Gen dizilimlerinin sınıflandırılması, hastalıkların ön görülebilmesi veya teşhis edilebilmesinde çok önemli rol oynamaktadır. Bütün gen dizilimi üzerinde etkili bir sınıflandırma yapabilmek mümkün olmadığından sağlıklı bir sınıflandırma yapılabilmesi için gerekli bilgiyi içeren genlerin (özelliklerin) özellik azaltma algoritmaları ile ayıklanması önem taşımaktadır. Bu çalışmada, özellikleri azaltmak için sezgisel arama teknikleri, özellik azaltma yaklaşımları(filter, wrapper, vb.) gibi farklı yöntemler analiz edilerek ön işleme adımının daha etkin bir şekilde gerçekleştirilmesi; bunun sonucunda elde edilen veri kümelerinin LR (Lojistik Regresyon) ve SVM (Destek Vektör Makineleri) gibi güçlü sınıflandırma araçları ile daha etkin şekilde sınıflandırılması hedeflenmiştir. Makine öğrenmesinde güçlü bir sınıflandırıcı olarak kabul edilen LR sınıflandırıcısı, özellik eksiltme yöntemleri ile gen dizilimlerinin sınıflandırılmasında SVM kadar geçerli ve etkin sınıflama aracı haline gelmiştir.
DNA microarray classification is important to
discovery of differentially expressed genes between
normal and diseased patients are a central research
problem in bioinformatics. All the genes used in the
expression profile are not informative. Further, many
of them are redundant. A pre-processing step in order
to reduce the number of genes by feature selection
and still retaining best class prediction accuracy for the cla1
ssifier is crucial for precise tumor
classification. In this study comparison between class
prediction accuracy of two different classifiers, LR
(Logistic Regression) and SVM (Support Vector
Machines), was carried out using the best genes
select by wrapper and filter technique to use heuristic
search methods. We conclude that LR together with
heuristic search based feature selection is the as
efficient as SVM to the microarray gene prediction
techniques.
Microarray analysis binary classification machine learning logistic regression feature reduction tumor analysis SVM
Other ID | JA37NE27NJ |
---|---|
Journal Section | Makaleler(Araştırma) |
Authors | |
Publication Date | June 24, 2016 |
Published in Issue | Year 2015 Volume: 8 Issue: 1 |
Article Acceptance
Use user registration/login to upload articles online.
The acceptance process of the articles sent to the journal consists of the following stages:
1. Each submitted article is sent to at least two referees at the first stage.
2. Referee appointments are made by the journal editors. There are approximately 200 referees in the referee pool of the journal and these referees are classified according to their areas of interest. Each referee is sent an article on the subject he is interested in. The selection of the arbitrator is done in a way that does not cause any conflict of interest.
3. In the articles sent to the referees, the names of the authors are closed.
4. Referees are explained how to evaluate an article and are asked to fill in the evaluation form shown below.
5. The articles in which two referees give positive opinion are subjected to similarity review by the editors. The similarity in the articles is expected to be less than 25%.
6. A paper that has passed all stages is reviewed by the editor in terms of language and presentation, and necessary corrections and improvements are made. If necessary, the authors are notified of the situation.
. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.