Araştırma Makalesi
BibTex RIS Kaynak Göster

Toprağın bazı ısı parametrelerinin maksimum toprak sıcaklığıyla ilişkisi

Yıl 2022, Cilt: 10 Sayı: 1, 82 - 90, 22.06.2022
https://doi.org/10.33409/tbbbd.1105351

Öz

Toprak özelliklerinin değişimi, bitki gelişimi için optimum toprak ortamının oluşturulması, toprak oluşum süreçlerinin açıklanması vb. topraktaki maksimum sıcaklıkla ilişkili olup, topraktaki maksimum sıcaklığın teorik ve deneysel olarak belirlenmesi gereklidir. Bu çalışmada, toprağın ısı iletkenliği denkleminin çözümünden elde edilen maksimum toprak sıcaklığının analitik ifadesinin uygulanabilirliği incelenmiştir. Teorik olarak maksimum toprak sıcaklığının, toprak derinliğinin ortalama sıcaklığının, birim alandan geçen ısı miktarının, kütle yoğunluğunun, özgül ısı kapasitesinin ve derinliğin bir fonksiyonu olduğu gösterilmiştir. Toprağın 0-50 cm derinliğinde ölçülen ve hesaplanan maksimum sıcaklıklar sırasıyla 16.6-35.8 °C ve 16.4-38.4 °C aralıklarında; birim alandan geçen ısı miktarı 3.716•106-17.857•106 J m-2 aralığında; özgül ısı kapasitesi ise 950.404 J kg-1 °C-1 olarak saptanmıştır. Ölçülen ve hesaplanan maksimum toprak sıcaklıkları arasındaki ilişki yüksek (R2=0.9106) bulunmuştur. Ayrıca, nispi hatanın 0.012-0.148 aralığında; ortalama nispi hata ise 0.086 olarak tespit edilmiştir.

Kaynakça

  • Abu-Hamdeh NH, Reeder RC, 2000. Soil thermal conductivity effects of density, moisture, salt concentration, and organic matter. Soil Science Society of America Journal, 64: 1285-1290.
  • Antonopoulos VZ, 2006). Water movement and heat transfer simulations in a soil under ryegrass. Biosystems Engineering, 95 (1): 127-138.
  • Bilgili M, 2010. Prediction of soil temperature using regression and artificial neural network models. Meteorology and Atmospheric Physics, 110: 59-70.
  • Brys K, Brys T, Sayegh MA, Ojrzynska H, 2020. Characteristics of heat fluxes in subsurface shallow depth soil layer as a renewable thermal source for ground coupled heat pump. Renewable Energy, 146: 1846-1866.
  • Chen H, Chu S, Luan D, Li Q, Zhang L, Zhai H, 2018. Performance study on heat and moisture transfer in soil heat charging, International Journal of Sustainable Energy, 37(7): 669-683.
  • Chen N, Li X, Simůnek J, Shi H, Hu Q, Zhang Y, 2021. Evaluating the effects of biodegradable and plastic film mulching on soil temperature in a drip-irrigated field. Soil & Tillage Research, 213: 105116.
  • Chung SO, Horton R, 1987. Soil heat and water flow with a partial surface mulch. Water Resources Research, 23(12): 2175-2186.
  • Deguchi S, Kawamoto H, Tanaka O, Fushimi A, Uozumi S, 2009. Compost application increases the soil temperature on bare Andosol in a cool climate region, Soil Science and Plant Nutrition, 55(6): 778-782.
  • Du Y, Li R, Wu T, Yang C, Zhao L, Hu G, Xiao Y, Yang S, Ni J, Ma J, Shi J, Qiao Y, 2022. A new model for predicting soil thermal conductivity for dry soils. International Journal of Thermal Sciences, 176: 107487.
  • Ekberli I, 2006. Determination of initial unconditional solution of heat conductivity equation for evaluation of temperature variance in finite soil layer. Journal of Applied Sciences, 6(7): 1520-1526.
  • Ekberli İ, Dengiz O, Gülser C, Özdemir N, 2016. Benzerlik teorisinin toprak sıcaklığına uygulanabilirliği. Toprak Bilimi ve Bitki Besleme Dergisi, 4 (2): 63-68.
  • Ekberli İ, Gülser C, 2015. İki boyutlu isi iletkenliği denklemine bağlı olarak toprak sıcaklığının matematiksel modellenmesi. Anadolu Tarim Bilimleri Dergisi, 30(3): 287-291.
  • Ekberli İ, Gülser C, 2020. Toprak sıcaklığının ısı miktarına bağlı olarak değişiminin matematiksel modellenmesi. Harran Tarım ve Gıda Bilimleri Dergisi, 24(2): 229-240.
  • Ekberli İ, Gülser C, Dengiz O, 2021. Aluviyal depositler üzerinde oluşmuş genç ve gelişmekte olan toprakların ısı akışı ve ısı miktarının incelenmesi. Toprak Su Dergisi, 10(1): 1-12.
  • Ekberli İ, Gülser C, Dengiz O, 2021. Toprağın zamana bağlı olmayan bir boyutlu ısı iletkenliğinin incelenmesi. Anadolu Tarım Bilimleri Dergisi, 36(2): 212-220.
  • Ekberli İ, Gülser C, Mamedov A, 2015. Toprakta bir boyutlu ısı iletkenlik denkleminin incelenmesinde benzerlik teorisinin uygulanması. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 10(2): 69-79.
  • Ekberli İ, Gülser C, Özdemir N, 2017. Farklı toprak derinliklerindeki sıcaklığın tahmininde parabolik fonksiyonun kullanımı. Toprak Bilimi ve Bitki Besleme Dergisi, 5 (1): 34- 38.
  • Evett SR, Agam N, Kustas WK, Colaizzi PD, Schwartz, RC, 2012. Soil profile method for soil thermal diffusivity, conductivity and heat flux: Comparison to soil heat flux plates. Advances in Water Resources, 50: 41-54.
  • Gao Z, Bian L, Hu Y, Wang L, Fan J, 2007. Determination of soil temperature in an arid region, Journal of Arid Environments, 71: 157-168.
  • Ghauman BS, Lal R, 1985. Thermal conductivity, thermal diffusivity, and thermal capacity of soil Nigerian soils. Soil Science, 139: 74-80.
  • Graham EA, Lam Y, Yuen EM, 2010. Forest understory soil temperatures and heat flux calculated using a Fourier model and scaled using a digital camera. Agricultural and Forest Meteorology, 150: 640-649.
  • Gülser C, Ekberli I, 2004. A Comparison of estimated and measured diurnal soil temperature through a clay soil depth. Journal of Applied Science, 4(3): 418-423.
  • Gülser C, Ekberli İ, 2019. Toprak sıcaklığının tahmininde ısı taşınım denklemi ve pedotransfer fonksiyonun karşılaştırılması. Toprak Bilimi ve Bitki Besleme Dergisi, 7(2): 158-166.
  • Gülser C, Ekberli İ, Mamedov A, 2019. Toprak sıcaklığının yüzey ısı akışına bağlı olarak değişimi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29(1): 1-9.
  • Gülser C, Ekberli İ, Mamedov A, Özdemir N, 2018. Faz değişimine bağlı olarak ısı iletkenliği denkleminin incelenmesi ve toprak neminin ısısal yayınıma etkisi. Anadolu Tarım Bilimleri Dergisi, 33(3): 261-269.
  • Heitman, JL, Horton R, Ren T, Nassar IN, Davis DD, 2008. A test of coupled soil heat and water transfer prediction under transient boundary temperatures. Soil Science Society of America Journal, 72: 1197-1207.
  • Heitman JL, Horton, R, Sauer TJ, Ren TS, Xiao X, 2010. Latent heat in soil heat flux measurements. Agricultural and Forest Meteorology, 150: 1147-1153.
  • Jananee B, Thangam V, Rajalakshmi A, 2021. Investigation of soils by thermal and spectroscopic analysis. Chemical Engineering Communications, 208(6): 812-821.
  • Ju Z, Hu C, 2018. Experimental warming alters soil hydrothermal properties and heat flux in a winter wheat field. Archives of Agronomy and Soil Science, 64(5): 718-730.
  • Kara F, Cemek B, 2019. Orta Karadeniz Bölgesi illerine ait toprak sıcaklıklarının yapay sinir ağları yöntemi ile tahmin edilmesi. Derim, 36(2): 192-198.
  • Karhu K, Fritze H, Tuomi M, Vanhala P, Spetz P, Kitunen V, Liski J, 2010. Temperature sensitivity of organic matter decomposition in two boreal forest soil profiles. Soil Biology and Biochemistry, 42: 72-82.
  • Kassaye KT, Boulange J, Tu LH, Saito H, Watanabe H, 2021. Soil water content and soil temperature modeling in a vadose zone of Andosol under temperate monsoon climate. Geoderma, 384: 114797.
  • Lettau HH, 1954. Improved models of thermal diffusion in the soil. Transactions of the American Geophysical Union, 35(1): 121-132.
  • Li Y, Chai S, Chai Y, Li R, Lan X, Ma J, Cheng H, Chang L, 2021. Effects of mulching on soil temperature and yield of winter wheat in the semiarid rainfed area. Field Crops Research, 271: 108244.
  • Liu Z, Xu, J, Li, X, Wang J, 2018. Mechanisms of biochar effects on thermal properties of red soil in South China. Geoderma, 323: 41-54.
  • Lu X, Chen G, Qin Y, Sun Y, Li X, 2017. Evaluation of water flux prediction with heat-pulse technique in saturated soils, Archives of Agronomy and Soil Science, 63(4): 455-467.
  • Lu S, Ju Z, Ren T, Horton R, 2009. A general approach to estimate soil water content from thermal inertia. Agricultural and Forest Meteorology, 149: 1693-1698.
  • Lu S, Ren T, Horton R, 2020. Estimating the components of apparent thermal conductivity of soils at various water contents and temperatures. Geoderma, 376: 114530.
  • Luikov AV, 1967. Theory of thermal conductivity (in Russian). Vysshaya Shkola Press, Moscow, pp. 45-69.
  • Maryanaji Z, Merrikhpour H., Abbasi H., 2017. Predicting soil temperature by applying atmosphere general circulation data in west Iran. Journal of Water and Climate Change, 8 (2): 203-218.
  • Maslov MN, Maslova OA, 2022. Soil nitrogen mineralization and its sensitivity to temperature and moisture in temperate peatlands under different land-use management practices. Catena, 210: 105922.
  • Mellander PE, Bishop K, Lundmark T, 2004. The influence of soil temperature on transpiration: a plot scale manipulation in a young scots pine stand. Forest Ecology and Management, 195: 15-28.
  • Mondal, S, Singh DN, Tang AM, Pereira JM, 2022. A finite difference model for undefined end boundary to analyse the heat transfer in dry sands. International Journal of Geotechnical Engineering, 16(2): 256-262.
  • Ochsner TE, Horton R, Ren T, 2001. A new perspective on soil thermal properties. Soil Science Society of America Journal, 65: 1641-1647.
  • Ozturk M, Salman O, Koc M, 2011. Artificial neural network model for estimating the soil temperature. Canadian Journal of Soil Science, 91: 551-562.
  • Passerat de Silans, A.M.B., Monteny , B.A., Lhomme, J.P. (1996). Apparent soil thermal diffusivity, a case study: HAPEX-Sahel experiment. Agricultural and Forest Meteorology, 81, 201-216.
  • Plauborg F, 2002. Simple model for 10 cm soil temperature in different soils with short grass. European Journal of Agronomy, 17: 173-179.
  • Qi J, Zhang X, Cosh MH, 2019. Modeling soil temperature in a temperate region: A comparison between empirical and physically based methods in SWAT. Ecological Engineering, 129: 134-143.
  • Ren T, Ochsner TE, Horton R, Ju Z, 2003. Heat-pulse method for soil water content measurement: Influence of the specific heat of the soil solids. Soil Science Society of America Journal, 67(6): 1631-1634.
  • Ruiz-Machuca LM, Ibarra-Jiménez L, Valdez-Aguilar LA, Robledo-Torres V, Benavides-Mendoza A, Cabrera-De La Fuente M, 2015. Cultivation of potato – use of plastic mulch and row covers on soil temperature, growth, nutrient status, and yield, Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 65(1): 30-35.
  • Salau AW, Olasantan FO, Bodunde JG, Makinde EA, 2015. Soil temperature and moisture content changes with growth and yield of cassava/vegetable intercrops. Archives of Agronomy and Soil Science, 61(4): 447-460.
  • Samanta S, Guha A, 2012. A similarity theory for natural convection from a horizontal plate for prescribed heat flux or wall temperature. International Journal of Heat and Mass Transfer, 55: 3857-3868.
  • Savva Y, Szlavecz K, Pouyat RV, Groffman PM, Heisler G, 2010. Effects of land use and vegetation cover on soil temperature in an urban ecosystem. Soil Science Society of America Journal, 74 (2): 469-480.
  • Shiwei G, Tao Z, Jixun G, 2019. Warming and nitrogen addition change the soil and soil microbial biomass C:N: P stoichiometry of a meadow steppe. International Journal of Environmental Research and Public Health, 16(15): 2705.
  • Turcotte DL, Schubert G, 1985. Geodynamics. Applications of continuum physics to geological problems (Volume 1). Mir Press, Moscow (in Russian), 376 p.
  • Usowicz B, Lipiec J, Usowicz JB, Marczewski W, 2013. Effects of aggregate size on soil thermal conductivity: comparison of measured and model-predicted data. International Journal of Heat and Mass Transfer, 57: 536-541.
  • Wan X, Zhong C, Mohamed HS, Qiu E, Qu M, Nkiegaing FJ, 2021. Study on the thermal conductivity model of sodium sulfate soils. Experimental Heat Transfer, 34(3): 217-239.
  • Wu SH, Jansson PE, Kolari P, 2012. The role of air and soil temperature in the seasonality of photosynthesis and transpiration in a boreal Scots pine ecosystem. Agricultural and Forest Meteorology, 156: 85-103.
  • Xiao X, Horton R, Sauer TJ, Heitman JL, Ren T, 2011. Cumulative soil water evaporation as a function of depth and time. Vadose Zone Journal, 10: 1016-1022.
  • Xu G, Li Y, Deng H, Li H, Yu X, 2015. The application of similarity theory for heat transfer investigation in rotational internal cooling channel. International Journal of Heat and Mass Transfer, 85: 98-109.
  • Xu X, Luo Y, Zhou, J, 2012. Carbon quality and the temperature sensitivity of soil organic carbon decomposition in a tallgrass prairie. Soil Biology and Biochemistry, 50: 142-148.
  • Yadav B, Krishnan P, Shafeeq PM, Parihar CM, Aggarwal P, 2020. Modelling soil thermal regime in wheat using HYDRUS-2D under diversified maize-wheat-mungbean cropping system. Catena, 194: 104765.
  • Zhang T, Huang J-C, Lei Q, Liang X, Lindsey S, Luo J, Zhu A-X, Bao W, Liu H, 2022. Empirical estimation of soil temperature and its controlling factors in Australia: Implication for interaction between geographic setting and air temperature. Catena, 208: 105696.

The relationship of some heat parameters of the soil with the maximum soil temperature

Yıl 2022, Cilt: 10 Sayı: 1, 82 - 90, 22.06.2022
https://doi.org/10.33409/tbbbd.1105351

Öz

Change of soil properties, creation of optimum soil environment for plant growth, explanation of soil formation processes etc. It is related to the maximum temperature in the soil and it is necessary to determine the maximum temperature in the soil theoretically and experimentally. In this study, the applicability of the analytical expression of the maximum soil temperature obtained from the solution of the thermal conductivity equation of the soil was investigated. Theoretically, it has been shown that the maximum soil temperature is a function of the average temperature of the soil depth, the amount of heat passing through a unit area, mass density, specific heat capacity, and depth. The maximum temperatures measured and calculated at 0-50 cm depth of the soil are in the ranges of 16.6-35.8°C and 16.4-38.4°C, respectively; the amount of heat passing through the unit area is in the range of 3.716•106-17.857•106 J m-2; the specific heat capacity was determined as 950.404 J kg-1 °C-1. The correlation between the measured and calculated maximum soil temperatures was found to be high (R2=0.9106). Also, the relative error is in the range of 0.012-0.148; mean relative error was determined as 0.086.

Kaynakça

  • Abu-Hamdeh NH, Reeder RC, 2000. Soil thermal conductivity effects of density, moisture, salt concentration, and organic matter. Soil Science Society of America Journal, 64: 1285-1290.
  • Antonopoulos VZ, 2006). Water movement and heat transfer simulations in a soil under ryegrass. Biosystems Engineering, 95 (1): 127-138.
  • Bilgili M, 2010. Prediction of soil temperature using regression and artificial neural network models. Meteorology and Atmospheric Physics, 110: 59-70.
  • Brys K, Brys T, Sayegh MA, Ojrzynska H, 2020. Characteristics of heat fluxes in subsurface shallow depth soil layer as a renewable thermal source for ground coupled heat pump. Renewable Energy, 146: 1846-1866.
  • Chen H, Chu S, Luan D, Li Q, Zhang L, Zhai H, 2018. Performance study on heat and moisture transfer in soil heat charging, International Journal of Sustainable Energy, 37(7): 669-683.
  • Chen N, Li X, Simůnek J, Shi H, Hu Q, Zhang Y, 2021. Evaluating the effects of biodegradable and plastic film mulching on soil temperature in a drip-irrigated field. Soil & Tillage Research, 213: 105116.
  • Chung SO, Horton R, 1987. Soil heat and water flow with a partial surface mulch. Water Resources Research, 23(12): 2175-2186.
  • Deguchi S, Kawamoto H, Tanaka O, Fushimi A, Uozumi S, 2009. Compost application increases the soil temperature on bare Andosol in a cool climate region, Soil Science and Plant Nutrition, 55(6): 778-782.
  • Du Y, Li R, Wu T, Yang C, Zhao L, Hu G, Xiao Y, Yang S, Ni J, Ma J, Shi J, Qiao Y, 2022. A new model for predicting soil thermal conductivity for dry soils. International Journal of Thermal Sciences, 176: 107487.
  • Ekberli I, 2006. Determination of initial unconditional solution of heat conductivity equation for evaluation of temperature variance in finite soil layer. Journal of Applied Sciences, 6(7): 1520-1526.
  • Ekberli İ, Dengiz O, Gülser C, Özdemir N, 2016. Benzerlik teorisinin toprak sıcaklığına uygulanabilirliği. Toprak Bilimi ve Bitki Besleme Dergisi, 4 (2): 63-68.
  • Ekberli İ, Gülser C, 2015. İki boyutlu isi iletkenliği denklemine bağlı olarak toprak sıcaklığının matematiksel modellenmesi. Anadolu Tarim Bilimleri Dergisi, 30(3): 287-291.
  • Ekberli İ, Gülser C, 2020. Toprak sıcaklığının ısı miktarına bağlı olarak değişiminin matematiksel modellenmesi. Harran Tarım ve Gıda Bilimleri Dergisi, 24(2): 229-240.
  • Ekberli İ, Gülser C, Dengiz O, 2021. Aluviyal depositler üzerinde oluşmuş genç ve gelişmekte olan toprakların ısı akışı ve ısı miktarının incelenmesi. Toprak Su Dergisi, 10(1): 1-12.
  • Ekberli İ, Gülser C, Dengiz O, 2021. Toprağın zamana bağlı olmayan bir boyutlu ısı iletkenliğinin incelenmesi. Anadolu Tarım Bilimleri Dergisi, 36(2): 212-220.
  • Ekberli İ, Gülser C, Mamedov A, 2015. Toprakta bir boyutlu ısı iletkenlik denkleminin incelenmesinde benzerlik teorisinin uygulanması. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 10(2): 69-79.
  • Ekberli İ, Gülser C, Özdemir N, 2017. Farklı toprak derinliklerindeki sıcaklığın tahmininde parabolik fonksiyonun kullanımı. Toprak Bilimi ve Bitki Besleme Dergisi, 5 (1): 34- 38.
  • Evett SR, Agam N, Kustas WK, Colaizzi PD, Schwartz, RC, 2012. Soil profile method for soil thermal diffusivity, conductivity and heat flux: Comparison to soil heat flux plates. Advances in Water Resources, 50: 41-54.
  • Gao Z, Bian L, Hu Y, Wang L, Fan J, 2007. Determination of soil temperature in an arid region, Journal of Arid Environments, 71: 157-168.
  • Ghauman BS, Lal R, 1985. Thermal conductivity, thermal diffusivity, and thermal capacity of soil Nigerian soils. Soil Science, 139: 74-80.
  • Graham EA, Lam Y, Yuen EM, 2010. Forest understory soil temperatures and heat flux calculated using a Fourier model and scaled using a digital camera. Agricultural and Forest Meteorology, 150: 640-649.
  • Gülser C, Ekberli I, 2004. A Comparison of estimated and measured diurnal soil temperature through a clay soil depth. Journal of Applied Science, 4(3): 418-423.
  • Gülser C, Ekberli İ, 2019. Toprak sıcaklığının tahmininde ısı taşınım denklemi ve pedotransfer fonksiyonun karşılaştırılması. Toprak Bilimi ve Bitki Besleme Dergisi, 7(2): 158-166.
  • Gülser C, Ekberli İ, Mamedov A, 2019. Toprak sıcaklığının yüzey ısı akışına bağlı olarak değişimi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29(1): 1-9.
  • Gülser C, Ekberli İ, Mamedov A, Özdemir N, 2018. Faz değişimine bağlı olarak ısı iletkenliği denkleminin incelenmesi ve toprak neminin ısısal yayınıma etkisi. Anadolu Tarım Bilimleri Dergisi, 33(3): 261-269.
  • Heitman, JL, Horton R, Ren T, Nassar IN, Davis DD, 2008. A test of coupled soil heat and water transfer prediction under transient boundary temperatures. Soil Science Society of America Journal, 72: 1197-1207.
  • Heitman JL, Horton, R, Sauer TJ, Ren TS, Xiao X, 2010. Latent heat in soil heat flux measurements. Agricultural and Forest Meteorology, 150: 1147-1153.
  • Jananee B, Thangam V, Rajalakshmi A, 2021. Investigation of soils by thermal and spectroscopic analysis. Chemical Engineering Communications, 208(6): 812-821.
  • Ju Z, Hu C, 2018. Experimental warming alters soil hydrothermal properties and heat flux in a winter wheat field. Archives of Agronomy and Soil Science, 64(5): 718-730.
  • Kara F, Cemek B, 2019. Orta Karadeniz Bölgesi illerine ait toprak sıcaklıklarının yapay sinir ağları yöntemi ile tahmin edilmesi. Derim, 36(2): 192-198.
  • Karhu K, Fritze H, Tuomi M, Vanhala P, Spetz P, Kitunen V, Liski J, 2010. Temperature sensitivity of organic matter decomposition in two boreal forest soil profiles. Soil Biology and Biochemistry, 42: 72-82.
  • Kassaye KT, Boulange J, Tu LH, Saito H, Watanabe H, 2021. Soil water content and soil temperature modeling in a vadose zone of Andosol under temperate monsoon climate. Geoderma, 384: 114797.
  • Lettau HH, 1954. Improved models of thermal diffusion in the soil. Transactions of the American Geophysical Union, 35(1): 121-132.
  • Li Y, Chai S, Chai Y, Li R, Lan X, Ma J, Cheng H, Chang L, 2021. Effects of mulching on soil temperature and yield of winter wheat in the semiarid rainfed area. Field Crops Research, 271: 108244.
  • Liu Z, Xu, J, Li, X, Wang J, 2018. Mechanisms of biochar effects on thermal properties of red soil in South China. Geoderma, 323: 41-54.
  • Lu X, Chen G, Qin Y, Sun Y, Li X, 2017. Evaluation of water flux prediction with heat-pulse technique in saturated soils, Archives of Agronomy and Soil Science, 63(4): 455-467.
  • Lu S, Ju Z, Ren T, Horton R, 2009. A general approach to estimate soil water content from thermal inertia. Agricultural and Forest Meteorology, 149: 1693-1698.
  • Lu S, Ren T, Horton R, 2020. Estimating the components of apparent thermal conductivity of soils at various water contents and temperatures. Geoderma, 376: 114530.
  • Luikov AV, 1967. Theory of thermal conductivity (in Russian). Vysshaya Shkola Press, Moscow, pp. 45-69.
  • Maryanaji Z, Merrikhpour H., Abbasi H., 2017. Predicting soil temperature by applying atmosphere general circulation data in west Iran. Journal of Water and Climate Change, 8 (2): 203-218.
  • Maslov MN, Maslova OA, 2022. Soil nitrogen mineralization and its sensitivity to temperature and moisture in temperate peatlands under different land-use management practices. Catena, 210: 105922.
  • Mellander PE, Bishop K, Lundmark T, 2004. The influence of soil temperature on transpiration: a plot scale manipulation in a young scots pine stand. Forest Ecology and Management, 195: 15-28.
  • Mondal, S, Singh DN, Tang AM, Pereira JM, 2022. A finite difference model for undefined end boundary to analyse the heat transfer in dry sands. International Journal of Geotechnical Engineering, 16(2): 256-262.
  • Ochsner TE, Horton R, Ren T, 2001. A new perspective on soil thermal properties. Soil Science Society of America Journal, 65: 1641-1647.
  • Ozturk M, Salman O, Koc M, 2011. Artificial neural network model for estimating the soil temperature. Canadian Journal of Soil Science, 91: 551-562.
  • Passerat de Silans, A.M.B., Monteny , B.A., Lhomme, J.P. (1996). Apparent soil thermal diffusivity, a case study: HAPEX-Sahel experiment. Agricultural and Forest Meteorology, 81, 201-216.
  • Plauborg F, 2002. Simple model for 10 cm soil temperature in different soils with short grass. European Journal of Agronomy, 17: 173-179.
  • Qi J, Zhang X, Cosh MH, 2019. Modeling soil temperature in a temperate region: A comparison between empirical and physically based methods in SWAT. Ecological Engineering, 129: 134-143.
  • Ren T, Ochsner TE, Horton R, Ju Z, 2003. Heat-pulse method for soil water content measurement: Influence of the specific heat of the soil solids. Soil Science Society of America Journal, 67(6): 1631-1634.
  • Ruiz-Machuca LM, Ibarra-Jiménez L, Valdez-Aguilar LA, Robledo-Torres V, Benavides-Mendoza A, Cabrera-De La Fuente M, 2015. Cultivation of potato – use of plastic mulch and row covers on soil temperature, growth, nutrient status, and yield, Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 65(1): 30-35.
  • Salau AW, Olasantan FO, Bodunde JG, Makinde EA, 2015. Soil temperature and moisture content changes with growth and yield of cassava/vegetable intercrops. Archives of Agronomy and Soil Science, 61(4): 447-460.
  • Samanta S, Guha A, 2012. A similarity theory for natural convection from a horizontal plate for prescribed heat flux or wall temperature. International Journal of Heat and Mass Transfer, 55: 3857-3868.
  • Savva Y, Szlavecz K, Pouyat RV, Groffman PM, Heisler G, 2010. Effects of land use and vegetation cover on soil temperature in an urban ecosystem. Soil Science Society of America Journal, 74 (2): 469-480.
  • Shiwei G, Tao Z, Jixun G, 2019. Warming and nitrogen addition change the soil and soil microbial biomass C:N: P stoichiometry of a meadow steppe. International Journal of Environmental Research and Public Health, 16(15): 2705.
  • Turcotte DL, Schubert G, 1985. Geodynamics. Applications of continuum physics to geological problems (Volume 1). Mir Press, Moscow (in Russian), 376 p.
  • Usowicz B, Lipiec J, Usowicz JB, Marczewski W, 2013. Effects of aggregate size on soil thermal conductivity: comparison of measured and model-predicted data. International Journal of Heat and Mass Transfer, 57: 536-541.
  • Wan X, Zhong C, Mohamed HS, Qiu E, Qu M, Nkiegaing FJ, 2021. Study on the thermal conductivity model of sodium sulfate soils. Experimental Heat Transfer, 34(3): 217-239.
  • Wu SH, Jansson PE, Kolari P, 2012. The role of air and soil temperature in the seasonality of photosynthesis and transpiration in a boreal Scots pine ecosystem. Agricultural and Forest Meteorology, 156: 85-103.
  • Xiao X, Horton R, Sauer TJ, Heitman JL, Ren T, 2011. Cumulative soil water evaporation as a function of depth and time. Vadose Zone Journal, 10: 1016-1022.
  • Xu G, Li Y, Deng H, Li H, Yu X, 2015. The application of similarity theory for heat transfer investigation in rotational internal cooling channel. International Journal of Heat and Mass Transfer, 85: 98-109.
  • Xu X, Luo Y, Zhou, J, 2012. Carbon quality and the temperature sensitivity of soil organic carbon decomposition in a tallgrass prairie. Soil Biology and Biochemistry, 50: 142-148.
  • Yadav B, Krishnan P, Shafeeq PM, Parihar CM, Aggarwal P, 2020. Modelling soil thermal regime in wheat using HYDRUS-2D under diversified maize-wheat-mungbean cropping system. Catena, 194: 104765.
  • Zhang T, Huang J-C, Lei Q, Liang X, Lindsey S, Luo J, Zhu A-X, Bao W, Liu H, 2022. Empirical estimation of soil temperature and its controlling factors in Australia: Implication for interaction between geographic setting and air temperature. Catena, 208: 105696.
Toplam 63 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği
Bölüm Makaleler
Yazarlar

İmanverdi Ekberli 0000-0002-7245-2458

Coşkun Gülser 0000-0002-6332-4876

Yayımlanma Tarihi 22 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 1

Kaynak Göster

APA Ekberli, İ., & Gülser, C. (2022). Toprağın bazı ısı parametrelerinin maksimum toprak sıcaklığıyla ilişkisi. Toprak Bilimi Ve Bitki Besleme Dergisi, 10(1), 82-90. https://doi.org/10.33409/tbbbd.1105351
AMA Ekberli İ, Gülser C. Toprağın bazı ısı parametrelerinin maksimum toprak sıcaklığıyla ilişkisi. tbbbd. Haziran 2022;10(1):82-90. doi:10.33409/tbbbd.1105351
Chicago Ekberli, İmanverdi, ve Coşkun Gülser. “Toprağın Bazı ısı Parametrelerinin Maksimum Toprak sıcaklığıyla ilişkisi”. Toprak Bilimi Ve Bitki Besleme Dergisi 10, sy. 1 (Haziran 2022): 82-90. https://doi.org/10.33409/tbbbd.1105351.
EndNote Ekberli İ, Gülser C (01 Haziran 2022) Toprağın bazı ısı parametrelerinin maksimum toprak sıcaklığıyla ilişkisi. Toprak Bilimi ve Bitki Besleme Dergisi 10 1 82–90.
IEEE İ. Ekberli ve C. Gülser, “Toprağın bazı ısı parametrelerinin maksimum toprak sıcaklığıyla ilişkisi”, tbbbd, c. 10, sy. 1, ss. 82–90, 2022, doi: 10.33409/tbbbd.1105351.
ISNAD Ekberli, İmanverdi - Gülser, Coşkun. “Toprağın Bazı ısı Parametrelerinin Maksimum Toprak sıcaklığıyla ilişkisi”. Toprak Bilimi ve Bitki Besleme Dergisi 10/1 (Haziran 2022), 82-90. https://doi.org/10.33409/tbbbd.1105351.
JAMA Ekberli İ, Gülser C. Toprağın bazı ısı parametrelerinin maksimum toprak sıcaklığıyla ilişkisi. tbbbd. 2022;10:82–90.
MLA Ekberli, İmanverdi ve Coşkun Gülser. “Toprağın Bazı ısı Parametrelerinin Maksimum Toprak sıcaklığıyla ilişkisi”. Toprak Bilimi Ve Bitki Besleme Dergisi, c. 10, sy. 1, 2022, ss. 82-90, doi:10.33409/tbbbd.1105351.
Vancouver Ekberli İ, Gülser C. Toprağın bazı ısı parametrelerinin maksimum toprak sıcaklığıyla ilişkisi. tbbbd. 2022;10(1):82-90.