Günlük
yaşantımızda ulaşım önemli bir yere sahiptir. Birçok insan kara yolu ulaşımını
kullanıp bir noktadan başka bir noktaya kendi aracı ile gitmektedir. Gün
içerisinde insanların araç kullanımı sırasında yapmış olduğu bazı riskli
hareketler (ani hızlanma, ani yavaşlama, ani sağa dönüş, ani sola dönüş, ani
şerit değişimi vb.) sonucunda kazalar
yaşanmaktadır. Sürücülerin yapmış olduğu bu riskli hareketler modellenip sürücü
profilleri oluşturulabilir. Oluşturulan sürücü profillerine göre sürücüler
uyarılabilir ya da araç kullanımı sırasında kazaya neden olabilecek bu
davranışları yapmaması için gerekli yaptırımlar uygulanabilir. Bu çalışmada,
sürücünün araç kullanımı sırasında sürüş verileri alınmış ve çeşitli makine
öğrenmesi algoritmaları ile sürücü davranışları (ani hızlanma, ani sağa dönüş,
ani sola dönüş) modellenmiştir. Bu modelleme sonucunda makine öğrenimi
algoritmalarının başarı oranları Rastgele Orman için 65,50%, Bayes Ağları için 47.97%,
Karar Tabloları için 59.55%, Yapay Sinir Ağları için 55.84% ve Destek Vektör
Makineleri için 53.82% olarak bulunmuştur. Sürücü davranışlarının
sınıflandırılmasındaki başarıyı artırabilmek için pencereleme yöntemi
kullanılmış ve Rastgele Orman’da 89,61%, Bayes Ağları’nda 90.90%, Karar
Tabloları’nda 92,20%, Yapay Sinir Ağları’nda 84,41%, Destek Vektör Makineleri’nde
90,90% başarı oranları elde edilmiştir. Sürücü davranışlarının modellenmesinde pencereleme
yöntemi olumlu etki oluştururken en yüksek başarı oranına sahip makine
öğrenmesi algoritması Karar Tabloları olarak belirlenmiştir.
Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Yönetim Birimi
5058-YL1-17
5058-YL1-17 numaralı proje ile desteklenen bu çalışmada Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Yönetim Birimi’ne teşekkür ederiz.
5058-YL1-17
Primary Language | Turkish |
---|---|
Subjects | Engineering |
Journal Section | Makaleler |
Authors | |
Project Number | 5058-YL1-17 |
Publication Date | July 31, 2019 |
Published in Issue | Year 2019 Volume: 9 Issue: 2 |