Research Article
BibTex RIS Cite

Yabani nohut genotiplerinin yüksek buhar basıncı açıklığında stoma iletkenlik indeksi değişimleri

Year 2020, Volume: 8 Issue: 2, 128 - 136, 30.12.2020
https://doi.org/10.33409/tbbbd.789236

Abstract

Yaygın olarak yetiştirilen kültür nohutları içerisinde kurağa ve sıcağa dayanım yönünden genetik varyasyon çok geniş değildir. Bu nedenle nohutta yabani türlerden dayanıklılık kaynaklarının ortaya çıkarılması önem arz etmektedir. Bu çalışmada yabani nohut genotiplerinin yüksek buhar basıncı açıklığı (VPD) koşullarında stoma iletkenlik indeksi değişimleri yüksek sıcaklık stresine tepki yönünden değerlendirilmiştir. Deneme materyali 26 yabani nohut genotipi ve 4 nohut çeşidinden oluşmaktadır. 26 yabani nohut genotipinin 20 tanesi Cicer reticulatum, 6 tanesi Cicer echinospermum türü içinde yer almaktadır. Bitkiler ölçüm zamanına kadar Dicle
Üniversitesi Ziraat Fakültesi sera koşullarında tesadüf blokları deneme desenine göre 4 tekerrürlü olarak yetiştirilmiştir. Ölçümler kontrollü koşullarda sıcaklık ve nem ayarlanarak oluşturulan yüksek VPD stresi altında çiçeklenme öncesi ve bakla dolum döneminde gerçekleştirilmiştir. Her iki dönemde genotipler arasında bitki sıcaklığı ve stoma iletkenlik indeksi (lg) yönünden önemli farklılıklar belirlenmiştir. Genel anlamda yüksek genotipik varyasyona sahip yabani nohut genotiplerinde bitki sıcaklığı ve stoma iletkenliği yönünden değişim sınırları çok geniş bulunmuştur. Yabani türlerde çiçeklenme öncesi dönemde ortalama lg kültür enotiplerinden
yüksekken, generatif dönemde düşük bulunmuştur. Yüksek lg değeri genotiplerde bitki serinleme yeteneği ve yüksek transpirasyonun göstergesi olmuştur. Çiçeklenme öncesi dönemde 11, bakla dolum döneminde ise 5 yabani nohut genotipinde lg değeri kültür çeşitleri ortalamasından daha yüksek bulunmuştur. Yabani türlerden C. reticulatum’da lg değeri her iki dönemde de C. echinospermum genotip ortalamalarından yüksek bulunmuştur. Eğil-073 ve Sırnak 060 yabani genotipleri her iki dönemde kültür genotiplerinden yüksek lg’ye
sahip olarak, sıcaklık stresine karşı stabil dayanım göstermiştir. Sonuçlar mevcut genotiplerin nohutta sıcağa ve kurağa dayanıklılık ıslah programlarında başlangıç materyali olarak kullanılabileceğini göstermektedir.

Supporting Institution

Dicle Üniversitesi

Project Number

DÜPAP ZİRAAT.17.026

Thanks

Bu çalışma Dicle Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından DÜPAP ZİRAAT.17.026 nolu proje ile desteklenmiştir.

References

  • Amthor JS, 2001. Effects of atmospheric CO2 concentration on wheat yield: review of results from experiments using various approaches to control CO2 concentration. Field Crops Research, 73: 1-34.
  • Bahar B, Yildirim M, Barutcular C, 2009. Relationships between stomatal conductance and yield components in spring durum wheat under Mediterranean conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(2), 45-48.
  • Bahar B, Yıldırım M, Yucel C, 2011. Heat and drought resistance criteria in spring bread wheat (Triticum aestivum L.): Morpho-physiological parameters for heat tolerance. Scientific Research and Essays, 6 (10): 2212-2220.
  • Bavec F, Bavec M, 2001. Chlorophyll meter readings of winter wheat cultivars and grain yield prediction. Commun. Soil Sci. Plant Anal. Res., 32: 2709-2719.
  • Belko N, Zaman-Allah M, Cisse N, Diop NN, Zombre G, Ehlers JD, Vadez V, 2012. Lower soil moisture threshold for transpiration decline under water deficit correlates with lower canopy conductance and higher transpiration efficiency in drought-tolerant cowpea. Functional Plant Biology, 39 (4): 306-322.
  • Croser JS, Ahmad F, Clarke HJ, Siddique KHM, 2003. Utilisation of wild Cicer in chickpea improvement-progress, constraints, and prospects. Australian Journal of Agricultural Research, 54 (5): 429-444.
  • Fang X, Turner NC, Yan G, Li F, Siddique KHM, 2010. Flower numbers, pod production, pollen viability, and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought Journal of Experimental Botany, 61 (2): 335-345.
  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA, 2009. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29: 185-212.
  • Fischer RA, Rees D, Sayre KD, Lu ZM, Condon AG, Larque-Saavedra A, 1998. Wheat yield progress is associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci., 38: 1467-1475.
  • Grant OM, Tronina L, Jones HG, Chaves MM, 2007. Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes. J. Exp. Bot. 58 (4), 815–825.
  • Jones HG, 1999. Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agricultural and forest meteorology, 95(3):139-149.
  • Jones HG, Serraj R, Loveys BR, Xiong LZ, Wheaton A, Price AH, 2009. Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct. Plant Biol. 36 (10–11), 978–989.
  • Idso SB, Jackson RD, Pinter PJ, Reginato RJ, Hatfield JL, 1981. Normalizing the stress-degree-day parameter for environmental variability. Agric. Meteorol. 24 (1), 45–55.
  • Kaukoranta T, Murto J, Takala J, Tahvonen R, 2005. Detection of water deficit in greenhouse cucumber by infrared thermography and reference surfaces. Sci. Hortic. 106 (4), 447–463.
  • Koç M, Barutcular C, Genç Đ, 2003. Photosynthesis and productivity of old and modern durum wheats in a Mediterraean Enivironment. Crop Science; 43, 6; 2089-2097.
  • Koç M, Barutçular C, Tiryakioğlu M, 2008. Possible heat-tolerant cultivar improvement through the use of flag leaf gas exchange traits in a Mediterranean environment. J Sci Food Agric. Res., 88: 1638-1647.
  • Maes W, Achten WMJ, Reubens B, Muys B, 2011. Monitoring stomatal conductance of Jatropha curcas seedlings under different levels of water shortage with infrared thermography. Agricultural and Forest Meteorology, 151(5), 554-564.
  • Möller M, Alchanatis V, Cohen Y, Meron M, Tsipris J, Naor A, Ostrovsky V, Sprintsin M, Cohen S, 2007. Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. J. Exp. Bot. 58 (4), 827–838.
  • Rashid MA, Andersen MN, Wollenweber B, Zhang X, Olesen JE, 2018. Acclimation to higher VPD and temperature minimized negative effects on assimilation and grain yield of wheat. Agricultural and forest meteorology, 248:119-129.
  • Reen RA, Mumford MH, Thompson JP, 2019. Novel sources of resistance to root-lesion nematode (Pratylenchus thornei) in a new collection of wild Cicer species (C. reticulatum and C. echinospermum) to improve resistance in cultivated chickpea (C. arietinum). Phytopathology, 109(7), 1270-1279.
  • Reynolds MP, Balota M, Delgado MIB, Amani I, Fischer RA, 1994. Physiological and morphological traits associated with spring wheat yield under hot irrigated conditions. Aust. J. Plant Physiol. Res., 21:717- 730.
  • Reynolds MP, Nagarajan S, Razzaque MA, Ageeb OAA, 2001. Heat tolerance. “Alınmıştır: Application of physiology in wheat breeding. (Editörler: M.P. Reynolds, I. Ortiz- Monasterio., A. McNab). Mexico, DF, CIMMYT. Robertson LD, Ocampo B, Singh KB, 1997. Morphological variation in wild annual Cicer species in comparison to the cultigen. Euphytica, 95 (3): 309-319.
  • Singh KB, Ocampo B, Robertson LD, 1998. Diversity for abiotic and biotic stress resistance in the wild annual Cicer species. Genetic Resources and Crop Evolution, 45 (1): 9-17.
  • Soltani A, Galeshi S, 2002. Importance of rapid canopy closure for wheat production in a temperate sub-humid environment: experimentation and simulation. Field Crops Research, 77:17-30.
  • Upadhyaya HD, Kashiwagi J, Varshney RK, Gaur PM, Saxena KB, Krishnamurthy L, Gowda CLL, Pundir RPS, Chaturverdi SK, Basu PS, Singh IP, 2010. Phenotyping chickpeas and pigeonpeas for adaptation to drought. Monneveux, P, Ribaut, J.M. Drought phenotyping in crops: from theory to practice. Generation Challenge Programme. Cultivating Plant Diversity For the Resource-Poor, 347-355, India.
  • von Wettberg EJ, Chang PL, Basdemir F, Carrasquila-Garcia N, Korbu LB, Moenga SM, Bedada G, Greenlon A, Cook DR, 2018. Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation. Nature communications, 9 (1): 649.
  • Yang Z, Sinclair TR, Zhu M, Messina CD, Cooper M,. Hammer GL, 2012. Temperature effect on transpiration response of maize plants to vapour pressure deficit. Environmental and Experimental Botany, 78: 157-162.
  • Yildirim M, Akinci C, Müjde KOÇ, Barutçular C, 2009. Bitki örtüsü serinliği ve klorofil miktarının makarnalık buğday ıslahında kullanım olanakları. Anadolu Tarım Bilimleri Dergisi, 24 (3): 158-166.
  • Zaman-Allah M, Jenkinson DM, Vadez V, 2011a. Chickpea genotypes contrasting for seed yield under terminal drought stress in the field differ for traits related to the control of water use. Functional Plant Biology, 38 (4): 270-281.
  • Zaman-Allah M, Jenkinson DM, Vadez V, 2011b. A conservative pattern of water use, rather than deep or profuse rooting, is critical for the terminal drought tolerance of chickpea. Journal of Experimental Botany, 62 (12): 4239-4252.

Stomatal conductance index changes in wild cicer genotypes at high vapor pressure deficit

Year 2020, Volume: 8 Issue: 2, 128 - 136, 30.12.2020
https://doi.org/10.33409/tbbbd.789236

Abstract

Genetic variation in resistance to drought and heat stress is not very large among cultivated chickpeas. Hence, revealing the sources of resilience from wild species in chickpea is important. In this study, changes in the stomatal conductance index of wild chickpea genotypes were evaluated in terms of response to high temperature stress under high vapor pressure deficit (VPD) conditions. The research material is composed of 26 genotypes of wild chickpea and 4 varieties of cultivated chickpea. The Cicer reticulatum contains 20 of the 26 wild chickpea genotypes, and the Cicer echinospermum genus contains 6. Before the plants were easured, in the Dicle University Faculty of Agriculture were grown to the randomized complete bloc design with 4 replications in the greenhouse conditions. The measures were performed before flowering and pod filling in controlled conditions, generating high VPD stress through temperature and humidity adjustment. In general, the limits of change in plant temperature and stomatal conductivity were found very broad in wild chickpea genotypes with high genotypic variation. While the average lg was higher than the cultivar genotypes in the wild species during the pre-flowering period, it was found lower in the generative period. The high lg value suggested plant cooling capability and high transpiration in genotypes. 11 wild chickpea genotypes in the vegetative period and 5 wild chickpea genotypes in the generative period had a higher lg value than the average cultivar value. lg in C. reticulatum was found to be higher than C. echinospermum genotype in both periods of the wild species. In both periods, the w i l d genotypes of Eğil-073 and Sırnak 060 have a higher lg than the cultivar genotypes and showed stable resistance to heat stress. The findings show that existing genotypes could be used as pre-breeding material in chickpea breeding programs for heat and drought resistance.

Project Number

DÜPAP ZİRAAT.17.026

References

  • Amthor JS, 2001. Effects of atmospheric CO2 concentration on wheat yield: review of results from experiments using various approaches to control CO2 concentration. Field Crops Research, 73: 1-34.
  • Bahar B, Yildirim M, Barutcular C, 2009. Relationships between stomatal conductance and yield components in spring durum wheat under Mediterranean conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(2), 45-48.
  • Bahar B, Yıldırım M, Yucel C, 2011. Heat and drought resistance criteria in spring bread wheat (Triticum aestivum L.): Morpho-physiological parameters for heat tolerance. Scientific Research and Essays, 6 (10): 2212-2220.
  • Bavec F, Bavec M, 2001. Chlorophyll meter readings of winter wheat cultivars and grain yield prediction. Commun. Soil Sci. Plant Anal. Res., 32: 2709-2719.
  • Belko N, Zaman-Allah M, Cisse N, Diop NN, Zombre G, Ehlers JD, Vadez V, 2012. Lower soil moisture threshold for transpiration decline under water deficit correlates with lower canopy conductance and higher transpiration efficiency in drought-tolerant cowpea. Functional Plant Biology, 39 (4): 306-322.
  • Croser JS, Ahmad F, Clarke HJ, Siddique KHM, 2003. Utilisation of wild Cicer in chickpea improvement-progress, constraints, and prospects. Australian Journal of Agricultural Research, 54 (5): 429-444.
  • Fang X, Turner NC, Yan G, Li F, Siddique KHM, 2010. Flower numbers, pod production, pollen viability, and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought Journal of Experimental Botany, 61 (2): 335-345.
  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA, 2009. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29: 185-212.
  • Fischer RA, Rees D, Sayre KD, Lu ZM, Condon AG, Larque-Saavedra A, 1998. Wheat yield progress is associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci., 38: 1467-1475.
  • Grant OM, Tronina L, Jones HG, Chaves MM, 2007. Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes. J. Exp. Bot. 58 (4), 815–825.
  • Jones HG, 1999. Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agricultural and forest meteorology, 95(3):139-149.
  • Jones HG, Serraj R, Loveys BR, Xiong LZ, Wheaton A, Price AH, 2009. Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct. Plant Biol. 36 (10–11), 978–989.
  • Idso SB, Jackson RD, Pinter PJ, Reginato RJ, Hatfield JL, 1981. Normalizing the stress-degree-day parameter for environmental variability. Agric. Meteorol. 24 (1), 45–55.
  • Kaukoranta T, Murto J, Takala J, Tahvonen R, 2005. Detection of water deficit in greenhouse cucumber by infrared thermography and reference surfaces. Sci. Hortic. 106 (4), 447–463.
  • Koç M, Barutcular C, Genç Đ, 2003. Photosynthesis and productivity of old and modern durum wheats in a Mediterraean Enivironment. Crop Science; 43, 6; 2089-2097.
  • Koç M, Barutçular C, Tiryakioğlu M, 2008. Possible heat-tolerant cultivar improvement through the use of flag leaf gas exchange traits in a Mediterranean environment. J Sci Food Agric. Res., 88: 1638-1647.
  • Maes W, Achten WMJ, Reubens B, Muys B, 2011. Monitoring stomatal conductance of Jatropha curcas seedlings under different levels of water shortage with infrared thermography. Agricultural and Forest Meteorology, 151(5), 554-564.
  • Möller M, Alchanatis V, Cohen Y, Meron M, Tsipris J, Naor A, Ostrovsky V, Sprintsin M, Cohen S, 2007. Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. J. Exp. Bot. 58 (4), 827–838.
  • Rashid MA, Andersen MN, Wollenweber B, Zhang X, Olesen JE, 2018. Acclimation to higher VPD and temperature minimized negative effects on assimilation and grain yield of wheat. Agricultural and forest meteorology, 248:119-129.
  • Reen RA, Mumford MH, Thompson JP, 2019. Novel sources of resistance to root-lesion nematode (Pratylenchus thornei) in a new collection of wild Cicer species (C. reticulatum and C. echinospermum) to improve resistance in cultivated chickpea (C. arietinum). Phytopathology, 109(7), 1270-1279.
  • Reynolds MP, Balota M, Delgado MIB, Amani I, Fischer RA, 1994. Physiological and morphological traits associated with spring wheat yield under hot irrigated conditions. Aust. J. Plant Physiol. Res., 21:717- 730.
  • Reynolds MP, Nagarajan S, Razzaque MA, Ageeb OAA, 2001. Heat tolerance. “Alınmıştır: Application of physiology in wheat breeding. (Editörler: M.P. Reynolds, I. Ortiz- Monasterio., A. McNab). Mexico, DF, CIMMYT. Robertson LD, Ocampo B, Singh KB, 1997. Morphological variation in wild annual Cicer species in comparison to the cultigen. Euphytica, 95 (3): 309-319.
  • Singh KB, Ocampo B, Robertson LD, 1998. Diversity for abiotic and biotic stress resistance in the wild annual Cicer species. Genetic Resources and Crop Evolution, 45 (1): 9-17.
  • Soltani A, Galeshi S, 2002. Importance of rapid canopy closure for wheat production in a temperate sub-humid environment: experimentation and simulation. Field Crops Research, 77:17-30.
  • Upadhyaya HD, Kashiwagi J, Varshney RK, Gaur PM, Saxena KB, Krishnamurthy L, Gowda CLL, Pundir RPS, Chaturverdi SK, Basu PS, Singh IP, 2010. Phenotyping chickpeas and pigeonpeas for adaptation to drought. Monneveux, P, Ribaut, J.M. Drought phenotyping in crops: from theory to practice. Generation Challenge Programme. Cultivating Plant Diversity For the Resource-Poor, 347-355, India.
  • von Wettberg EJ, Chang PL, Basdemir F, Carrasquila-Garcia N, Korbu LB, Moenga SM, Bedada G, Greenlon A, Cook DR, 2018. Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation. Nature communications, 9 (1): 649.
  • Yang Z, Sinclair TR, Zhu M, Messina CD, Cooper M,. Hammer GL, 2012. Temperature effect on transpiration response of maize plants to vapour pressure deficit. Environmental and Experimental Botany, 78: 157-162.
  • Yildirim M, Akinci C, Müjde KOÇ, Barutçular C, 2009. Bitki örtüsü serinliği ve klorofil miktarının makarnalık buğday ıslahında kullanım olanakları. Anadolu Tarım Bilimleri Dergisi, 24 (3): 158-166.
  • Zaman-Allah M, Jenkinson DM, Vadez V, 2011a. Chickpea genotypes contrasting for seed yield under terminal drought stress in the field differ for traits related to the control of water use. Functional Plant Biology, 38 (4): 270-281.
  • Zaman-Allah M, Jenkinson DM, Vadez V, 2011b. A conservative pattern of water use, rather than deep or profuse rooting, is critical for the terminal drought tolerance of chickpea. Journal of Experimental Botany, 62 (12): 4239-4252.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Articles
Authors

Fatma Başdemir 0000-0002-1086-5628

Mehmet Yıldırım 0000-0003-2421-4399

Project Number DÜPAP ZİRAAT.17.026
Publication Date December 30, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Başdemir, F., & Yıldırım, M. (2020). Yabani nohut genotiplerinin yüksek buhar basıncı açıklığında stoma iletkenlik indeksi değişimleri. Toprak Bilimi Ve Bitki Besleme Dergisi, 8(2), 128-136. https://doi.org/10.33409/tbbbd.789236
AMA Başdemir F, Yıldırım M. Yabani nohut genotiplerinin yüksek buhar basıncı açıklığında stoma iletkenlik indeksi değişimleri. tbbbd. December 2020;8(2):128-136. doi:10.33409/tbbbd.789236
Chicago Başdemir, Fatma, and Mehmet Yıldırım. “Yabani Nohut Genotiplerinin yüksek Buhar basıncı açıklığında Stoma Iletkenlik Indeksi değişimleri”. Toprak Bilimi Ve Bitki Besleme Dergisi 8, no. 2 (December 2020): 128-36. https://doi.org/10.33409/tbbbd.789236.
EndNote Başdemir F, Yıldırım M (December 1, 2020) Yabani nohut genotiplerinin yüksek buhar basıncı açıklığında stoma iletkenlik indeksi değişimleri. Toprak Bilimi ve Bitki Besleme Dergisi 8 2 128–136.
IEEE F. Başdemir and M. Yıldırım, “Yabani nohut genotiplerinin yüksek buhar basıncı açıklığında stoma iletkenlik indeksi değişimleri”, tbbbd, vol. 8, no. 2, pp. 128–136, 2020, doi: 10.33409/tbbbd.789236.
ISNAD Başdemir, Fatma - Yıldırım, Mehmet. “Yabani Nohut Genotiplerinin yüksek Buhar basıncı açıklığında Stoma Iletkenlik Indeksi değişimleri”. Toprak Bilimi ve Bitki Besleme Dergisi 8/2 (December 2020), 128-136. https://doi.org/10.33409/tbbbd.789236.
JAMA Başdemir F, Yıldırım M. Yabani nohut genotiplerinin yüksek buhar basıncı açıklığında stoma iletkenlik indeksi değişimleri. tbbbd. 2020;8:128–136.
MLA Başdemir, Fatma and Mehmet Yıldırım. “Yabani Nohut Genotiplerinin yüksek Buhar basıncı açıklığında Stoma Iletkenlik Indeksi değişimleri”. Toprak Bilimi Ve Bitki Besleme Dergisi, vol. 8, no. 2, 2020, pp. 128-36, doi:10.33409/tbbbd.789236.
Vancouver Başdemir F, Yıldırım M. Yabani nohut genotiplerinin yüksek buhar basıncı açıklığında stoma iletkenlik indeksi değişimleri. tbbbd. 2020;8(2):128-36.