Research Article
BibTex RIS Cite

Sera Isıtma Kapasitelerinin Mısır İklim Koşullarında Hesaplanması: Bir Bilgisayar Programı Kullanımı

Year 2024, Volume: 20 Issue: 1, 25 - 40, 30.04.2024

Abstract

Son nüfus projeksiyonlarına göre, dünya nüfusunun 2050 yılına kadar 9,8 milyara ulaşması ve bunun da küresel gıda güvenliği ve tatlı su kaynaklarının mevcudiyeti açısından önemli zorluklar yaratması beklenmektedir. Mısır'daki korumalı yetiştiricilik sektörü, kış mevsiminde toptan satış pazarlarına taze yapraklı sebze ve meyve tedarik ederek makul fiyatlarla yeterli miktarda ürün sunduğu için gıda güvenliğinin sağlanmasında çok önemli bir rol oynamaktadır. Seraların ve korumalı yetiştiriciliğin etkin yönetimi, iklim dinamiklerinin ve yetiştirilen ürünler için en uygun çevre koşullarının tam olarak anlaşılmasını gerektirir. Seralarda sağlam yönetim uygulamalarının hayata geçirilmesi için iklim değişkenlerinin çeşitli mevsimler boyunca bitki büyümesi ve üretimi üzerindeki etkisinin anlaşılması zorunludur. Isıtma ve soğutma sistemleri sera üretiminde önemli giderleri temsil etmektedir. Isıtma sistemlerinin yetersizliği, sera ürünlerinin kalitesi, verimi, yetiştirme süresi ve miktarı üzerinde zararlı sonuçlara yol açmaktadır. Bu nedenle, ısıtma maliyetlerinin doğru bir şekilde hesaplanması, işletme maliyetlerinin azaltılması için kritik öneme sahiptir. Bu çalışmada, seranın coğrafi konumu, ürün tipi, örtü malzemesi, ısıtma sistemi tipi ve seranın toprak alanı büyüklüğü gibi çeşitli faktörler dikkate alınarak seraların ısıtma taleplerini belirlemeyi amaçlayan bir bilgisayar programı geliştirilmiştir. Sonuçlar, Dakahlia ve Behara valiliklerinin sırasıyla çilek için 37.31 kW, biber için 27.8 kW ve çilek için 50.89 kW, biber için 40.62 kW olmak üzere en yüksek ısıtma ihtiyaçlarına sahip olduğunu ortaya koymaktadır. Bununla birlikte, Giza, Gharbia, Nubaria, Sharkia, Ismailia, Menoufia, Damietta, Kafr El-Sheikh ve Suez valiliklerinde sera içinde ısıtma gereksinimi bulunmamaktadır.

References

  • Abdelaty, E. F. (2015). GIS-Mapping aridity and rainfall water deficit of Egypt. Journal of Agricultural and Environmental Sciences, 14(2), 17-40.
  • Abdrabbo, M. A. A., Negm, A., Fath, H. E., and Javadi, A. (2019). Greenhouse management and best practice in Egypt. International Water Technology Journal, 9(4), 118-201.
  • Anonymous, (2009). Greenhouse heating and venting. http://www.gov.mb.ca/agriculture/crops/greenhouse/bng01s04.html, (Accessed: March, 2024).
  • Attar, I., and Farhat, A. (2015). Efficiency evaluation of a solar water heating system applied to the greenhouse climate. Solar Energy, 119, 212-224. https://doi.org/10.1016/j.solener.2015.06.040
  • Attar, I., Naili, N., Khalifa, N., Hazami, M., and Farhat, A. (2013). Parametric and numerical study of a solar system for heating a greenhouse equipped with a buried exchanger. Energy Conversion and Management, 70, 163-173. https://doi.org/10.1016/j.enconman.2013.02.017
  • Beyhan, B., Paksoy, H., and Daşgan, Y. (2013). Root zone temperature control with thermal energy storage in phase change materials for soilless greenhouse applications. Energy Conversion and Management, 74, 446-453. https://doi.org/10.1016/j.enconman.2013.06.047
  • Castilla, N., and Hernandez, J. (2006). Greenhouse technological packages for high-quality crop production. In XXVII International Horticultural Congress-IHC2006: International Symposium on Advances in Environmental Control, Automation 2006 (285-297) https://doi.org/10.17660/actahortic.2007.761
  • Chai, L., Ma, C., and Ni, J. Q. (2012). Performance evaluation of ground source heat pump system for greenhouse heating in Northern China. Biosystems Engineering, 111(1), 107-117. https://doi.org/10.1016/j.biosystemseng.2011.11.002
  • El Afandi, G., and Abdrabbo, M. (2015). Evaluation of reference evapotranspiration equations under current climate conditions of Egypt. Turkish Journal of Agriculture-Food Science and Technology, 3(10), 819 825. https://doi.org/10.24925/turjaf.v3i10.819-825.481
  • El-Gayar, Safya, A. M. Negm and M. A. A. Abdrabbo (2019). Greenhouse operation and management in Egypt. Handbook of Environmental Chemistry: Volume 74, 2019, Pages 489-560. https://doi.org/10.1007/698_2017_230
  • EP460, A. S. A. E. (2004). Commercial greenhouse design and layout. https://elibrary.asabe.org/abstract.asp?aid=45686
  • Gao, Z. (2012). Dehumidification of greenhouses in cold regions. University of Saskatchewan Saskatoon, Department of Chemical and Biological Engineering, Master Thesis. https://doi.org/10.13031/2013.41322
  • Gorjian, S., Calise, F., Kant, K., Ahamed, M. S., Copertaro, B., Najafi, G., Zhang, X., Aghael, M. and Shamshiri, R. R. (2021). A Review on opportunities for ımplementation of solar energy technologies in agricultural greenhouses. Journal of Cleaner Production, 285, 124807. https://doi.org/10.1016/j.jclepro.2020.124807
  • Hassanien, R. H. E., Li, M., and Lin, W. D. (2016). Advanced applications of solar energy in agricultural greenhouses. Renewable and Sustainable Energy Reviews, 54, 989-1001. https://doi.org/10.1016/j.rser.2015.10.095
  • Hassanien, R. H. E., Li, M., and Tang, Y. (2018). The evacuated tube solar collector assisted heat pump for heating greenhouses. Energy and Buildings, 169, 305-318. https://doi.org/10.1016/j.enbuild.2018.03.072
  • Heidari, M. D., and Omid, M. (2011). Energy use patterns and econometric models of major greenhouse vegetable productions in Iran. Energy, 36(1), 220-225. https://doi.org/10.1016/j.energy.2010.10.048
  • Hossard, L., Philibert, A., Bertrand, M., Colnenne-David, C., Debaeke, P., Munier-Jolain, N., and Makowski, D. (2014). Effects of halving pesticide use on wheat production. Scientific reports, 4(1), 1-7. https://doi.org/10.1038/srep04405
  • Kläring, H. P., Klopotek, Y., Krumbein, A., and Schwarz, D. (2015). The effect of reducing the heating set point on the photosynthesis, growth, yield and fruit quality in greenhouse tomato production. Agricultural and Forest Meteorology, 214, 178-188. https://doi.org/10.1016/j.agrformet.2015.08.250
  • Maheswara, R. K., Ananth, D. V. N., Mary, K. A., and Kumar, K. S. (2014). Performance evaluation of characteristics of DC motor based on MPPT solar pv system with battery storage system. Advances in Electronic and Electric Engineering, 4(1), 1-16.
  • MALR. (2019). Ministry of Agriculture and Land Reclamation (Egypt) n.d.>http://www.agr-egypt.gov.eg/<. (Accessed: 20 November 2023).
  • Munoz-Liesa, J., Royapoor, M., Cuerva, E., Gassó-Domingo, S., Gabarrell, X., and Josa, A. (2022). Building-integrated greenhouses raise energy co-benefits through active ventilation systems. Building and Environment, 208, 108585. https://doi.org/10.1016/j.buildenv.2021.108585
  • Noreldin, T., Ouda, S., and Amer, A. (2016). Agro-climatic zoning in Egypt to improve irrigation water management. Journal of Water and Land Development, 31(1), 113-117. https://doi.org/10.1515/jwld-2016-0041
  • Ponce, P., Molina, A., Cepeda, P., Lugo, E., and MacCleery, B. (2014). Greenhouse design and control. Boca Raton, FL, USA: CRC press. https://doi.org/10.1201/b17391
  • Rabbi, B., Chen, Z. H., and Sethuvenkatraman, S. (2019). Protected cropping in warm climates: A review of humidity control and cooling methods. Energies, 12(14), 2737. https://doi.org/10.3390/en12142737
  • Rizk, M. (1987). Wind characteristics and the available wind energy in Egypt. Solar & Wind Technology, 4(4), 491-499. https://doi.org/10.1016/0741-983x(87)90026-9
  • Sethi, V. P., and Sharma, S. K. (2008). Survey and evaluation of heating technologies for worldwide agricultural greenhouse applications. Solar Energy, 82(9), 832-859. https://doi.org/10.1016/j.solener.2008.02.010
  • Somerville, C., Cohen, M., Pantanella, E., Stankus, A., and Lovatelli, A. (2014). Small-scale aquaponic food production: Integrated fish and plant farming. FAO Fisheries and Aquaculture Technical Paper. https://openknowledge.fao.org/bitstreams/2ca21047-390f-42cd-bd1d-0c2ebc9c1df2/download
  • Soussi, M., Chaibi, M. T., Buchholz, M., and Saghrouni, Z. (2022). Comprehensive review on climate control and cooling systems in greenhouses under hot and arid conditions. Agronomy, 12(3), 626. https://doi.org/10.3390/agronomy12030626
  • Tazawa, S. (1999). Effects of various radiant sources on plant growth (Part 1). Japan Agricultural Research Quarterly, 33, 163-176.
  • Yavuzcan, G. (1995). İçsel tarım mekanizasyonu. Ankara Üniversitesi. Ziraat Fakültesi Yayınları No: 1416. Ders Kitabı No: 409.
  • Yıldız, A., Ozgener, O., and Ozgener, L. (2012). Energetic performance analysis of a solar photovoltaic cell (pv) assisted closed loop earth-to-air heat exchanger for solar greenhouse cooling: An experimental study for low energy architecture in Aegean Region. Renewable energy, 44, 281-287. https://doi.org/10.1016/j.renene.2012.01.091
  • Zhao, C., Chavan, S., He, X., Zhou, M., Cazzonelli, C. I., Chen, Z. H., and Ghannoum, O. (2021). Smart glass ımpacts stomatal sensitivity of greenhouse capsicum through altered light. Journal of Experimental Botany, 72(8), 3235-3248. https://doi.org/10.1093/jxb/erab028

Calculating Greenhouse Heating Capacities under Egypt's Climate Conditions: Using a Computational Program

Year 2024, Volume: 20 Issue: 1, 25 - 40, 30.04.2024

Abstract

According to recent projections, the world's population is anticipated to reach 9.8 billion by 2050, posing significant challenges to global food security and the availability of freshwater resources. The sector of protected cultivation in Egypt plays a pivotal role in ensuring food security, as it supplies wholesale markets with fresh leafy vegetables and fruits during the winter season, offering adequate quantities at reasonable prices. The effective management of greenhouses and protected cultivation necessitates a thorough understanding of climate dynamics and the optimal environmental conditions for cultivated crops. To implement sound management practices for greenhouses, it is imperative to comprehend the influence of climate variables on plant growth and production throughout various seasons. Heating and cooling systems represent significant expenses in greenhouse production. The inadequacy of heating systems has detrimental consequences on the quality, yield, cultivation duration, and quantity of greenhouse products. Therefore, the accurate calculation of the heating costs is critical to decrease the operating costs. In this study, a computer program was developed to calculate heating requirements for glasshouses according to geographical location, product type, cover material, heating system type, and the greenhouse's ground area size. The results reveal that Dakahlia and Behara governorates exhibited the highest heating requirements, with values of 37.31 kW for strawberry, 27.8 kW for pepper, 50.89 kW for strawberry, and 40.62 kW for pepper, respectively. Conversely, Giza, Gharbia, Nubaria, Sharkia, Ismailia, Menoufia, Damietta, Kafr El-Sheikh, and Suez governorates did not require heating inside the greenhouses.

References

  • Abdelaty, E. F. (2015). GIS-Mapping aridity and rainfall water deficit of Egypt. Journal of Agricultural and Environmental Sciences, 14(2), 17-40.
  • Abdrabbo, M. A. A., Negm, A., Fath, H. E., and Javadi, A. (2019). Greenhouse management and best practice in Egypt. International Water Technology Journal, 9(4), 118-201.
  • Anonymous, (2009). Greenhouse heating and venting. http://www.gov.mb.ca/agriculture/crops/greenhouse/bng01s04.html, (Accessed: March, 2024).
  • Attar, I., and Farhat, A. (2015). Efficiency evaluation of a solar water heating system applied to the greenhouse climate. Solar Energy, 119, 212-224. https://doi.org/10.1016/j.solener.2015.06.040
  • Attar, I., Naili, N., Khalifa, N., Hazami, M., and Farhat, A. (2013). Parametric and numerical study of a solar system for heating a greenhouse equipped with a buried exchanger. Energy Conversion and Management, 70, 163-173. https://doi.org/10.1016/j.enconman.2013.02.017
  • Beyhan, B., Paksoy, H., and Daşgan, Y. (2013). Root zone temperature control with thermal energy storage in phase change materials for soilless greenhouse applications. Energy Conversion and Management, 74, 446-453. https://doi.org/10.1016/j.enconman.2013.06.047
  • Castilla, N., and Hernandez, J. (2006). Greenhouse technological packages for high-quality crop production. In XXVII International Horticultural Congress-IHC2006: International Symposium on Advances in Environmental Control, Automation 2006 (285-297) https://doi.org/10.17660/actahortic.2007.761
  • Chai, L., Ma, C., and Ni, J. Q. (2012). Performance evaluation of ground source heat pump system for greenhouse heating in Northern China. Biosystems Engineering, 111(1), 107-117. https://doi.org/10.1016/j.biosystemseng.2011.11.002
  • El Afandi, G., and Abdrabbo, M. (2015). Evaluation of reference evapotranspiration equations under current climate conditions of Egypt. Turkish Journal of Agriculture-Food Science and Technology, 3(10), 819 825. https://doi.org/10.24925/turjaf.v3i10.819-825.481
  • El-Gayar, Safya, A. M. Negm and M. A. A. Abdrabbo (2019). Greenhouse operation and management in Egypt. Handbook of Environmental Chemistry: Volume 74, 2019, Pages 489-560. https://doi.org/10.1007/698_2017_230
  • EP460, A. S. A. E. (2004). Commercial greenhouse design and layout. https://elibrary.asabe.org/abstract.asp?aid=45686
  • Gao, Z. (2012). Dehumidification of greenhouses in cold regions. University of Saskatchewan Saskatoon, Department of Chemical and Biological Engineering, Master Thesis. https://doi.org/10.13031/2013.41322
  • Gorjian, S., Calise, F., Kant, K., Ahamed, M. S., Copertaro, B., Najafi, G., Zhang, X., Aghael, M. and Shamshiri, R. R. (2021). A Review on opportunities for ımplementation of solar energy technologies in agricultural greenhouses. Journal of Cleaner Production, 285, 124807. https://doi.org/10.1016/j.jclepro.2020.124807
  • Hassanien, R. H. E., Li, M., and Lin, W. D. (2016). Advanced applications of solar energy in agricultural greenhouses. Renewable and Sustainable Energy Reviews, 54, 989-1001. https://doi.org/10.1016/j.rser.2015.10.095
  • Hassanien, R. H. E., Li, M., and Tang, Y. (2018). The evacuated tube solar collector assisted heat pump for heating greenhouses. Energy and Buildings, 169, 305-318. https://doi.org/10.1016/j.enbuild.2018.03.072
  • Heidari, M. D., and Omid, M. (2011). Energy use patterns and econometric models of major greenhouse vegetable productions in Iran. Energy, 36(1), 220-225. https://doi.org/10.1016/j.energy.2010.10.048
  • Hossard, L., Philibert, A., Bertrand, M., Colnenne-David, C., Debaeke, P., Munier-Jolain, N., and Makowski, D. (2014). Effects of halving pesticide use on wheat production. Scientific reports, 4(1), 1-7. https://doi.org/10.1038/srep04405
  • Kläring, H. P., Klopotek, Y., Krumbein, A., and Schwarz, D. (2015). The effect of reducing the heating set point on the photosynthesis, growth, yield and fruit quality in greenhouse tomato production. Agricultural and Forest Meteorology, 214, 178-188. https://doi.org/10.1016/j.agrformet.2015.08.250
  • Maheswara, R. K., Ananth, D. V. N., Mary, K. A., and Kumar, K. S. (2014). Performance evaluation of characteristics of DC motor based on MPPT solar pv system with battery storage system. Advances in Electronic and Electric Engineering, 4(1), 1-16.
  • MALR. (2019). Ministry of Agriculture and Land Reclamation (Egypt) n.d.>http://www.agr-egypt.gov.eg/<. (Accessed: 20 November 2023).
  • Munoz-Liesa, J., Royapoor, M., Cuerva, E., Gassó-Domingo, S., Gabarrell, X., and Josa, A. (2022). Building-integrated greenhouses raise energy co-benefits through active ventilation systems. Building and Environment, 208, 108585. https://doi.org/10.1016/j.buildenv.2021.108585
  • Noreldin, T., Ouda, S., and Amer, A. (2016). Agro-climatic zoning in Egypt to improve irrigation water management. Journal of Water and Land Development, 31(1), 113-117. https://doi.org/10.1515/jwld-2016-0041
  • Ponce, P., Molina, A., Cepeda, P., Lugo, E., and MacCleery, B. (2014). Greenhouse design and control. Boca Raton, FL, USA: CRC press. https://doi.org/10.1201/b17391
  • Rabbi, B., Chen, Z. H., and Sethuvenkatraman, S. (2019). Protected cropping in warm climates: A review of humidity control and cooling methods. Energies, 12(14), 2737. https://doi.org/10.3390/en12142737
  • Rizk, M. (1987). Wind characteristics and the available wind energy in Egypt. Solar & Wind Technology, 4(4), 491-499. https://doi.org/10.1016/0741-983x(87)90026-9
  • Sethi, V. P., and Sharma, S. K. (2008). Survey and evaluation of heating technologies for worldwide agricultural greenhouse applications. Solar Energy, 82(9), 832-859. https://doi.org/10.1016/j.solener.2008.02.010
  • Somerville, C., Cohen, M., Pantanella, E., Stankus, A., and Lovatelli, A. (2014). Small-scale aquaponic food production: Integrated fish and plant farming. FAO Fisheries and Aquaculture Technical Paper. https://openknowledge.fao.org/bitstreams/2ca21047-390f-42cd-bd1d-0c2ebc9c1df2/download
  • Soussi, M., Chaibi, M. T., Buchholz, M., and Saghrouni, Z. (2022). Comprehensive review on climate control and cooling systems in greenhouses under hot and arid conditions. Agronomy, 12(3), 626. https://doi.org/10.3390/agronomy12030626
  • Tazawa, S. (1999). Effects of various radiant sources on plant growth (Part 1). Japan Agricultural Research Quarterly, 33, 163-176.
  • Yavuzcan, G. (1995). İçsel tarım mekanizasyonu. Ankara Üniversitesi. Ziraat Fakültesi Yayınları No: 1416. Ders Kitabı No: 409.
  • Yıldız, A., Ozgener, O., and Ozgener, L. (2012). Energetic performance analysis of a solar photovoltaic cell (pv) assisted closed loop earth-to-air heat exchanger for solar greenhouse cooling: An experimental study for low energy architecture in Aegean Region. Renewable energy, 44, 281-287. https://doi.org/10.1016/j.renene.2012.01.091
  • Zhao, C., Chavan, S., He, X., Zhou, M., Cazzonelli, C. I., Chen, Z. H., and Ghannoum, O. (2021). Smart glass ımpacts stomatal sensitivity of greenhouse capsicum through altered light. Journal of Experimental Botany, 72(8), 3235-3248. https://doi.org/10.1093/jxb/erab028
There are 32 citations in total.

Details

Primary Language English
Subjects Agricultural Machine Systems, Agricultural Energy Systems
Journal Section Articles
Authors

Nashwa Ghaly 0009-0001-5002-0494

Gürkan A. K. Gürdil 0000-0001-7764-3977

Hüseyin Duran 0000-0002-2740-8941

Bahadır Demirel 0000-0002-2650-1167

Early Pub Date April 30, 2024
Publication Date April 30, 2024
Submission Date March 28, 2024
Acceptance Date April 24, 2024
Published in Issue Year 2024 Volume: 20 Issue: 1

Cite

APA Ghaly, N., Gürdil, G. A. K., Duran, H., Demirel, B. (2024). Calculating Greenhouse Heating Capacities under Egypt’s Climate Conditions: Using a Computational Program. Tarım Makinaları Bilimi Dergisi, 20(1), 25-40.

Tarım Makinaları Bilimi Dergisi, Tarım Makinaları Derneği tarafından yılda 3 sayı olarak yayınlanan hakemli bilimsel bir dergidir.