Research Article
BibTex RIS Cite

Effects of pyrolysis temperature on some of physical and chemical characteristics of biochars

Year 2020, Volume: 8 Issue: 1, 1 - 13, 24.06.2020
https://doi.org/10.33409/tbbbd.756797

Abstract

In this study, various physical and chemical properties of biochars produced by slow pyrolysis at 3 different temperatures (300, 400 and 600 ºC) from seven different feedstocks were determined and compared in terms of agricultural production. Tomato wastes (stem, roots and leaves), poplar sawdust, wheat straw, corncob, bean plant wastes, rice husk and cattle manure were used as raw materials. Yield, specific surface area (SSA), field capacity (FC), wilting point (WP) and available water contents (AWC), pH, electrical conductivity (EC), cation exchange capacity (CEC), total carbon (TC) and nitrogen (TN), calcium (Ca), magnesium (Mg), potassium (K), zinc (Zn), iron (Fe), copper (Cu) and manganese (Mn) concentrations of biochars produced were determined. Increasing the pyrolysis temperature from 300 ºC to 600 ºC resulted in a decrease in yield and SSA of all biochar types. The most significant decrease in SSA was observed in sawdust in which the surface area was reduced from 758.3 m2 g-1 (300 ºC) to 250.8 m2 g-1 (600 ºC). The increase in pyrolysis temperature caused a non-significant increase in FC, WP and AWC. The pH values of all biochar types significantly increase with the increase in the pyrolysis temperature. However, EC values were not significantly affected by increase in temperature. The CEC values significantly varied depending on the biochar types. The CEC value at 300 ºC was between 33.47 and 88.16 cmolc kg-1, while it was between 41.87 and 78.68 cmolc kg-1 at 400 ºC, and between 23.27 and 68.03 cmolc kg-1 at 600 ºC. The TC content of the biochar produced from cattle manure decreased with the increase in temperature, no change was observed in the bean biochar, but the TC content of the other five biochars increased. The increase in temperature led to a significant decrease in the TN content especially after 400 ºC. Increasing the pyrolysis temperature from 300 to 600 ºC in all biochar types led to an increase in P and K contents. The results indicated that the yields and properties of biochars strongly depend on the pyrolysis temperature. The biochars with high pH and EC values and micro (Cu, Fe, Zn and Mn) and macro (P, K, Ca and Mg) contents were produced at high pyrolysis temperature (600 ºC).

References

  • Ahmad M, Lee SS, Dou X, Mohan D, Sung J-K, Yang JE, 2012. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Biores. Techn., 118:536–44.
  • Al-Wabel MI, Al-Omran A, El-Naggar AH, Nadeem M, Usman AR, 2013. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Biores. Technology, 131:374-379.
  • Angin, D, 2013. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Biores. Tech., 128: 593–597.
  • Banik C, Lawrinenko M, Bakshi S, Laird DA, 2018. Impact of pyrolysis temperature and feedstock on surface charge and functional group chemistry of biochars. J. Envir. Qual., 47:452–461.
  • Bayram Ö, 2016. Farklı tarımsal atıklardan üretilen biyocharların çeşitli fiziksel ve kimyasal özelliklerinin belirlenmesi. Gaziosmanpaşa Üniversitesi, Fen Bilimleri Enstitüsü. Yüksek Lisans Tezi. YÖK Tez No: 420461.
  • Brady NC, Weil RR, 1999. The nature and properties of soil 12th ed. Mac. Pub. Com. New York.
  • Bruun TB, Elberling B, Neergaard AD, Magid J, 2015. Organic carbon dynamics in different soil types after conversion of forest to agriculture. Land Degrad. Dev. 26:272–283.
  • Chandra S, Bhattacharya J, 2019. Influence of temperature and duration of pyrolysis on the property heterogeneity of rice straw biochar and optimization of pyrolysis conditions for its application in soils. J. Cleaner Prod., 215:1123-1139.
  • Chen FS, Yavitt J, Hu XF, 2014. Phosphorus enrichment helps increase soil carbon mineralization in vegetation along an urban-to-rural gradient, Nanchang, China. Appl. Soil Ecol., 75:181–188.
  • Cerato A, Lutenegger A, 2002. Determination of surface area of fine-grained soils by the ethylene glycol monoethyl ether (EGME) method. Geotech. Test. J. 25(3):1-7.
  • Das O, Sarmah AK, 2015. The love-hate relationship of pyrolysis biochar and water: a perspective. Sci Total Environ., 682(5):512-513.
  • Gray M, Johnson MG, Dragila MI, Kleber M, 2014. Water uptake in biochars: the roles of porosity and hydrophobicity. Biomass Bioenergy, 61:196-205.
  • Günal E, 2018. Sıvı Hayvan Gübresi ile Zenginleştirilmiş Biyoçarların Ekmeklik Buğdayın Gelişimi, Besin Elementi Alımı ve Toprak Kalitesine Etkileri. Tokat Gaziosmanpaşa Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi. s. 345. YÖK Tez No: 516795.
  • Joseph SD, Camps-Arbestain M, Lin Y, Munroe P, Chia CH, Hook J, Van Zwieten L, Kimber S, Cowie A, Singh BP, ve ark. 2010. An investigation into the reactions of biochar in soil. Soil Research. 48:501–515.
  • Inyang M, Dickenson E, 2015. The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review. Chemosphere, 34: 232–240.
  • Ippolito J, Spokas K, Novak J, Lentz R, Cantrell K, 2015. Biochar elemental composition and factors influencing nutrient retention. In: Lehman J, Joseph S, editors. Biochar Environ Management, New York.
  • Kacar B, İnal A, 2008. Bitki Analizleri. Nobel Yayın No:1241, 892 s.
  • Kammann CI, Linsel S, Gößling JW, Koyro HW, 2011. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil-plant relations. Plant Soil 345:195-210.
  • Khanmohammadi Z, Afyuni M, Mosaddeghi M.R, 2015. Effect of pyrolysis temperature on chemical and physical properties of sewage sludge biochar. Waste Manag. Res. 33(3):275-283.
  • Kloss S, Zehetner F, Dellantonio A, Hamid R, Ottner F, Liedtke V, Schwanninger M, Gerzabek MH, Soja G, 2012. Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties. J. Environ. Qual., 41:90-1000.
  • Klute A, 1986. Water Retention: Laboratory Methods. Methods of Soil Analysis. Part1. 2nd Ed. Agronomy 9. Am. Soc. Agron., 635-660, Madison.
  • Lee Y, Park J, Ryu C, Gang KS, Yang W, Park YK, Hyun S, 2013. Comparison of biyoçar properties from biomass residues produced by slow pyrolysis at 500 C. Bioresour. Tech., 148:196-201.
  • Lehmann J, Joseph S, 2009. Biyoçar for Environmental Management: An Introduction. Lehmann, J., Joseph, S. (Eds.). Biyoçar for environmental management: science and technology. Earthscan. pp. 1-12.
  • Li HB, Dong XL, Evandro BS, Letuzia MO, Chen YS, Lena QM, 2017. Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178:466–478.
  • Mahawar N, Goyal P, Lakhiwal S, Jain S, 2015. Agro Waste: A New Eco- Friendly Energy Resource. Int. Res. J. Environ. Sci. 4:47-49.
  • McLean EO, 1982. Soil pH and lime requirement. Methods of soil analysis. Part 2. Chemical and microbiological properties, pp. 199-224.
  • Mukherjee A, Zimmerman AR. Harris W, 2011. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma, 163(3-4):247-255.
  • Novak J, Lima I, Xing B, Gaskin JW, Steiner C, Das KC, Ahmedna M, Rehrah D, Watts DW, Busscher WJ, 2009. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann. Environ. Sci., 3:195–206.
  • Pereira RC, Kaal J, Arbestain MC, Lorenz RP, Aitkenhead W, Hedley M, Macíasc F, Hindmarshd Maciá-Agullóe JA, 2011. Contribution to characterization of biochar to estimate the labile fraction of carbon. Org. Geochem. 42(11):1331–1342.
  • Sarfraz R, Shakoor A, Abdullah M, Arooj A, Hussain A, Xing S, 2017. Impact of integrated application of biochar and nitrogen fertilizers on maize growth and nitrogen recovery in alkaline calcareous Soil. J. Soil Sci. Plant Nutr., 63:488–498.
  • Sarfraz R, Li S, Yang W, Zhou B, Xing S, 2019. Assessment of physicochemical and nutritional characteristics of waste mushroom substrate biochar under various pyrolysis temperatures and times. Sustainability, 11(1), 277.
  • Singh BP, Joseph S, 2011. The mean residence time of biochar-mineral complexes in soil. In Proceedings of the Asia Pacific Biochar Conference 2011, Kyoto, Japan, 15–18 September 2011; Volume 2119.
  • Sizmur T, Quilliam R, Puga AP, Moreno-Jiménez E, Beesley L, Gomez-Eyles JL, 2015. Application of Biyoçar for Soil Remediation. Agricultural and Environmental Applications of Biyoçar: Advances and Barriers, (sssaspecpub63)
  • Sohi SP, 2012. Carbon storage with benefits. Science 338:1034-1035.
  • Sumner ME, Miller WP, 1996. Cation exchange capacity, and exchange coefficients. In: D.L. Sparks (ed.) Methods of soil analysis. Part 2: Chemical properties (3rd ed.). ASA, SSSA, CSSA, Madison, WI.
  • Sun J, He F, Pan Y, Zhang Z, 2017. Effects of pyrolysis temperature and residence time on physicochemical properties of different biochar types. Acta Agric. Scand. Sect. B Soil Plant Sci. 67:12–22.
  • Tabatabai MA, 1994. Soil enzymes. Pages 775-833 in R.W. Weaver, S. Angle, P.Bottomley, D. Bezdicek, S. Smith, A. Tabatabai, and A. Wollum, editors. Methods of soil analysis. Part 2. Microbiological and biochemical properties. Soil Sci. Society of America, Segoe, Wisconsin, USA.
  • Tarpeh WA, Udert KM, Nelson KL, 2017. Comparing ion exchange adsorbents for nitrogen recovery from Source-Separated urine. Env. Sci. Technol. 51:2373–2381.
  • Uchimiya M, Hiradate S, 2014. Pyrolysis temperature-dependent changes in dissolved phosphorus speciation of plant and manure biochars. J. Agric. Food Chem., 62:1802–1809.
  • Xu D, Cao J, Li Y, Howard A, Yu K, 2019. Effect of pyrolysis temperature on characteristics of biochars derived from different feedstocks: A case study on ammonium adsorption capacity. Waste Manage., 87:652-660.
  • Yin QQ, Wang RK, Zhao ZH, 2018. Application of Mg-Al-modified biochar for simultaneous removal of ammonium, nitrate, and phosphate from eutrophic water. J. Clean Prod. 176:230–240.
  • Yuan JH, Xu RK, Zhang H, 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 102:3488–3497.
  • Weber K, Quicker P, 2018. Properties of biochar. Fuel 217:240–261.
  • Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S, 2010. Sustainable biyoçar to mitigate global climate change. Nat. Commun. 1. Article Number 56.
  • Wu W, Yang M, Feng Q, McGrouther K, Wang H, Lu H, Chen Y, 2012. Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenergy 47:268–276.
  • Zhang H, Chen C, Gray EM, Boyd SE, Yang H, Zhang D, 2016. Roles of biochar in improving phosphorus availability in soils: A phosphate adsorbent and a source of available phosphorus. Geoderma, 276:1–6.
  • Zhang H, Chen C, Gray EM, Boyd SE, 2017. Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy. Biomass and Bioenergy, 105, 136-146.

Piroliz sıcaklığının biyoçarların bazı fiziksel ve kimyasal özellikleri üzerine etkileri

Year 2020, Volume: 8 Issue: 1, 1 - 13, 24.06.2020
https://doi.org/10.33409/tbbbd.756797

Abstract

Bu çalışmada, yedi farklı hammaddeden 3 farklı sıcaklıkta (300, 400 ve 600 ºC) piroliz ile elde edilen biyoçarların çeşitli fiziksel ve kimyasal özellikleri belirlenmiş ve bitki yetiştiriciliği açısından karşılaştırılmaları yapılmıştır. Çalışmada, bölgede kolaylıkla temin edilebilen domates atıkları (sap, gövde ve yaprakları), kavak talaşı, buğday samanı, mısır koçanı, fasulye atıkları, çeltik kavuzu ve büyükbaş hayvan gübresi hammadde olarak kullanılmıştır. Üretilen biyoçarların, verimi, spesifik yüzey alanları (SYA), tarla kapasitesi (TK), solma noktası (SN) ve yarayışlı su içerikleri (YSİ), pH, elektriksel iletkenlik (EC), katyon değişim kapasitesi (KDK), toplam karbon (C) ve azot (N), kalsiyum (Ca), magnezyum (Mg), potasyum (K), çinko (Zn), demir (Fe), bakır (Cu) ve mangan (Mn) konsantrasyonları belirlenmiştir. Piroliz sıcaklığının 300 ºC’den 600 ºC’ye çıkarılması tüm biyoçar çeşitlerinde üretilen biyoçar miktarında ve SYA’nında azalmaya neden olmuştur. SYA’daki en belirgin azalma 300 ºC’de 758.3 m2 g-1 olan yüzey alanı 600 ºC’de 250.8 m2 g-1‘e düşen kavak talaşı olmuştur. Piroliz sıcaklığının artışı istatistiksel olarak önemli olmamakla birlikte TK, SN ve YSİ’nde artışa neden olmuştur. Nem içeriklerinde olduğu gibi, piroliz sıcaklığının artışı tüm biyoçar çeşitlerinin pH değerlerinin istatistiksel olarak önemli düzeyde artmasına neden olmuştur. Bununla birlikte EC değerleri sıcaklık artışından önemli düzeyde etkilenmemiştir. Biyoçar çeşidine bağlı olarak önemli ölçüde değişkenlik gösteren KDK değerleri 300 ºC’lik piroliz sıcaklığında 33.47 cmolc kg-1’den 88.16 cmolc kg-1’a, 400 ºC’de 41.87 cmolc kg-1’den 78.68 cmolc kg-1’e ve 600 ºC’de ise 23.27 cmolc kg-1’den 68.03 cmolc kg-1’e kadar değişkenlik göstermiştir. Sıcaklık artışı ile büyükbaş hayvan gübresinden üretilen biyoçarın toplam karbon içeriği azalırken fasulye biyoçarında bir değişim olmamış ancak diğer beş biyoçarın karbon içeriği artmıştır. Sıcaklık artışı özellikle 400 ºC’den sonra toplam N içeriğinin önemli düzeyde azalmasına yol açmıştır. Tüm biyoçar çeşitlerinde piroliz sıcaklığının 300 ºC’den 600 ºC’ye çıkarılması P ve K içeriklerinin artışına yol açmıştır. Sonuçlar, biyoçarların verimlerinin ve özelliklerinin piroliz sıcaklığına bağlı olarak önemli oranda değiştiğini göstermiştir. Yüksek sıcaklıkta (600 °C) üretilen biyoçarların çoğunlukla daha yüksek pH ve EC değerlerine ve mikro (Cu, Fe, Zn ve Mn) ve makro (P, K, Ca ve Mg) element konsantrasyonlarına sahip olduğu belirlenmiştir.

References

  • Ahmad M, Lee SS, Dou X, Mohan D, Sung J-K, Yang JE, 2012. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Biores. Techn., 118:536–44.
  • Al-Wabel MI, Al-Omran A, El-Naggar AH, Nadeem M, Usman AR, 2013. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Biores. Technology, 131:374-379.
  • Angin, D, 2013. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Biores. Tech., 128: 593–597.
  • Banik C, Lawrinenko M, Bakshi S, Laird DA, 2018. Impact of pyrolysis temperature and feedstock on surface charge and functional group chemistry of biochars. J. Envir. Qual., 47:452–461.
  • Bayram Ö, 2016. Farklı tarımsal atıklardan üretilen biyocharların çeşitli fiziksel ve kimyasal özelliklerinin belirlenmesi. Gaziosmanpaşa Üniversitesi, Fen Bilimleri Enstitüsü. Yüksek Lisans Tezi. YÖK Tez No: 420461.
  • Brady NC, Weil RR, 1999. The nature and properties of soil 12th ed. Mac. Pub. Com. New York.
  • Bruun TB, Elberling B, Neergaard AD, Magid J, 2015. Organic carbon dynamics in different soil types after conversion of forest to agriculture. Land Degrad. Dev. 26:272–283.
  • Chandra S, Bhattacharya J, 2019. Influence of temperature and duration of pyrolysis on the property heterogeneity of rice straw biochar and optimization of pyrolysis conditions for its application in soils. J. Cleaner Prod., 215:1123-1139.
  • Chen FS, Yavitt J, Hu XF, 2014. Phosphorus enrichment helps increase soil carbon mineralization in vegetation along an urban-to-rural gradient, Nanchang, China. Appl. Soil Ecol., 75:181–188.
  • Cerato A, Lutenegger A, 2002. Determination of surface area of fine-grained soils by the ethylene glycol monoethyl ether (EGME) method. Geotech. Test. J. 25(3):1-7.
  • Das O, Sarmah AK, 2015. The love-hate relationship of pyrolysis biochar and water: a perspective. Sci Total Environ., 682(5):512-513.
  • Gray M, Johnson MG, Dragila MI, Kleber M, 2014. Water uptake in biochars: the roles of porosity and hydrophobicity. Biomass Bioenergy, 61:196-205.
  • Günal E, 2018. Sıvı Hayvan Gübresi ile Zenginleştirilmiş Biyoçarların Ekmeklik Buğdayın Gelişimi, Besin Elementi Alımı ve Toprak Kalitesine Etkileri. Tokat Gaziosmanpaşa Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi. s. 345. YÖK Tez No: 516795.
  • Joseph SD, Camps-Arbestain M, Lin Y, Munroe P, Chia CH, Hook J, Van Zwieten L, Kimber S, Cowie A, Singh BP, ve ark. 2010. An investigation into the reactions of biochar in soil. Soil Research. 48:501–515.
  • Inyang M, Dickenson E, 2015. The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review. Chemosphere, 34: 232–240.
  • Ippolito J, Spokas K, Novak J, Lentz R, Cantrell K, 2015. Biochar elemental composition and factors influencing nutrient retention. In: Lehman J, Joseph S, editors. Biochar Environ Management, New York.
  • Kacar B, İnal A, 2008. Bitki Analizleri. Nobel Yayın No:1241, 892 s.
  • Kammann CI, Linsel S, Gößling JW, Koyro HW, 2011. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil-plant relations. Plant Soil 345:195-210.
  • Khanmohammadi Z, Afyuni M, Mosaddeghi M.R, 2015. Effect of pyrolysis temperature on chemical and physical properties of sewage sludge biochar. Waste Manag. Res. 33(3):275-283.
  • Kloss S, Zehetner F, Dellantonio A, Hamid R, Ottner F, Liedtke V, Schwanninger M, Gerzabek MH, Soja G, 2012. Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties. J. Environ. Qual., 41:90-1000.
  • Klute A, 1986. Water Retention: Laboratory Methods. Methods of Soil Analysis. Part1. 2nd Ed. Agronomy 9. Am. Soc. Agron., 635-660, Madison.
  • Lee Y, Park J, Ryu C, Gang KS, Yang W, Park YK, Hyun S, 2013. Comparison of biyoçar properties from biomass residues produced by slow pyrolysis at 500 C. Bioresour. Tech., 148:196-201.
  • Lehmann J, Joseph S, 2009. Biyoçar for Environmental Management: An Introduction. Lehmann, J., Joseph, S. (Eds.). Biyoçar for environmental management: science and technology. Earthscan. pp. 1-12.
  • Li HB, Dong XL, Evandro BS, Letuzia MO, Chen YS, Lena QM, 2017. Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178:466–478.
  • Mahawar N, Goyal P, Lakhiwal S, Jain S, 2015. Agro Waste: A New Eco- Friendly Energy Resource. Int. Res. J. Environ. Sci. 4:47-49.
  • McLean EO, 1982. Soil pH and lime requirement. Methods of soil analysis. Part 2. Chemical and microbiological properties, pp. 199-224.
  • Mukherjee A, Zimmerman AR. Harris W, 2011. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma, 163(3-4):247-255.
  • Novak J, Lima I, Xing B, Gaskin JW, Steiner C, Das KC, Ahmedna M, Rehrah D, Watts DW, Busscher WJ, 2009. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann. Environ. Sci., 3:195–206.
  • Pereira RC, Kaal J, Arbestain MC, Lorenz RP, Aitkenhead W, Hedley M, Macíasc F, Hindmarshd Maciá-Agullóe JA, 2011. Contribution to characterization of biochar to estimate the labile fraction of carbon. Org. Geochem. 42(11):1331–1342.
  • Sarfraz R, Shakoor A, Abdullah M, Arooj A, Hussain A, Xing S, 2017. Impact of integrated application of biochar and nitrogen fertilizers on maize growth and nitrogen recovery in alkaline calcareous Soil. J. Soil Sci. Plant Nutr., 63:488–498.
  • Sarfraz R, Li S, Yang W, Zhou B, Xing S, 2019. Assessment of physicochemical and nutritional characteristics of waste mushroom substrate biochar under various pyrolysis temperatures and times. Sustainability, 11(1), 277.
  • Singh BP, Joseph S, 2011. The mean residence time of biochar-mineral complexes in soil. In Proceedings of the Asia Pacific Biochar Conference 2011, Kyoto, Japan, 15–18 September 2011; Volume 2119.
  • Sizmur T, Quilliam R, Puga AP, Moreno-Jiménez E, Beesley L, Gomez-Eyles JL, 2015. Application of Biyoçar for Soil Remediation. Agricultural and Environmental Applications of Biyoçar: Advances and Barriers, (sssaspecpub63)
  • Sohi SP, 2012. Carbon storage with benefits. Science 338:1034-1035.
  • Sumner ME, Miller WP, 1996. Cation exchange capacity, and exchange coefficients. In: D.L. Sparks (ed.) Methods of soil analysis. Part 2: Chemical properties (3rd ed.). ASA, SSSA, CSSA, Madison, WI.
  • Sun J, He F, Pan Y, Zhang Z, 2017. Effects of pyrolysis temperature and residence time on physicochemical properties of different biochar types. Acta Agric. Scand. Sect. B Soil Plant Sci. 67:12–22.
  • Tabatabai MA, 1994. Soil enzymes. Pages 775-833 in R.W. Weaver, S. Angle, P.Bottomley, D. Bezdicek, S. Smith, A. Tabatabai, and A. Wollum, editors. Methods of soil analysis. Part 2. Microbiological and biochemical properties. Soil Sci. Society of America, Segoe, Wisconsin, USA.
  • Tarpeh WA, Udert KM, Nelson KL, 2017. Comparing ion exchange adsorbents for nitrogen recovery from Source-Separated urine. Env. Sci. Technol. 51:2373–2381.
  • Uchimiya M, Hiradate S, 2014. Pyrolysis temperature-dependent changes in dissolved phosphorus speciation of plant and manure biochars. J. Agric. Food Chem., 62:1802–1809.
  • Xu D, Cao J, Li Y, Howard A, Yu K, 2019. Effect of pyrolysis temperature on characteristics of biochars derived from different feedstocks: A case study on ammonium adsorption capacity. Waste Manage., 87:652-660.
  • Yin QQ, Wang RK, Zhao ZH, 2018. Application of Mg-Al-modified biochar for simultaneous removal of ammonium, nitrate, and phosphate from eutrophic water. J. Clean Prod. 176:230–240.
  • Yuan JH, Xu RK, Zhang H, 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 102:3488–3497.
  • Weber K, Quicker P, 2018. Properties of biochar. Fuel 217:240–261.
  • Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S, 2010. Sustainable biyoçar to mitigate global climate change. Nat. Commun. 1. Article Number 56.
  • Wu W, Yang M, Feng Q, McGrouther K, Wang H, Lu H, Chen Y, 2012. Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenergy 47:268–276.
  • Zhang H, Chen C, Gray EM, Boyd SE, Yang H, Zhang D, 2016. Roles of biochar in improving phosphorus availability in soils: A phosphate adsorbent and a source of available phosphorus. Geoderma, 276:1–6.
  • Zhang H, Chen C, Gray EM, Boyd SE, 2017. Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy. Biomass and Bioenergy, 105, 136-146.
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Articles
Authors

Burhan Akkurt This is me 0000-0002-0722-4889

Hikmet Günal This is me 0000-0002-4648-2645

Halil Erdem 0000-0002-3296-1549

Elif Günal This is me 0000-0003-0624-2919

Publication Date June 24, 2020
Published in Issue Year 2020 Volume: 8 Issue: 1

Cite

APA Akkurt, B., Günal, H., Erdem, H., Günal, E. (2020). Piroliz sıcaklığının biyoçarların bazı fiziksel ve kimyasal özellikleri üzerine etkileri. Toprak Bilimi Ve Bitki Besleme Dergisi, 8(1), 1-13. https://doi.org/10.33409/tbbbd.756797
AMA Akkurt B, Günal H, Erdem H, Günal E. Piroliz sıcaklığının biyoçarların bazı fiziksel ve kimyasal özellikleri üzerine etkileri. tbbbd. June 2020;8(1):1-13. doi:10.33409/tbbbd.756797
Chicago Akkurt, Burhan, Hikmet Günal, Halil Erdem, and Elif Günal. “Piroliz sıcaklığının biyoçarların Bazı Fiziksel Ve Kimyasal özellikleri üzerine Etkileri”. Toprak Bilimi Ve Bitki Besleme Dergisi 8, no. 1 (June 2020): 1-13. https://doi.org/10.33409/tbbbd.756797.
EndNote Akkurt B, Günal H, Erdem H, Günal E (June 1, 2020) Piroliz sıcaklığının biyoçarların bazı fiziksel ve kimyasal özellikleri üzerine etkileri. Toprak Bilimi ve Bitki Besleme Dergisi 8 1 1–13.
IEEE B. Akkurt, H. Günal, H. Erdem, and E. Günal, “Piroliz sıcaklığının biyoçarların bazı fiziksel ve kimyasal özellikleri üzerine etkileri”, tbbbd, vol. 8, no. 1, pp. 1–13, 2020, doi: 10.33409/tbbbd.756797.
ISNAD Akkurt, Burhan et al. “Piroliz sıcaklığının biyoçarların Bazı Fiziksel Ve Kimyasal özellikleri üzerine Etkileri”. Toprak Bilimi ve Bitki Besleme Dergisi 8/1 (June 2020), 1-13. https://doi.org/10.33409/tbbbd.756797.
JAMA Akkurt B, Günal H, Erdem H, Günal E. Piroliz sıcaklığının biyoçarların bazı fiziksel ve kimyasal özellikleri üzerine etkileri. tbbbd. 2020;8:1–13.
MLA Akkurt, Burhan et al. “Piroliz sıcaklığının biyoçarların Bazı Fiziksel Ve Kimyasal özellikleri üzerine Etkileri”. Toprak Bilimi Ve Bitki Besleme Dergisi, vol. 8, no. 1, 2020, pp. 1-13, doi:10.33409/tbbbd.756797.
Vancouver Akkurt B, Günal H, Erdem H, Günal E. Piroliz sıcaklığının biyoçarların bazı fiziksel ve kimyasal özellikleri üzerine etkileri. tbbbd. 2020;8(1):1-13.