Research Article
BibTex RIS Cite

Yapay Sinir Ağı ve Box-Jenkins Modeli ile Yazıcı Sarf Malzemelerinin Analizi ve Modellenmesi: Irak Örneği

Year 2020, , 1 - 8, 20.02.2020
https://doi.org/10.35354/tbed.664956

Abstract

Özet: Bu çalışmada, Irak’ta verilen süre aralığında toplanan verilerden yazıcı sarf malzeme satışları öngörüsünde bulunabilmek amacıyla, Box-Jenkins (B-J) ve Yapay Sinir Ağları (YSA) yöntemleri kullanılarak analizler ve geleceğe dönük öngörüler yapılmıştır. Toplam 132 gözlemden oluşan, Ocak 2008 ile Aralık 2018 arasındaki süreçte, yazıcı sarf malzemelerinin satış miktarları ele alınarak buna ait zaman serisi analiz edilmiştir. Çalışmada B-J metodu uygulanarak veri temsili için Otoregresif ve Bütünleşik Otoregresif Hareketli Ortalama (ARIMA) yöntemleri kullanılmıştır. Analizler sonucunda oluşturulan farklı modellerin arasında en uygun modelin ARIMA (0,1,0) (0,0,1) olduğu sonucuna varılmıştır. Bu modelin seçilme nedeni, öngörü doğruluğu kriteri sayılan Hata Karelerinin Ortalama Kökü (RMSE) ve Ortalama Mutlak Hata (MAPE) değerleridir. YSA ile modelleme yapıldığında ise farklı modeller test edilmiş, kurulan modellerin içinde en uygun modelin çok katmanlı YSA (5.5.1) modelinin olduğunu görülmüştür. Bu iki farklı yöntem arasında RMSE ve MAPE kıstası kullanılarak öngörünün doğruluğu ve performans yönünden karşılaştırma yapılmıştır. B-J ve YSA modelleri kendi arasında kıyaslandığında çok katmanlı YSA modelinin en uygun model olduğu görülmüştür. Bu model ile yazıcı sarf malzeme satışları zaman serisinden yararlanılarak, ileriki yıllar için satış miktarı değerlerinin tahmini yapılabilmektedir.

References

  • [1] Akdağ, M., 2015. Box Jenkins ve Yapay Sinir Ağı Modelleri ile Enflasyon Tahmini: Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Endüstri Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, Erzurum.
  • [2] Bluestone, H., 1963. The Cycles in Broilers. Poultry and Egg Situation, USDA ERS PES-226 (1963): 13-18.
  • [3] Cancela, A., 2008. Comparative Study of Artificial Neural Network and Box Jenkins Arima for Stock Price Indexes, ISCTE Business School, Mastering Data Analysis Prospecting.
  • [4] Commandeur, J.J.F., and Koopman, S.J., 2007. Introduction to State Space Time Series Analysis.
  • [5] Çuhadar, M., 2006. Turizm Sektöründe Talep Tahmini İçin Yapay Sinir Ağları Kullanımı ve Diğer Yöntemlerle Karşılaştırmalı Analizi, Süleyman Demirel Üniversitesi Sosyal Bilimler Enstitüsü.
  • [6] Garg, N., Sharma, M.K., Parmar, K.S., Soni, K., Singh, R.K., and Maji, S., 2016. Comparison of ARIMA and ANN Approaches in Time-Series Predictions of Traffic Noise, Noise Control Engineering Journal, Vol. 64, No. 4, pp:522-531.
  • [7] Gao, G., Lo, K., and Fan, F.L., 2017. Comparison of ARIMA and ANN Models Used in Electricity Price Forecasting for Power Market. Energy and Power Engineering, University of Strathclyde, Glasgow, UK, No. 9. pp. 120-126.
  • [8] Gerra, M.J., 1959. The Demand, Supply, and Price Structure for Eggs. US Dept. of Agriculture.
  • [9] Hamzaçebi, C., and Fevzi, K., 2004. Yapay Sinir Ağları ile Türkiye Elektrik Enerjisi Tüketiminin 2010 Yılına Kadar Tahmini. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 19.3.
  • [10] Ighravwe, D., Anyaeche, C., 2019. "A Comparison of ARIMA and ANN Techniques in Predicting Port Productivity and Berth Effectiveness.", International Journal of Data and Network Science, Vol. 3, pp. 13-22.
  • [11] Karaboga, D., and Bahriye, A., 2007. Artificial Bee Colony (ABC) Algorithm on Training Artificial Neural Networks. Signal Processing and Communications Applications, 2007. SIU 2007. IEEE 15th. IEEE.
  • [12] Leuthold, R.M., et al., 1970. Forecasting Daily Hog Prices and Quantities: A study of Alternative Forecasting Techniques. Journal of The American Statistical Association 65.329 : 90-107.
  • [13] Montanes, E., Quevedo, J.R., Prieto, M.M., and Menéndez, C.O., 2002. Forecasting Time Series Combining Machine Learning and Box-Jenkins Time Series Advances in Artificial Intelligence—Iberamia 2002 (pp. 491-499): Springer.
  • [14] Nury, A., Hasan, K., and Alam, J., 2017. Comparative Study of Wavelet-ARIMA and Wavelet-ANN Models for Temperature Time Series Data in Northeastern Bangladesh, Journal of King Saud University–Science, Vol. 29, PP. 47–61.
  • [15] Pandey, V., 2019. "Predictive Efficiency of ARIMA and ANN Models: A Case Analysis of Nifty Fifty in Indian Stock Market", International Journal of Applied Engineering Research, Vol. 14, No 2, pp. 232-244.
  • [16] Safi, S., 2016. A Comparison of Artificial Neural Network and Time Series Models for Forecasting GDP in Palestine. American Journal of Theoretical and Applied Statistics, Vol. 5, No. 2, pp. 58-63.
  • [17] Suits, D.B., 1962. Forecasting and Analysis with an Econometric Model. The American Economic Review 52.1.
  • [18] Schmitz, A., and Donald, G.W., 1970. Forecasting Wheat Yields: An Application of Parametric Time Series Modeling. American Journal of Agricultural Economics 52.2: 247-254.
  • [19] Tobin, B.F., and Arthur, H.B., 1964. Dynamics of Adjustment in The Broiler Industry, Dynamics of Adjustment in The Broiler Industry.
  • [20] Ture, M., and Kurt, I., 2006. Comparison of Four Different Time Series Methods to Forecast Hepatitis A Virus Infection. Expert Systems with Applications, 31(1), 41-46.
  • [21] Anderson, T.W., 1971. The Statistical Analysis of Time Series, John Wiley and Sons, Inc, New York.
  • [22] Box, G., and Jenkins, G., 1976. Time Series Analysis Forecasting and Control San Francisco Helden-Day.
  • [23] Ameen, B.H., 2005. Using Neural Networks in Estimating Time Series by Applying Electric Power Consumption in Mosul City, Master Thesis, Mosul University, Iraq.
  • [24] Pirece, A.D., 1971. Least Squares Estimation in the Regression Model with Autoregression - Moving Average Errors , Biomatrika, vol 58, P (299- 321) .
  • [25] Sharawei, S., 2005. An Introduction to Modern Time Series Analysis, King Abdulaziz University, Saudi Arabia, 1st edition.
  • [26] Aljubouri, W.D.S., 2010. Predicting the Inflation Level in Monthly Consumer Prices in Iraq Using Binary Variable Time Series, "Master Thesis, College of Administration and Economics, Al-Mustansiriya University, Iraq.
  • [27] Krose, B., and Smagt, V.D.P., 1996 . An Introduction to Neural Networks, Eighth Edition. The university of Amsterdam, pp 33-34.
Year 2020, , 1 - 8, 20.02.2020
https://doi.org/10.35354/tbed.664956

Abstract

References

  • [1] Akdağ, M., 2015. Box Jenkins ve Yapay Sinir Ağı Modelleri ile Enflasyon Tahmini: Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Endüstri Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, Erzurum.
  • [2] Bluestone, H., 1963. The Cycles in Broilers. Poultry and Egg Situation, USDA ERS PES-226 (1963): 13-18.
  • [3] Cancela, A., 2008. Comparative Study of Artificial Neural Network and Box Jenkins Arima for Stock Price Indexes, ISCTE Business School, Mastering Data Analysis Prospecting.
  • [4] Commandeur, J.J.F., and Koopman, S.J., 2007. Introduction to State Space Time Series Analysis.
  • [5] Çuhadar, M., 2006. Turizm Sektöründe Talep Tahmini İçin Yapay Sinir Ağları Kullanımı ve Diğer Yöntemlerle Karşılaştırmalı Analizi, Süleyman Demirel Üniversitesi Sosyal Bilimler Enstitüsü.
  • [6] Garg, N., Sharma, M.K., Parmar, K.S., Soni, K., Singh, R.K., and Maji, S., 2016. Comparison of ARIMA and ANN Approaches in Time-Series Predictions of Traffic Noise, Noise Control Engineering Journal, Vol. 64, No. 4, pp:522-531.
  • [7] Gao, G., Lo, K., and Fan, F.L., 2017. Comparison of ARIMA and ANN Models Used in Electricity Price Forecasting for Power Market. Energy and Power Engineering, University of Strathclyde, Glasgow, UK, No. 9. pp. 120-126.
  • [8] Gerra, M.J., 1959. The Demand, Supply, and Price Structure for Eggs. US Dept. of Agriculture.
  • [9] Hamzaçebi, C., and Fevzi, K., 2004. Yapay Sinir Ağları ile Türkiye Elektrik Enerjisi Tüketiminin 2010 Yılına Kadar Tahmini. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 19.3.
  • [10] Ighravwe, D., Anyaeche, C., 2019. "A Comparison of ARIMA and ANN Techniques in Predicting Port Productivity and Berth Effectiveness.", International Journal of Data and Network Science, Vol. 3, pp. 13-22.
  • [11] Karaboga, D., and Bahriye, A., 2007. Artificial Bee Colony (ABC) Algorithm on Training Artificial Neural Networks. Signal Processing and Communications Applications, 2007. SIU 2007. IEEE 15th. IEEE.
  • [12] Leuthold, R.M., et al., 1970. Forecasting Daily Hog Prices and Quantities: A study of Alternative Forecasting Techniques. Journal of The American Statistical Association 65.329 : 90-107.
  • [13] Montanes, E., Quevedo, J.R., Prieto, M.M., and Menéndez, C.O., 2002. Forecasting Time Series Combining Machine Learning and Box-Jenkins Time Series Advances in Artificial Intelligence—Iberamia 2002 (pp. 491-499): Springer.
  • [14] Nury, A., Hasan, K., and Alam, J., 2017. Comparative Study of Wavelet-ARIMA and Wavelet-ANN Models for Temperature Time Series Data in Northeastern Bangladesh, Journal of King Saud University–Science, Vol. 29, PP. 47–61.
  • [15] Pandey, V., 2019. "Predictive Efficiency of ARIMA and ANN Models: A Case Analysis of Nifty Fifty in Indian Stock Market", International Journal of Applied Engineering Research, Vol. 14, No 2, pp. 232-244.
  • [16] Safi, S., 2016. A Comparison of Artificial Neural Network and Time Series Models for Forecasting GDP in Palestine. American Journal of Theoretical and Applied Statistics, Vol. 5, No. 2, pp. 58-63.
  • [17] Suits, D.B., 1962. Forecasting and Analysis with an Econometric Model. The American Economic Review 52.1.
  • [18] Schmitz, A., and Donald, G.W., 1970. Forecasting Wheat Yields: An Application of Parametric Time Series Modeling. American Journal of Agricultural Economics 52.2: 247-254.
  • [19] Tobin, B.F., and Arthur, H.B., 1964. Dynamics of Adjustment in The Broiler Industry, Dynamics of Adjustment in The Broiler Industry.
  • [20] Ture, M., and Kurt, I., 2006. Comparison of Four Different Time Series Methods to Forecast Hepatitis A Virus Infection. Expert Systems with Applications, 31(1), 41-46.
  • [21] Anderson, T.W., 1971. The Statistical Analysis of Time Series, John Wiley and Sons, Inc, New York.
  • [22] Box, G., and Jenkins, G., 1976. Time Series Analysis Forecasting and Control San Francisco Helden-Day.
  • [23] Ameen, B.H., 2005. Using Neural Networks in Estimating Time Series by Applying Electric Power Consumption in Mosul City, Master Thesis, Mosul University, Iraq.
  • [24] Pirece, A.D., 1971. Least Squares Estimation in the Regression Model with Autoregression - Moving Average Errors , Biomatrika, vol 58, P (299- 321) .
  • [25] Sharawei, S., 2005. An Introduction to Modern Time Series Analysis, King Abdulaziz University, Saudi Arabia, 1st edition.
  • [26] Aljubouri, W.D.S., 2010. Predicting the Inflation Level in Monthly Consumer Prices in Iraq Using Binary Variable Time Series, "Master Thesis, College of Administration and Economics, Al-Mustansiriya University, Iraq.
  • [27] Krose, B., and Smagt, V.D.P., 1996 . An Introduction to Neural Networks, Eighth Edition. The university of Amsterdam, pp 33-34.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Ban Almahmud

Mehmet Albayrak 0000-0002-7089-122X

Publication Date February 20, 2020
Published in Issue Year 2020

Cite

APA Almahmud, B., & Albayrak, M. (2020). Yapay Sinir Ağı ve Box-Jenkins Modeli ile Yazıcı Sarf Malzemelerinin Analizi ve Modellenmesi: Irak Örneği. Teknik Bilimler Dergisi, 10(1), 1-8. https://doi.org/10.35354/tbed.664956