Araştırma Makalesi
BibTex RIS Kaynak Göster

İleri Beslemeli Yapay Sinir Ağının Eğitiminde Meta-Sezgisel Yaklaşımlar

Yıl 2022, Cilt: 15 Sayı: 1, 38 - 43, 27.06.2022
https://doi.org/10.54525/tbbmd.1071656

Öz

Sistem kimliklendirme ve modelleme için en yaygın kullanılan yapay zekâ tekniklerinden biri yapay sinir ağlarıdır. Yapay sinir ağları ile etkili sonuçlar elde etmek için etkili bir eğitim sürecine ihtiyaç duyulmaktadır. Meta-sezgisel algoritmalar pek çok gerçek dünya probleminin çözümünde başarılı bir şekilde kullanılmaktadır. Özellikle yapay sinir ağı eğitiminde, ağa ait parametrelerin optimizasyonu gerekmektedir. Son zamanlarda, bu amaçla meta-sezgisel algoritmalar kullanılmakta ve başarılı sonuçlar elde edilmektedir. Literatürde pek çok meta-sezgisel algoritma bulunmaktadır. Meta-sezgisel algoritmaların performansları problem türüne göre farklılık göstermektedir. Bu çalışma kapsamında ileri beslemeli yapay sinir ağının eğitiminde, yapay arı koloni algoritması, parçacık sürü algoritması, armoni arama, arı algoritması, çiçek tozlaşma algoritması ve guguk kuşu arama gibi popüler meta-sezgisel algoritmaların performansları değerlendirilmiştir. Uygulamalar için XOR, 2-bit parity ve 3-bit parity problemleri kullanılmıştır. Tüm problemler için elde edilen sonuçlar çözüm kalitesi ve yakınsama hızı açısından değerlendirilmiştir. Genel olarak ilgili problemlerin çözümü için meta-sezgisel algoritma tabanlı ileri yapay sinir ağı eğitiminin başarılı olduğu gözlemlenmiştir. En iyi sonuçlar ise yapay arı koloni algoritması ve guguk kuşu arama ile bulunmuştur.

Kaynakça

  • Abiodun, O.I., Jantan, A., Omolara, A.E., Dada, K.V., Mohamed, N.A., Arshad, H. State-of-the-art in artificial neural network applications: A survey, Heliyon, 2018, 4(11), pp. e00938.
  • Ozturk, C., Karaboga, D. Hybrid artificial bee colony algorithm for neural network training, in Editor (Ed.)^(Eds.): Book Hybrid artificial bee colony algorithm for neural network training (IEEE, 2011, edn.), pp. 84-88.
  • Ozkan, C., Ozturk, C., Sunar, F., Karaboga, D. The artificial bee colony algorithm in training artificial neural network for oil spill detection, Neural Network World, 2011, 21(6), pp. 473.
  • Kaya, E., Kaya, C.B.A Novel Neural Network Training Algorithm for the Identification of Nonlinear Static Systems: Artificial Bee Colony Algorithm Based on Effective Scout Bee Stage, Symmetry, 2021, 13 (3), pp. 419.
  • Zhang, J.-R., Zhang, J., Lok, T.-M., Lyu, M.R. A hybrid particle swarm optimization–back-propagation algorithm for feedforward neural network training, Applied mathematics and computation, 2007, 185(2), pp. 1026-1037.
  • Das, G., Pattnaik, P.K., Padhy, S.K. Artificial neural network trained by particle swarm optimization for non-linear channel equalization, Expert Systems with Applications, 2014, 41(7), pp. 3491-3496.
  • Xie, K., Yi, H., Hu, G., Li, L., Fan, Z. Short-term power load forecasting based on Elman neural network with particle swarm optimization, Neurocomputing, 2020, 416, pp. 136-142.
  • Tavakoli, S., Valian, E., ,Mohanna, S. Feedforward neural network training using intelligent global harmony search, Evolving Systems, 2012, 3 (2), pp. 125-131.
  • Elattar, E.E., Elsayed, S.K., Farrag, T.A. Hybrid Local General Regression Neural Network and Harmony Search Algorithm for Electricity Price Forecasting, IEEE Access, 2020, 9, pp. 2044-2054.
  • Kaya, C.B., Ebubekir, K. A Novel Approach Based to Neural Network and Flower Pollination Algorithm to Predict Number of COVID-19 Cases, Balkan Journal of Electrical and Computer Engineering, 2021, 9 (4), pp. 327-336.
  • Chiroma, H., Khan, A., Abubakar, A.I., Saadi, Y., Hamza, M.F., Shuib, L., Gital, A.Y., Herawan, T. A new approach for forecasting OPEC petroleum consumption based on neural network train by using flower pollination algorithm, Applied Soft Computing, 2016, 48, pp. 50-58.
  • Valian, E., Mohanna, S., Tavakoli, S. Improved cuckoo search algorithm for feedforward neural network training, International Journal of Artificial Intelligence & Applications, 2011, 2(3), pp. 36-43.
  • Nawi, N.M., Khan, A., Rehman, M. A New Levenberg Marquardt Based Back Propagation Algorithm Trained with Cuckoo Search, Procedia Technology, 2013, 11, pp. 18-23.
  • Najafi, F. The Role of Metaheuristic Algorithm in Weight Training and Architecture Evolving of Feedforward Neural Networks, 2020.
  • Irmak, B., Gülcü, Ş. Training of the Feed-Forward Artificial Neural Networks Using Butterfly Optimization Algorithm, MANAS Journal of Engineering, 2021, 9(2), pp160-168.
  • Gulcu, Ş. Training of The Artificial Neural Networks Using States of Matter Search Algorithm, International Journal of Intelligent Systems and Applications in Engineering, 2020, 8(3), pp.131-136.
  • Bousmaha, R., Hamou, R. M., Amine, A. Optimizing Connection Weights in Neural Networks Using Hybrid Metaheuristics Algorithms, International Journal of Information Retrieval Research (IJIRR), 2022, 12(1), pp.1-21.
  • Mousavirad, S. J., Jalali, S. M. J., Ahmadian, S., Khosravi, A., Schaefer, G., Nahavandi, S. Neural Network Training Using a Biogeography-Based Learning Strategy, In International Conference on Neural Information Processing, 2020 November, Springer, Cham, pp. 147-155.

The Meta-Heuristics Approaches in Training Feed-Forward Neural Networks

Yıl 2022, Cilt: 15 Sayı: 1, 38 - 43, 27.06.2022
https://doi.org/10.54525/tbbmd.1071656

Öz

Artificial neural network is one of the most widely used artificial intelligence techniques for system identification and modeling. An effective training process is needed to obtain effective results with artificial neural networks. Metaheuristic algorithms have been used successfully in solving many real-world problems. Especially, optimization of the parameters of the network is required in artificial neural network training. Recently, metaheuristic algorithms have been used for this purpose and successful results have been obtained. There are many metaheuristic algorithms in the literature. The performances of meta-heuristic algorithms can differ according to the problem type. In this study, the performances of popular metaheuristic algorithms such as artificial bee colony algorithm, particle swarm optimization, harmony search, bee algorithm, flower pollination algorithm and cuckoo search are evaluated in the training of feed forward neural network. XOR, 2-bit parity and 3-bit parity problems are utilized for applications. The results obtained for all problems are evaluated in terms of solution quality and convergence speed. In general, it has been observed that neural network training based on metaheuristic algorithm is successful for solving related problems. The best results are found by using artificial bee colony algorithm and cuckoo search.

Kaynakça

  • Abiodun, O.I., Jantan, A., Omolara, A.E., Dada, K.V., Mohamed, N.A., Arshad, H. State-of-the-art in artificial neural network applications: A survey, Heliyon, 2018, 4(11), pp. e00938.
  • Ozturk, C., Karaboga, D. Hybrid artificial bee colony algorithm for neural network training, in Editor (Ed.)^(Eds.): Book Hybrid artificial bee colony algorithm for neural network training (IEEE, 2011, edn.), pp. 84-88.
  • Ozkan, C., Ozturk, C., Sunar, F., Karaboga, D. The artificial bee colony algorithm in training artificial neural network for oil spill detection, Neural Network World, 2011, 21(6), pp. 473.
  • Kaya, E., Kaya, C.B.A Novel Neural Network Training Algorithm for the Identification of Nonlinear Static Systems: Artificial Bee Colony Algorithm Based on Effective Scout Bee Stage, Symmetry, 2021, 13 (3), pp. 419.
  • Zhang, J.-R., Zhang, J., Lok, T.-M., Lyu, M.R. A hybrid particle swarm optimization–back-propagation algorithm for feedforward neural network training, Applied mathematics and computation, 2007, 185(2), pp. 1026-1037.
  • Das, G., Pattnaik, P.K., Padhy, S.K. Artificial neural network trained by particle swarm optimization for non-linear channel equalization, Expert Systems with Applications, 2014, 41(7), pp. 3491-3496.
  • Xie, K., Yi, H., Hu, G., Li, L., Fan, Z. Short-term power load forecasting based on Elman neural network with particle swarm optimization, Neurocomputing, 2020, 416, pp. 136-142.
  • Tavakoli, S., Valian, E., ,Mohanna, S. Feedforward neural network training using intelligent global harmony search, Evolving Systems, 2012, 3 (2), pp. 125-131.
  • Elattar, E.E., Elsayed, S.K., Farrag, T.A. Hybrid Local General Regression Neural Network and Harmony Search Algorithm for Electricity Price Forecasting, IEEE Access, 2020, 9, pp. 2044-2054.
  • Kaya, C.B., Ebubekir, K. A Novel Approach Based to Neural Network and Flower Pollination Algorithm to Predict Number of COVID-19 Cases, Balkan Journal of Electrical and Computer Engineering, 2021, 9 (4), pp. 327-336.
  • Chiroma, H., Khan, A., Abubakar, A.I., Saadi, Y., Hamza, M.F., Shuib, L., Gital, A.Y., Herawan, T. A new approach for forecasting OPEC petroleum consumption based on neural network train by using flower pollination algorithm, Applied Soft Computing, 2016, 48, pp. 50-58.
  • Valian, E., Mohanna, S., Tavakoli, S. Improved cuckoo search algorithm for feedforward neural network training, International Journal of Artificial Intelligence & Applications, 2011, 2(3), pp. 36-43.
  • Nawi, N.M., Khan, A., Rehman, M. A New Levenberg Marquardt Based Back Propagation Algorithm Trained with Cuckoo Search, Procedia Technology, 2013, 11, pp. 18-23.
  • Najafi, F. The Role of Metaheuristic Algorithm in Weight Training and Architecture Evolving of Feedforward Neural Networks, 2020.
  • Irmak, B., Gülcü, Ş. Training of the Feed-Forward Artificial Neural Networks Using Butterfly Optimization Algorithm, MANAS Journal of Engineering, 2021, 9(2), pp160-168.
  • Gulcu, Ş. Training of The Artificial Neural Networks Using States of Matter Search Algorithm, International Journal of Intelligent Systems and Applications in Engineering, 2020, 8(3), pp.131-136.
  • Bousmaha, R., Hamou, R. M., Amine, A. Optimizing Connection Weights in Neural Networks Using Hybrid Metaheuristics Algorithms, International Journal of Information Retrieval Research (IJIRR), 2022, 12(1), pp.1-21.
  • Mousavirad, S. J., Jalali, S. M. J., Ahmadian, S., Khosravi, A., Schaefer, G., Nahavandi, S. Neural Network Training Using a Biogeography-Based Learning Strategy, In International Conference on Neural Information Processing, 2020 November, Springer, Cham, pp. 147-155.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler(Araştırma)
Yazarlar

Ebubekir Kaya 0000-0001-8576-7750

Erken Görünüm Tarihi 27 Haziran 2022
Yayımlanma Tarihi 27 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 15 Sayı: 1

Kaynak Göster

APA Kaya, E. (2022). İleri Beslemeli Yapay Sinir Ağının Eğitiminde Meta-Sezgisel Yaklaşımlar. Türkiye Bilişim Vakfı Bilgisayar Bilimleri Ve Mühendisliği Dergisi, 15(1), 38-43. https://doi.org/10.54525/tbbmd.1071656
AMA Kaya E. İleri Beslemeli Yapay Sinir Ağının Eğitiminde Meta-Sezgisel Yaklaşımlar. TBV-BBMD. Haziran 2022;15(1):38-43. doi:10.54525/tbbmd.1071656
Chicago Kaya, Ebubekir. “İleri Beslemeli Yapay Sinir Ağının Eğitiminde Meta-Sezgisel Yaklaşımlar”. Türkiye Bilişim Vakfı Bilgisayar Bilimleri Ve Mühendisliği Dergisi 15, sy. 1 (Haziran 2022): 38-43. https://doi.org/10.54525/tbbmd.1071656.
EndNote Kaya E (01 Haziran 2022) İleri Beslemeli Yapay Sinir Ağının Eğitiminde Meta-Sezgisel Yaklaşımlar. Türkiye Bilişim Vakfı Bilgisayar Bilimleri ve Mühendisliği Dergisi 15 1 38–43.
IEEE E. Kaya, “İleri Beslemeli Yapay Sinir Ağının Eğitiminde Meta-Sezgisel Yaklaşımlar”, TBV-BBMD, c. 15, sy. 1, ss. 38–43, 2022, doi: 10.54525/tbbmd.1071656.
ISNAD Kaya, Ebubekir. “İleri Beslemeli Yapay Sinir Ağının Eğitiminde Meta-Sezgisel Yaklaşımlar”. Türkiye Bilişim Vakfı Bilgisayar Bilimleri ve Mühendisliği Dergisi 15/1 (Haziran 2022), 38-43. https://doi.org/10.54525/tbbmd.1071656.
JAMA Kaya E. İleri Beslemeli Yapay Sinir Ağının Eğitiminde Meta-Sezgisel Yaklaşımlar. TBV-BBMD. 2022;15:38–43.
MLA Kaya, Ebubekir. “İleri Beslemeli Yapay Sinir Ağının Eğitiminde Meta-Sezgisel Yaklaşımlar”. Türkiye Bilişim Vakfı Bilgisayar Bilimleri Ve Mühendisliği Dergisi, c. 15, sy. 1, 2022, ss. 38-43, doi:10.54525/tbbmd.1071656.
Vancouver Kaya E. İleri Beslemeli Yapay Sinir Ağının Eğitiminde Meta-Sezgisel Yaklaşımlar. TBV-BBMD. 2022;15(1):38-43.

https://i.creativecommons.org/l/by-nc/4.0Makale Kabulü

 

Çevrimiçi makale yüklemesi yapmak için kullanıcı kayıt/girişini kullanınız.

Dergiye gönderilen makalelerin kabul süreci şu aşamalardan oluşmaktadır:

1.       Gönderilen her makale ilk aşamada en az iki hakeme gönderilmektedir.

2.       Hakem ataması, dergi editörleri tarafından yapılmaktadır. Derginin hakem havuzunda yaklaşık 200 hakem bulunmaktadır ve bu hakemler ilgi alanlarına göre sınıflandırılmıştır. Her hakeme ilgilendiği konuda makale gönderilmektedir. Hakem seçimi menfaat çatışmasına neden olmayacak biçimde yapılmaktadır.

3.       Hakemlere gönderilen makalelerde yazar adları kapatılmaktadır.

4.       Hakemlere bir makalenin nasıl değerlendirileceği açıklanmaktadır ve aşağıda görülen değerlendirme formunu doldurmaları istenmektedir.

5.       İki hakemin olumlu görüş bildirdiği makaleler editörler tarafından benzerlik incelemesinden geçirilir. Makalelerdeki benzerliğin %25’ten küçük olması beklenir.

6.       Tüm aşamaları geçmiş olan bir bildiri dil ve sunuş açısından editör tarafından incelenir ve gerekli düzeltme ve iyileştirmeler yapılır. Gerekirse yazarlara durum bildirilir.

 88x31.png   Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.