Research Article
BibTex RIS Cite

Demir noksanlığı şartlarında yetiştirilen çeltik çeşitlerinin taze köklerinde fitosiderofor üretimi ve ferrik redüktaz aktivitesi ile yapraklarında kloroz dereceleri

Year 2021, Volume: 9 Issue: 1, 8 - 14, 17.06.2021
https://doi.org/10.33409/tbbbd.901788

Abstract

Bu çalışmanın amacı, demir noksanlığı şartlarında yetiştirilen çeltik çeşitlerinin taze köklerinde fitosiderofor üretimi ve ferrik
redüktaz aktivitesi ile yapraklarında kloroz derecelerini belirlemektir. Fitosiderofor salgısı üretimi ve ferrik redüktaz aktivitesi
belirlemek amacıyla çeltik çeşitleri 10 gün süreyle demirsiz besin çözeltisi uygulayarak kum kültüründe yetiştirilmiştir. Ayrıca,
kloroz derecesinin ve kloroza tolerans indeks değerinin belirlenmesi amacıyla 5×2 faktöriyel deneme deseninde çalışma
yürütülmüş olup, bu çalışmada 5 farklı çeltik çeşidine 0 ve 45 µM Fe dozlarında Fe-EDDHA içeren besin çözeltisi uygulanmıştır. Taze
kökte üretilen fitosiderofor miktarı en yüksek olan çeşidin Hamzadere çeltik çeşidi olduğu görülmüştür. Köklerde fitosiderofor
üretimleri bakımından geri kalan diğer çeşitler arası fark istatistiksel olarak önemsiz olup, birbirlerine yakın bulunmuştur. Demir
noksanlığı şartlarında yetiştirilen çeltik çeşitleri arasında taze köklerde ferrik redüktaz aktivitesi en yüksek olan çeşidin Ronaldo
çeltik çeşidi olduğu; buna karşın, en düşük çeşidin ise Biga incisi çeltik çeşidi olduğu görülmüştür. Hamzadere ve Ronaldo çeltik
çeşitlerinin yapraklarında gözlenen kloroz derecesi şiddetli olup, bu çeşitlerin demir noksanlığına tolerans indeks değerleri
sırasıyla %41.24 ve %41.52 olarak hesaplanmıştır. Bu sonuçlara göre, araştırmada incelenen çeltik çeşitleri arasında demir
noksanlığına en hassas çeşidin Hamzadere çeltik çeşidi olduğu belirlenmiştir.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Andiç E, 2011. Buğday’da kükürt-demir ve kükürt-çinko beslenmesinin mikro besin elementi ve azot konsantrasyonuna etkisi. Yüksek Lisans Tezi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana.
  • Bienfait HF, 1989. Prevention of stress in iron metabolism of plants. Acta Bot. Neerl., 38:105-129.
  • Briat J-F, Dubos C, Gaymard F, 2015. Iron nutrition, biomass production, and plant product quality. Trends Plant Sci., 20(1):33-40.
  • Daşgan HY, Romheld V, Çakmak I, Abak K, 2002. Physiological root responses of iron deficiency susceptible and tolerant tomato genotypes and their reciprocal F1 hybrids. Plant Soil, 241:97-104.
  • Deiana S, Premoli A, Senette C, Gessa C, 2003. Role of uronic acid polymers on the availability of iron to plants. J. Plant Nutr., 26(10-11):1927-1941.
  • Epstein E, Bloom AJ, 2005. Mineral Nutrition of Plants: Principles and Perspectives, 2nd Edn. Sunderland, MA: Sinauer.
  • Hell R, Stephan UW, 2003. Iron uptake, trafficking and homeostasis in plants. Planta, 216: 541-551.
  • Higuchi K, Kanazawa K, Nishizawa NK, Mori S, 1996. The role of nicotianamine synthase in response to Fe nutrition status in Gramineae. Plant Soil, 178(2):171-177. doi: 10.1007/BF00011580
  • Hirai M, Higuchi K, Sasaki H, Suzuki T, Maruyama T, Yoshiba M, Tadano T, 2007. Contribution of iron associated with high-molecular-weight substances to the maintenance of the SPAD value of youg leaves of barley under iron-deficient conditions. Soil Sci. Plant Nutr., 53(5):612-620.
  • Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK, 2003. Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in longdistance transport of iron and differentially regulated by iron. Plant J., 36:366-381.
  • Lindsay WL, Schwab AP, 1982. The chemistry of iron in soils and its availability to plants. J. Plant Nutr., 5:821-840.
  • Lucena C, Waters BM, Romera FJ, Garcia MJ, Morales M, Alcantara E, Perez-Vicente R, 2006. Ethylene could influence ferric reductase, iron transporter, and H+ -ATPase gene expression by affecting FER (or FER-like) gene activity. J. Exp. Bot., 57(15):4145-4154.
  • Markwell J, Osterman J, Mitchell J, 1995. Calibration of the Minolta SPAD-502 leaf chlorophlyll meter. Photosynth., 46(3):467-472.
  • Masuda, M, Shimochi E, Hamada T, Senoura T, Kobayashi T, Aung MS, Ishimaru Y, Ogo Y, Nakanishi H, Nishizawa NK, 2017. A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil. PLoS ONE 12 (3).
  • Mori S, Nishizawa N, Hayashi H, Chino M, Yoshimura E, Ishihara J, 1991. Why are young rice plants highly susceptible to iron deficiency? Plant Soil, 130(1):143-156.
  • Nozoye T, Nagasaka S, Bashir K, Takahashi M, Kobayashi, T, Nakanishi H, Nishizawa NK, 2014. Nicotianamine synthase 2 localizes to the vesicles of iron-deficient rice roots, and its mutation in the YXXφ or LL motif causes the disruption of vesicle formation or movement in rice. Plant J., 77(2):246-60. doi: 10.1111/tpj.12383
  • Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Uozumi N, Nakanishi H, Nsihizawa NK, 2011. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J. Biol. Chem., 286(7):5446-5454.
  • Ojeda M, Schaffer B, Davies FS, 2004. Root and leaf ferric chelate reductase activity in pond apple and soursop. J. Plant Nutr., 27:1381-1393.
  • Richardson AD, Duigan SP, Berlyn GP, 2002. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol., 153(1):185-194.
  • Rogers EE, Guerinot ML, 2002. FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis, Plant Cell, 14:1787-1799.
  • Romheld V, Marschner, H, 1986. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol., 80:175-180.
  • Rroco E, Kosegarten H, Harizaj F, Imani J, Mengel K, 2003. The importance of soil microbial activity for the supply of iron to sorghum and rape. Eur. J. Agron., 19: 487-493.
  • Takagi S, Kamei S, Takemoto T, 1984. Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J. Plant Nutr., 7:469-477.
  • Torun A, Erdem H, Torun MB, 2017. Ayçiçeği genotiplerinin demir noksanlığına karşı tolerans düzeylerinin belirlenmesi. Türk Tarım-Gıda Bilim ve Teknolojisi Dergisi, 5 (11):1323-1329.
  • Vasconcelos MW, Musetti W, Li CM, Datta SK, Grusak MA, 2004. Functional analysis of transgenic rice (Oryza Sativa L.) transformed with and Arabidopsis thaliana ferric reductase (AtFRO2). Soil Sci. Plant Nutr., 50(7):1151-1157.

Ferric reductase activity and production of phytosiderophore in fresh roots of rice varieties grown under iron deficiency conditions and chlorosis degrees in leaves

Year 2021, Volume: 9 Issue: 1, 8 - 14, 17.06.2021
https://doi.org/10.33409/tbbbd.901788

Abstract

The aim of this study is to determine ferric reductase activity and production of phytosiderophore in fresh roots of rice varıeties
grown under iron deficiency conditions and chlorosis degrees in leaves In order to determine phytosiderophore secretion
production and ferric reductase activity, rice varieties were grown in sand culture by applying iron-free nutrient solution for 10
days. In addition, a 5×2 factorial trial design was conducted to determine the degree of chlorosis and the tolerance index value to
chlorosis in rice varieties. In this study, a nutrient solution containing Fe-EDDHA in doses of 0 and 45 µM Fe was applied to 5
different rice varieties. Among the rice varieties, the most phytosiderophores produced in fresh roots were found in the Hamzadere
rice variety. The difference between the remaining varieties in terms of phytosiderophore production in the roots was statistically
insignificant and was found to be close to each other. Among the rice varieties grown under iron deficiency conditions, it was
determined that Ronaldo variety had the highest ferric reductase activity in fresh roots, whereas the lowest variety was Biga İncisi
variety. The degree of chlorosis observed in the leaves of Hamzadere and Ronaldo rice varieties was found to be severe, and the
tolerance index values of these varieties for iron deficiency were calculated as 41.24% and 41.52%, respectively. According to these
results, it was determined that the most susceptible variety to iron deficiency among the rice varieties examined in the study was
Hamzadere rice variety.

Project Number

-

References

  • Andiç E, 2011. Buğday’da kükürt-demir ve kükürt-çinko beslenmesinin mikro besin elementi ve azot konsantrasyonuna etkisi. Yüksek Lisans Tezi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana.
  • Bienfait HF, 1989. Prevention of stress in iron metabolism of plants. Acta Bot. Neerl., 38:105-129.
  • Briat J-F, Dubos C, Gaymard F, 2015. Iron nutrition, biomass production, and plant product quality. Trends Plant Sci., 20(1):33-40.
  • Daşgan HY, Romheld V, Çakmak I, Abak K, 2002. Physiological root responses of iron deficiency susceptible and tolerant tomato genotypes and their reciprocal F1 hybrids. Plant Soil, 241:97-104.
  • Deiana S, Premoli A, Senette C, Gessa C, 2003. Role of uronic acid polymers on the availability of iron to plants. J. Plant Nutr., 26(10-11):1927-1941.
  • Epstein E, Bloom AJ, 2005. Mineral Nutrition of Plants: Principles and Perspectives, 2nd Edn. Sunderland, MA: Sinauer.
  • Hell R, Stephan UW, 2003. Iron uptake, trafficking and homeostasis in plants. Planta, 216: 541-551.
  • Higuchi K, Kanazawa K, Nishizawa NK, Mori S, 1996. The role of nicotianamine synthase in response to Fe nutrition status in Gramineae. Plant Soil, 178(2):171-177. doi: 10.1007/BF00011580
  • Hirai M, Higuchi K, Sasaki H, Suzuki T, Maruyama T, Yoshiba M, Tadano T, 2007. Contribution of iron associated with high-molecular-weight substances to the maintenance of the SPAD value of youg leaves of barley under iron-deficient conditions. Soil Sci. Plant Nutr., 53(5):612-620.
  • Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK, 2003. Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in longdistance transport of iron and differentially regulated by iron. Plant J., 36:366-381.
  • Lindsay WL, Schwab AP, 1982. The chemistry of iron in soils and its availability to plants. J. Plant Nutr., 5:821-840.
  • Lucena C, Waters BM, Romera FJ, Garcia MJ, Morales M, Alcantara E, Perez-Vicente R, 2006. Ethylene could influence ferric reductase, iron transporter, and H+ -ATPase gene expression by affecting FER (or FER-like) gene activity. J. Exp. Bot., 57(15):4145-4154.
  • Markwell J, Osterman J, Mitchell J, 1995. Calibration of the Minolta SPAD-502 leaf chlorophlyll meter. Photosynth., 46(3):467-472.
  • Masuda, M, Shimochi E, Hamada T, Senoura T, Kobayashi T, Aung MS, Ishimaru Y, Ogo Y, Nakanishi H, Nishizawa NK, 2017. A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil. PLoS ONE 12 (3).
  • Mori S, Nishizawa N, Hayashi H, Chino M, Yoshimura E, Ishihara J, 1991. Why are young rice plants highly susceptible to iron deficiency? Plant Soil, 130(1):143-156.
  • Nozoye T, Nagasaka S, Bashir K, Takahashi M, Kobayashi, T, Nakanishi H, Nishizawa NK, 2014. Nicotianamine synthase 2 localizes to the vesicles of iron-deficient rice roots, and its mutation in the YXXφ or LL motif causes the disruption of vesicle formation or movement in rice. Plant J., 77(2):246-60. doi: 10.1111/tpj.12383
  • Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Uozumi N, Nakanishi H, Nsihizawa NK, 2011. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J. Biol. Chem., 286(7):5446-5454.
  • Ojeda M, Schaffer B, Davies FS, 2004. Root and leaf ferric chelate reductase activity in pond apple and soursop. J. Plant Nutr., 27:1381-1393.
  • Richardson AD, Duigan SP, Berlyn GP, 2002. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol., 153(1):185-194.
  • Rogers EE, Guerinot ML, 2002. FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis, Plant Cell, 14:1787-1799.
  • Romheld V, Marschner, H, 1986. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol., 80:175-180.
  • Rroco E, Kosegarten H, Harizaj F, Imani J, Mengel K, 2003. The importance of soil microbial activity for the supply of iron to sorghum and rape. Eur. J. Agron., 19: 487-493.
  • Takagi S, Kamei S, Takemoto T, 1984. Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J. Plant Nutr., 7:469-477.
  • Torun A, Erdem H, Torun MB, 2017. Ayçiçeği genotiplerinin demir noksanlığına karşı tolerans düzeylerinin belirlenmesi. Türk Tarım-Gıda Bilim ve Teknolojisi Dergisi, 5 (11):1323-1329.
  • Vasconcelos MW, Musetti W, Li CM, Datta SK, Grusak MA, 2004. Functional analysis of transgenic rice (Oryza Sativa L.) transformed with and Arabidopsis thaliana ferric reductase (AtFRO2). Soil Sci. Plant Nutr., 50(7):1151-1157.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Articles
Authors

Ahmet Korkmaz 0000-0001-5595-0618

Güney Akınoğlu 0000-0003-4624-2876

Ayhan Horuz 0000-0002-8338-3208

Project Number -
Publication Date June 17, 2021
Published in Issue Year 2021 Volume: 9 Issue: 1

Cite

APA Korkmaz, A., Akınoğlu, G., & Horuz, A. (2021). Demir noksanlığı şartlarında yetiştirilen çeltik çeşitlerinin taze köklerinde fitosiderofor üretimi ve ferrik redüktaz aktivitesi ile yapraklarında kloroz dereceleri. Toprak Bilimi Ve Bitki Besleme Dergisi, 9(1), 8-14. https://doi.org/10.33409/tbbbd.901788
AMA Korkmaz A, Akınoğlu G, Horuz A. Demir noksanlığı şartlarında yetiştirilen çeltik çeşitlerinin taze köklerinde fitosiderofor üretimi ve ferrik redüktaz aktivitesi ile yapraklarında kloroz dereceleri. tbbbd. June 2021;9(1):8-14. doi:10.33409/tbbbd.901788
Chicago Korkmaz, Ahmet, Güney Akınoğlu, and Ayhan Horuz. “Demir noksanlığı şartlarında yetiştirilen çeltik çeşitlerinin Taze köklerinde Fitosiderofor üretimi Ve Ferrik redüktaz Aktivitesi Ile yapraklarında Kloroz Dereceleri”. Toprak Bilimi Ve Bitki Besleme Dergisi 9, no. 1 (June 2021): 8-14. https://doi.org/10.33409/tbbbd.901788.
EndNote Korkmaz A, Akınoğlu G, Horuz A (June 1, 2021) Demir noksanlığı şartlarında yetiştirilen çeltik çeşitlerinin taze köklerinde fitosiderofor üretimi ve ferrik redüktaz aktivitesi ile yapraklarında kloroz dereceleri. Toprak Bilimi ve Bitki Besleme Dergisi 9 1 8–14.
IEEE A. Korkmaz, G. Akınoğlu, and A. Horuz, “Demir noksanlığı şartlarında yetiştirilen çeltik çeşitlerinin taze köklerinde fitosiderofor üretimi ve ferrik redüktaz aktivitesi ile yapraklarında kloroz dereceleri”, tbbbd, vol. 9, no. 1, pp. 8–14, 2021, doi: 10.33409/tbbbd.901788.
ISNAD Korkmaz, Ahmet et al. “Demir noksanlığı şartlarında yetiştirilen çeltik çeşitlerinin Taze köklerinde Fitosiderofor üretimi Ve Ferrik redüktaz Aktivitesi Ile yapraklarında Kloroz Dereceleri”. Toprak Bilimi ve Bitki Besleme Dergisi 9/1 (June 2021), 8-14. https://doi.org/10.33409/tbbbd.901788.
JAMA Korkmaz A, Akınoğlu G, Horuz A. Demir noksanlığı şartlarında yetiştirilen çeltik çeşitlerinin taze köklerinde fitosiderofor üretimi ve ferrik redüktaz aktivitesi ile yapraklarında kloroz dereceleri. tbbbd. 2021;9:8–14.
MLA Korkmaz, Ahmet et al. “Demir noksanlığı şartlarında yetiştirilen çeltik çeşitlerinin Taze köklerinde Fitosiderofor üretimi Ve Ferrik redüktaz Aktivitesi Ile yapraklarında Kloroz Dereceleri”. Toprak Bilimi Ve Bitki Besleme Dergisi, vol. 9, no. 1, 2021, pp. 8-14, doi:10.33409/tbbbd.901788.
Vancouver Korkmaz A, Akınoğlu G, Horuz A. Demir noksanlığı şartlarında yetiştirilen çeltik çeşitlerinin taze köklerinde fitosiderofor üretimi ve ferrik redüktaz aktivitesi ile yapraklarında kloroz dereceleri. tbbbd. 2021;9(1):8-14.