-118.
  • Jarai, G., and G.A. Marzluf. 1991. Generation of new mutants of nmr, the negative-acting nitrogen regulatory gene of Neurospora crassa, by repeat induced mutation. Curr. Genet. 20:283-288.
  • Johnston, R.N., S.M. Beverley, and R.T. Schimke. 1983. Rapid spontaneous dihydrofolate reductase gene amplification shown by fluorescence-activated celi sorting. Proc. Natl. Acad. Sci. USA 80:3711-3715.
  • Kilian, A., D.A. Kadrna, A. Kleinhofs, M. Yano, N. Kurato, B. Steffenson, and J. Sasaki. 1995. Rice-barley synteny and its application to saturation mapping of the barley Rpg-I region. Nucleic Acids Res. 23:2729-2733.
  • Klaas, M., and R.M. Amasino. 1989. DNA methylation is reduced in DN asl-sensitive regions of plant chromatin. Plant Physiol. 91:451-454.
  • Kneen, E. (ed.). 1976. Methods of analysis of the American Society of Brevving Chemists. 7lh revised ed. American Society of Brewing Chemists, St. Paul, MN.
  • Lark, K.G., K. Chase, F. Adler, L.M. Mansur, and J.H. Orf. 1995. Interactions betvveen quantitative trait loci in soybean in which trait variation at one locus in conditional upon a specific allele at another. Proc. Natl. Acad. Sci. USA 92:4656-4660.
  • Manninen, I., and A.H. Schulman. 1993. BARE-1, a copia-Uke retroelement in barley (Hordeum vulgare L). Plant Mol. Biol. 22:829-846.
  • Martin, J.M., T.K. Blake, and E.A. Hockett. 1991. Diversity among North American spring barley cultivars based on coefficients of parentage. Crop Sci. 31:1131-1137.
  • Matzke, M.A., F. Neuhuber, and A.J.M. Matzke. 1993. A variety of epistatic interactions can occur between partially homologous transgene loci brought together by sexual crossing. Molec. Gen. Genet. 236:379-386.
  • McClintock, B. 1984. The significance of responses of the genome to challenge. Science (Washington, DC) 226:792-801.
  • Miller, O.L., Jr., and B.R. Beatty. 1969. Visualization of nucleolar genes. Science (Washington, DC) 164:955-957.
  • Moore, C.W., and R.G. Creech. 1972. Genetic fine structure analysis of the amylose extender locus in Zea mays L. Genetics 70:611-619.
  • Moreno, G. 1994. Genetic architecture, genetic behavior, and character evolution. Annu. Rev. Ecol.Syst. 25:31-44.
  • Murphy, J.P., T.S. Cox, and D.M. Rodgers. 1986. Cluster analysis of red winter vvheat cultivars. Crop Sci. 26:672-676.
  • Nelson, O.E. 1962. The waxy locus in maize. I. Intralocus recombination frequency estimates by pollen and by conventional analysis. Genetics 47:737-742.
  • Olhoft, P., and R.L. Phillips. 1995. Genetic and epigenetic changes induced by maize tissue culture. p. 187-198. in induced mutations and molecular techniques for crop improvement. IAEA/FAO Symp. (IAEA-SM-340), Vienna. June 1995. IAEA, Vienna.
  • Pardue, M.L. 1991. Dynamic instability of chromosomes and genomes. Celi 66:427-431.
  • Peterson, G.A., and A.E. Foster. 1973. Malting barley in the United States. Adv. Agron. 25:327-378.
  • Peterson, P.A. 1993. Transposons in maize and their role in creating variability. p. 641-645. in D.R. Buxton et al. (ed.) International Crop Science I. CSSA, Madison, WI.
  • Phillips, R.L. 1978. Molecular cytogenetics of the nucleolus organizer region. p. 711-741. in D.B. Walden (ed.) Maize breeding and genetics. John Wiley & Sons, New York.
  • Phillips, R.L., S.M. Kaeppler, and P. Olhoft. 1994. Genetic instability of plant tissue cultures: Breakdovvn of normal controls. Proc. Natl. Acad. Sci. USA 91:5222-5226.
  • Prois, F., and P. Meyer. 1992. The methylation patterns of chromosomal integration regions influence gene activity of transferred DNA in Petunia hybrida. The Plant Journal 2:465-475.
  • Rasmusson, D.C. 1991. Barley breeding at present and in the future. p. 865-877. in L. Munck (ed.) Proc. ö"1 Int. Barley Genet. Symp. Helsingborg, Sweden. 22-27 July 1991. Munksgaard Intl. Publ. Ltd., Copenhagen K, Denmark.
  • Reed, S.M., and E.A. Wernsman. 1989. DNA amplification among anther-derived doubled haploid lines of tobacco and its relatioship to agronomic performance. Crop Sci. 29:1072-1076.
  • Richter, T.E., T.J. Pryor, J.L. Bennetzen, and S.H. Hulbert. 1995. New rust resistance specificities associated with recombination in the Rpl complex in maize. Genetics 141:373-381.
  • Rimpau, J., D.B. Smith, and R.B. Flavell. 1980. Sequence organization in barley and oats chromosomes revealed by interspecies DNA/DNA hybridization. Heredity 44:131-149.
  • Robbins, T.P., E.L. Walker, J.L. Kermicle, M. Alleman, and S.L. Dellaporta. 1991. Meiotic instability of the R-r complex arising from displaced intragenic exchange and intrachromosomal rearrangement. Genetics 129:271-283.
  • Russel, W.A., G.F. Sprague, and L.H. Penny. 1963. Mutations affecting quantitative characters in long-time inbred lines of maize. Crop Sci. 3:175-178.
  • Schoener, C.S., and W.R. Fehr. 1979. Utilization of plant introductions in soybean bredding populations. Crop Sci. 19:185-188.
  • Selker, E.U. 1990. Premeiotic instability of repeated sequences in Neurospora crassa. Annu. Rev. Genet. 24:579-613.
  • Shotkoski, F.A., and A.M. Fallon. 1993. An amplified mosquito dihydrofolate reductase gene: Amplicon size and chromosomal distribution. Insect Molec. Biol. 2:155-161.
  • Sprague, G.F., W.A. Russell, and L.H. Penny. 1960. Mutations affecting quantitative traits in selfed progeny of doubled monoploid maize stock. Genetics 45:855-865.
  • Springer, P.S., K.J. Edvvards, and J.L. Bennetzen. 1994. Novel organization of different DNA classes uncovered in maize Adhl yeast artificial chromosomes. Proc. Natl. Acad. Sci. USA 91:863-867.
  • Svveeney, P.M., and S.K. St. Martin. 1989. Testcross evaluation of exotic soybean germplasm of different origins. Crop Sci. 29:289-293.
  • Tartof, K.D. 1975. Redundant genes. Annu. Rev. Genet. 9:355-385.
  • Tuberosa, R., and R.L. Phillips. 1986. Isolation of methotrexatetolerant celi lines of corn. Maydica 31:215-225.
  • Vello, N.A., W.R. Fehr, and J.B. Bahrenfus. 1984. Genetic variability and agronomic performance of soybean populations developed from plant introductions. Crop Sci. 24:511-514.
  • WaIbot, V. 1992. Strategies for mutagenesis and gene cloning using transposon tagging and T-DNA insertional mutagenesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:49-82.
  • Wellhausen, E.J. 1978. Recent developments in maize breeding in the tropics. p. 59-84. in D.B. Walden (ed.) Maize breeding and genetics, John Wiley, New York.
  • Wych, R.D., and D.C. Rasmusson. 1983. Genetic improvement in malting barley cultivars since 1920. Crop Sci. 23:1037-1040.

BİTKİ ISLAHlNDAKİ BAŞARI VE ARTIRILMIŞ ÖRTÜCÜ GEN ETKİSİ İLE DE NOVO VARYASYONUNDAN SAĞLANAN GENETİK ÇEŞİTLİLİK

Year 2001, Volume: 10 Issue: 1-2, - , 01.06.2001

Abstract

Yaygın yetiştirilen bitki türlerindeki ıslah programları birçok özellik yönünden geliştirilmiş ana babaların kullanımını sınırlamaktadır. İyi x iyi melezlerinin kullanımından sağlanan genetik ilerleme yüksek olarak görünmektedir ve her bir ıslah döngüsünün azalan genetik çeşitliliğe yol açacağı beklentisine rağmen gelişmeler bu dar genetik taban içinde bile ıslah çalışmalarına devam edilmesi için yeterince cesaret vericidir. Böyle iyi düzenlenmiş ıslah programları, gen havuzuna dahil edilen yeni genetik çeşitliliği kademeli olarak sınırlandırmıştır.

Bu ıslah yaklaşımı bir genetik farklılaşmaya (genetic gap) yol açmış geliştirilen ve geliştirilmemiş arzulanan gen frekansında büyük bir farklılık oluşmuş ve elit gen havuzundaki genetik çeşitlilikte daralmalar söz konusu olmuştur. Aynı zamanda birçok türdeki uzun süreli seleksiyon uygulamaları ve bitki ıslahı programlarındaki yeterli sayıdaki bulgulara dayalı olarak (seleksiyon için) genomun daha önce varsayılan daha esnek ve işletilebilir olduğu gözükmektedir. Burada pedigri seleksiyon yöntemi esas alınarak dar bir gen havuzuna rağmen arpada (Hordeum vulgare L.) birçok özellik yönünden önemli genetik ilerlemelerin sağlandığı bir durum saptama çalışması rapor edilmiştir. Bu durumda, genel olarak kabul gören bir uygulamaya ihtiyaç duyarız ki seleksiyonun elit gen havuzlarına dayalı olması durumunda varyasyon neredeyse yalnızca orijinal ana babalardan sağlanır.

Moleküler ve geleneksel genetik analizleri De Novo varyasyonu ortaya çıkaracak bir çok mekanizma olduğunu göstermiştir. Örneğin gen çoğaltımları (amplifikasyonları) ve yer değiştirebilir (transposable) öğeler gibi. Buna bağlı olarak, yeni oluşturulan varyasyonun bir önemli katkı yaptığı şeklindeki kuramı ileri sürebiliriz. Ayrıca geniş kabul gördüğünden öte gen etkileşimleri (interaksiyon) ve örtücü gen etkisinin (epistasi) daha önemli olduğunu ileri sürmek isteriz ve bu orijinal çeşitlilikten kaynaklandığı kadar De Novo kaynaklı çeşitlilikten de ortaya çıkmaktadır.

References

  • Akkaya, M.S., A.B. Bhagwat, and P.B. Cregan. 1992. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132:1131-1139.
  • Allard, R.W. 1960. Principles of plant breeding. John Wiley & Sons New York.
  • Bhattacharyya, M., C. Martin, and A. Smith. 1993. The importance of starch biosyntheses in the wrinkled seed shape character of peas studied by Mendel. Plant Mol. Biol. 22.525-531.
  • Brink, R.A. 1973. Paramutation. Annu. Rev. Genet. 7:129-152.
  • Brovvn, J., and V. Sundaresen. 1991. A recombination hotspot in the maize Al intragenic region. Theor. Appl. Genet. 81:185-188.
  • Burr, B. 1994. Some concepts and new methods for molecular mapping in plants. p. 1-7. in R.L. Phillips and I.K. Vasil (ed.) DNA-based markers in plants. Kluvver Academic Publishers, Dordrecht, the Netherlands.
  • Cedar, H. 1988. DNA methylation and gene activity. Celi 53:3-4.
  • Chandler, V.L. 1995. A review of paramutation at b: An allellic interaction that causes heritable changes in transcription. p. 109-118. in K. Oono and F. Takaiwa (ed.) Modification of gene expression and non-Mendelian inheritance. Natl. Inst. Agrobiol. Resources, Tsukuba, Japan.
  • Chandler, V.L., and V. Walbot. 1986. DNA modification of a maize transposable element correlates with loss of activity. Proc. Natl. Acad. Sci. USA 83:1767-1771.
  • Civardi, L., Y. Xia, K.J. Edwards, P. Schnable, and B.J. Nikolow. 1994. The relationship betvveen genetic and physical distances in the cloned al-sh.2 interval of the Zea mays L. Genome. Proc. Natl. Acad. Sci. USA 91:8268-8272.
  • Coe, E.H. 1966. The properties, origin, and mechanism of conversion-type inheritance at the p locus in maize. Genetics 53:1035-1063.
  • Coulondre, C, J.H. Miller, P.J. Farabaugh, and W. Gilbert. 1978. Molecular basis of base substitution hotspots in Escherichia coli. Nature (London) 274:775-780.
  • Delannay, X., D.M. Rodgers, and R.G. Palmer. 1983. Relative genetic contributions among ancestral lines to North American soybean cultivars. Crop Sci. 23:944-949.
  • Doebley, J., A.Stec, and C. Gustus. 1995. teosinte branchedl and the origin of maize: Evidence for epistasis and the evolution of dominance. Genetics 141:333-346.
  • Donn, G., E. Tischer, J.A. Smith, and H.M. Goddman. 1984. Herbicide-resistant alfalfa cells: An example of gene amplification in plants. J. Molec. Appl. Genet. 2:621-635.
  • Dooner, H.K. 1986. Genetic fine structure of the bronze locus in maize. Genetics 113:1021-
  • Dudley, J.W., and R.J. Lambert. 1992. Ninety generations of selection for oil and protein in maize. Maydica 37:81-87.
  • Duvick, D.N. 1984. Genetic diversity in majör farm crops on the farm and in reserve. Econ. Bot. 38:157-174.
  • Enfield, F.D. 1980. Long-term effects of selection: The limits to response. p. 69-86. in Alan Robertson (ed.) Proc.Symp. Selection Experiments in Laboratory and Domestic Animals. Harrogate, UK. 21-22 July 1979. Commonvvalth Agric. Bureau, Farnham Royal, UK.
  • Enfield, F.D., and O. Braskerud. 1989. Mutational variance for pupa weight in Tribolium castaneum. Theor. Appl. Genet. 77:416-420.
  • Fischbeck, G. 1992. Barley cultivar development in Europe-Success in the past and possible changes in the future. p. 885-901. in L. Munck (ed.) Proc. 6"1 Int. Barley Genet. Symp. 22-27 July 1991. Helsingborg, Svveden. Munksgaard Intl. Publ. Ltd., Copenhagen K, Denmark.
  • Freeling, M. 1976. Intragenic recombination in maize: Pollen analysis methods and the effect of parental Adh+ isoalleles. Genetics 83:701-717.
  • Geiger, H.H. 1988. Epistasis and heterosis. p. 395-399. in B.S. Weir et al. (ed.) of the 2nd Int. Conf. on Quantitative Genetics. Raleigh, NC. 1987. North Carolina State Univ., Raleigh.
  • Gilmour, R., S. Broughton, and W.J.R. Boyd. 1995. Barley breeding. p. 97-109. in M. Hovves (ed.) The barley book. Bull. 4300. Department of Agriculture, Perth, Australia.
  • Gruenbaum, T., T. Naveh-Many, H. Cedar, and A. Razin. 1981. Sequence specificity of methylation in higher plant DNA. Nature (London) 292:860-862.
  • Hallauer, A.R. 1981. Progress to date in the use of exotic materials in conventional maize breeding programs. South African Maize Symp. Proc. 4:35-40.
  • Holley, R.N., and M.M. Goodman. 1988. Yield potential of tropical hybrid maize derivatives. Crop Sci. 28:213-218.
  • Holliday, R. 1987. The inheritance of epigenetic defects. Science (Washington, DC) 238:163-170.
  • Horsley, R.D., P.B. Schwarz, and J.J. Hammond. 1995. Genetic diversity in malt quality of North American six-rowed spring barley. Crop Sci. 35:113-118.
  • Jarai, G., and G.A. Marzluf. 1991. Generation of new mutants of nmr, the negative-acting nitrogen regulatory gene of Neurospora crassa, by repeat induced mutation. Curr. Genet. 20:283-288.
  • Johnston, R.N., S.M. Beverley, and R.T. Schimke. 1983. Rapid spontaneous dihydrofolate reductase gene amplification shown by fluorescence-activated celi sorting. Proc. Natl. Acad. Sci. USA 80:3711-3715.
  • Kilian, A., D.A. Kadrna, A. Kleinhofs, M. Yano, N. Kurato, B. Steffenson, and J. Sasaki. 1995. Rice-barley synteny and its application to saturation mapping of the barley Rpg-I region. Nucleic Acids Res. 23:2729-2733.
  • Klaas, M., and R.M. Amasino. 1989. DNA methylation is reduced in DN asl-sensitive regions of plant chromatin. Plant Physiol. 91:451-454.
  • Kneen, E. (ed.). 1976. Methods of analysis of the American Society of Brevving Chemists. 7lh revised ed. American Society of Brewing Chemists, St. Paul, MN.
  • Lark, K.G., K. Chase, F. Adler, L.M. Mansur, and J.H. Orf. 1995. Interactions betvveen quantitative trait loci in soybean in which trait variation at one locus in conditional upon a specific allele at another. Proc. Natl. Acad. Sci. USA 92:4656-4660.
  • Manninen, I., and A.H. Schulman. 1993. BARE-1, a copia-Uke retroelement in barley (Hordeum vulgare L). Plant Mol. Biol. 22:829-846.
  • Martin, J.M., T.K. Blake, and E.A. Hockett. 1991. Diversity among North American spring barley cultivars based on coefficients of parentage. Crop Sci. 31:1131-1137.
  • Matzke, M.A., F. Neuhuber, and A.J.M. Matzke. 1993. A variety of epistatic interactions can occur between partially homologous transgene loci brought together by sexual crossing. Molec. Gen. Genet. 236:379-386.
  • McClintock, B. 1984. The significance of responses of the genome to challenge. Science (Washington, DC) 226:792-801.
  • Miller, O.L., Jr., and B.R. Beatty. 1969. Visualization of nucleolar genes. Science (Washington, DC) 164:955-957.
  • Moore, C.W., and R.G. Creech. 1972. Genetic fine structure analysis of the amylose extender locus in Zea mays L. Genetics 70:611-619.
  • Moreno, G. 1994. Genetic architecture, genetic behavior, and character evolution. Annu. Rev. Ecol.Syst. 25:31-44.
  • Murphy, J.P., T.S. Cox, and D.M. Rodgers. 1986. Cluster analysis of red winter vvheat cultivars. Crop Sci. 26:672-676.
  • Nelson, O.E. 1962. The waxy locus in maize. I. Intralocus recombination frequency estimates by pollen and by conventional analysis. Genetics 47:737-742.
  • Olhoft, P., and R.L. Phillips. 1995. Genetic and epigenetic changes induced by maize tissue culture. p. 187-198. in induced mutations and molecular techniques for crop improvement. IAEA/FAO Symp. (IAEA-SM-340), Vienna. June 1995. IAEA, Vienna.
  • Pardue, M.L. 1991. Dynamic instability of chromosomes and genomes. Celi 66:427-431.
  • Peterson, G.A., and A.E. Foster. 1973. Malting barley in the United States. Adv. Agron. 25:327-378.
  • Peterson, P.A. 1993. Transposons in maize and their role in creating variability. p. 641-645. in D.R. Buxton et al. (ed.) International Crop Science I. CSSA, Madison, WI.
  • Phillips, R.L. 1978. Molecular cytogenetics of the nucleolus organizer region. p. 711-741. in D.B. Walden (ed.) Maize breeding and genetics. John Wiley & Sons, New York.
  • Phillips, R.L., S.M. Kaeppler, and P. Olhoft. 1994. Genetic instability of plant tissue cultures: Breakdovvn of normal controls. Proc. Natl. Acad. Sci. USA 91:5222-5226.
  • Prois, F., and P. Meyer. 1992. The methylation patterns of chromosomal integration regions influence gene activity of transferred DNA in Petunia hybrida. The Plant Journal 2:465-475.
  • Rasmusson, D.C. 1991. Barley breeding at present and in the future. p. 865-877. in L. Munck (ed.) Proc. ö"1 Int. Barley Genet. Symp. Helsingborg, Sweden. 22-27 July 1991. Munksgaard Intl. Publ. Ltd., Copenhagen K, Denmark.
  • Reed, S.M., and E.A. Wernsman. 1989. DNA amplification among anther-derived doubled haploid lines of tobacco and its relatioship to agronomic performance. Crop Sci. 29:1072-1076.
  • Richter, T.E., T.J. Pryor, J.L. Bennetzen, and S.H. Hulbert. 1995. New rust resistance specificities associated with recombination in the Rpl complex in maize. Genetics 141:373-381.
  • Rimpau, J., D.B. Smith, and R.B. Flavell. 1980. Sequence organization in barley and oats chromosomes revealed by interspecies DNA/DNA hybridization. Heredity 44:131-149.
  • Robbins, T.P., E.L. Walker, J.L. Kermicle, M. Alleman, and S.L. Dellaporta. 1991. Meiotic instability of the R-r complex arising from displaced intragenic exchange and intrachromosomal rearrangement. Genetics 129:271-283.
  • Russel, W.A., G.F. Sprague, and L.H. Penny. 1963. Mutations affecting quantitative characters in long-time inbred lines of maize. Crop Sci. 3:175-178.
  • Schoener, C.S., and W.R. Fehr. 1979. Utilization of plant introductions in soybean bredding populations. Crop Sci. 19:185-188.
  • Selker, E.U. 1990. Premeiotic instability of repeated sequences in Neurospora crassa. Annu. Rev. Genet. 24:579-613.
  • Shotkoski, F.A., and A.M. Fallon. 1993. An amplified mosquito dihydrofolate reductase gene: Amplicon size and chromosomal distribution. Insect Molec. Biol. 2:155-161.
  • Sprague, G.F., W.A. Russell, and L.H. Penny. 1960. Mutations affecting quantitative traits in selfed progeny of doubled monoploid maize stock. Genetics 45:855-865.
  • Springer, P.S., K.J. Edvvards, and J.L. Bennetzen. 1994. Novel organization of different DNA classes uncovered in maize Adhl yeast artificial chromosomes. Proc. Natl. Acad. Sci. USA 91:863-867.
  • Svveeney, P.M., and S.K. St. Martin. 1989. Testcross evaluation of exotic soybean germplasm of different origins. Crop Sci. 29:289-293.
  • Tartof, K.D. 1975. Redundant genes. Annu. Rev. Genet. 9:355-385.
  • Tuberosa, R., and R.L. Phillips. 1986. Isolation of methotrexatetolerant celi lines of corn. Maydica 31:215-225.
  • Vello, N.A., W.R. Fehr, and J.B. Bahrenfus. 1984. Genetic variability and agronomic performance of soybean populations developed from plant introductions. Crop Sci. 24:511-514.
  • WaIbot, V. 1992. Strategies for mutagenesis and gene cloning using transposon tagging and T-DNA insertional mutagenesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:49-82.
  • Wellhausen, E.J. 1978. Recent developments in maize breeding in the tropics. p. 59-84. in D.B. Walden (ed.) Maize breeding and genetics, John Wiley, New York.
  • Wych, R.D., and D.C. Rasmusson. 1983. Genetic improvement in malting barley cultivars since 1920. Crop Sci. 23:1037-1040.
There are 69 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Taner Akar

Publication Date June 1, 2001
Published in Issue Year 2001 Volume: 10 Issue: 1-2

Cite

APA Akar, T. (2001). BİTKİ ISLAHlNDAKİ BAŞARI VE ARTIRILMIŞ ÖRTÜCÜ GEN ETKİSİ İLE DE NOVO VARYASYONUNDAN SAĞLANAN GENETİK ÇEŞİTLİLİK. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 10(1-2).
AMA Akar T. BİTKİ ISLAHlNDAKİ BAŞARI VE ARTIRILMIŞ ÖRTÜCÜ GEN ETKİSİ İLE DE NOVO VARYASYONUNDAN SAĞLANAN GENETİK ÇEŞİTLİLİK. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi. June 2001;10(1-2).
Chicago Akar, Taner. “BİTKİ ISLAHlNDAKİ BAŞARI VE ARTIRILMIŞ ÖRTÜCÜ GEN ETKİSİ İLE DE NOVO VARYASYONUNDAN SAĞLANAN GENETİK ÇEŞİTLİLİK”. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi 10, no. 1-2 (June 2001).
EndNote Akar T (June 1, 2001) BİTKİ ISLAHlNDAKİ BAŞARI VE ARTIRILMIŞ ÖRTÜCÜ GEN ETKİSİ İLE DE NOVO VARYASYONUNDAN SAĞLANAN GENETİK ÇEŞİTLİLİK. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi 10 1-2
IEEE T. Akar, “BİTKİ ISLAHlNDAKİ BAŞARI VE ARTIRILMIŞ ÖRTÜCÜ GEN ETKİSİ İLE DE NOVO VARYASYONUNDAN SAĞLANAN GENETİK ÇEŞİTLİLİK”, Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, vol. 10, no. 1-2, 2001.
ISNAD Akar, Taner. “BİTKİ ISLAHlNDAKİ BAŞARI VE ARTIRILMIŞ ÖRTÜCÜ GEN ETKİSİ İLE DE NOVO VARYASYONUNDAN SAĞLANAN GENETİK ÇEŞİTLİLİK”. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi 10/1-2 (June 2001).
JAMA Akar T. BİTKİ ISLAHlNDAKİ BAŞARI VE ARTIRILMIŞ ÖRTÜCÜ GEN ETKİSİ İLE DE NOVO VARYASYONUNDAN SAĞLANAN GENETİK ÇEŞİTLİLİK. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi. 2001;10.
MLA Akar, Taner. “BİTKİ ISLAHlNDAKİ BAŞARI VE ARTIRILMIŞ ÖRTÜCÜ GEN ETKİSİ İLE DE NOVO VARYASYONUNDAN SAĞLANAN GENETİK ÇEŞİTLİLİK”. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, vol. 10, no. 1-2, 2001.
Vancouver Akar T. BİTKİ ISLAHlNDAKİ BAŞARI VE ARTIRILMIŞ ÖRTÜCÜ GEN ETKİSİ İLE DE NOVO VARYASYONUNDAN SAĞLANAN GENETİK ÇEŞİTLİLİK. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi. 2001;10(1-2).