Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı sıcaklıkların Rhyzobius lophanthae Blaisdell (Coleoptera: Coccinellidae)’nin biyolojisi üzerindeki etkileri

Yıl 2022, , 75 - 87, 05.07.2022
https://doi.org/10.31019/tbmd.1105690

Öz

Rhyzobius lophanthae Blaisdell (Coleoptera: Coccinellidae) kabuklubitlerin avcısı olarak bilinmektedir. Çalışmada türlerin daha verimli olduğu optimum sıcaklık değerinin belirlenmesi amaçlanmıştır. Bu çalışmada 14, 16, 18, 20, 22, 24, 26, 28, 30 ve 32 °C, %60 orantılı nem ve uzun gün aydınlatmalı iklim koşullarında R. lophanthae'nin yaşam çizelgesi parametreleri Euler-Lotka eşitliğine göre RmStat-3 kullanılarak hesaplanmıştır. 26, 28 ve 30 °C elde edilen sonuçlara göre Kalıtsal üreme yeteneği (rm) 0.120, 0.142, 0.132 dişi/dişi/gün olarak hesaplanırken, Net üreme gücü (R0) 56.883, 80.944, 31.149 dişi/dişi/döl olarak hesaplanmıştır. Ortalama döl süresi (T0) sırasıyla 33.801, 30.866, 25.978 gün olmuştur. Toplam üreme oranı (GRR) 177.779, 303.751, 105.751 yumurta/dişi olarak hesaplanmıştır. Çalışmada laboratuvar koşullarında R. lophanthae'nin etkinliği için 28 °C’nin optimum sıcaklık olduğu sonucuna varılmıştır. Elde edilen sonuçlara göre avcılar ve zararlıların çevresel koşullardaki etkileşimleri hakkında daha fazla çalışmaya ihtiyaç duyulduğu gözlenmiştir.

Destekleyen Kurum

Süleyman Demirel University

Proje Numarası

4636-D2-16

Teşekkür

Bu çalışmayı maddi olarak destekleyen Süleyman Demirel Üniversitesine teşekkür ederiz.

Kaynakça

  • Alloush A.A., 2019. Developmental duration and predation rate of the coccidophagous coccinellid Rhyzobius lophanthae (Blaisdell) (Coleoptera: Coccinellidae) on Aspidiotus nerii Bouche. Bulletin of Entomological Research, 109(5): 612-616.
  • Bale J.S., G.J. Masters, I.D. Hodkinson, C. Awmack, T.M. Bezemer, V.K. Brown, J. Butterfield, A. Buse, J.C. Coulson, J. Farrar, J.E.G. Good, R. Harrington, S. Hartley, T.H. Jones, R.L. Lindroth, M.C. Pres, I. Symrnioudis, A.D. Watt & J.B. Whittaker, 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology, 8: 1-16.
  • Birch L.C., 1948. The intrinsic rate of natural increase of an insect population. Journal of Animal Ecology, 17: 15-26.
  • Branco B., L. Dalmau, I. Borges & A.O. Soares, 2017. Life-history traits of the predator Rhyzobius lophanthae reared on the scale Chrysomphalus dictyospermi. Bulletin Insectology, 70(2): 231-235.
  • Collins W., R. Colman, J. Haywood, R.R. Manning & P. Mote, 2007. The physical science behind climate change. Scientific American, 297(2): 64-73.
  • DeBach P., 1969. Biological control of diaspine scale insect on citrus in California. Proceedings First International Citrus Symposium, March 16-26, Riverside, California, 2, 801-815.
  • Erler F. & I. Tunç, 2001. ASurvey (1992-1996) of Natural Enemies of Diaspididae Species in Antalya, Turkey. Phytoparasitica, 29(4): 299-305.
  • Gao G., S. Liu, L. Feng, Y. Wang & Z. Lu, 2020. Effect of temperature on predation by Harmonia axyridis (Pall.) (Coleoptera: Coccinellidae) on the walnut aphids Chromaphis juglandicola Kalt. and Panaphis juglandis (Goeze). Egyptian Journal of Biological Pest Control, 30: 137.
  • Harrington R., R.A. Fleming & P. Woiwod, 2001. Climate change impacts on insect management and conservation in temperate regions: can they be predicted?. Agricultural and Forest Entomology, 3: 233-240.
  • Hodek I. & A. Honek, 1996. Ecology of Coccinellidae.- Kulver Academic Publisher, the Netherlands 464p.
  • Houghton J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell & C.A. Johnson, 2001. Climate Change 2001: the Scientific Basis. Cambridge University Press, Cambridge, UK.
  • Imura O., 1987. Demographic attributes of Tribolium freeman Hinton (Coleoptera: Tenebrionidae). Applied Entomology and Zoology, 22(4): 449-455.
  • Kairo M.T.K. & S.T. Murphy, 1995. The life history of Rodolia iceryae Janson (Coleoptera: Coccinellidae) and the potential for use in innoculative releases against Icerya pattersoni Newstead (Homoptera: Margarodidae) on coffee. Journal of Applied Entomology, 119: 487-491.
  • Kayahan A. & İ. Karaca, 2020. Development periods of immature stages of Rhyzobius lophanthae blaisdell (coleoptera: coccinellidae) at different temperatures. Fresenius Environ Bulletin, 29(09A): 8168-8192.
  • Luhring T.M., J.M. Vavra, C.E. Cressler & J.P. Delong, 2019. Phenotypically plastic responses to predation risk are temperature dependent. Oecologia, 191: 709-719.
  • Mellado J.J.S., 2011. Biological control of California red scale, Aonidiella aurantii (Hemiptera: Diaspididae): spatial and temporal distribution of natural enemies, parasitism levels and climate effects. PhD Thesis, Universitat Politécnica De Valencia, Instituto Agroforestal, Mediterráneo, 175p.
  • Meyer J.S., C.G. Ingersoll, L.L. Mcdonald & M.S. Boyce, 1986. Estimating uncertainty in population growth rates: Jackknife vs. Bootstrap techniques. Ecology, 67: 1156-1166.
  • Nar E., R. Ulusoy & İ. Karaca, 2009. Farklı sıcaklıkların avcı böcek, Rhyzobius lophantae Blaisdell (Coleoptera: Coccinellidae)’nin gelişmesi üzerine etkisi. Süleyman Demirel Üniversitesi, Fen Dergisi, 4 (1): 59-74.
  • Olkowski W., E. Dietrick & H. Olkowski, 1992. The biological control industry in United States. IPM-Practitioner, 14(3): 1-7.
  • Ögür E. & C. Tuncer, 2011. Küresel ısınmanın böceklere etkisi. Anadolu Tarım Bilimleri Dergisi, 26(1): 83-90.
  • Özgökçe M.S. & İ. Karaca, 2010. Yaşam Çizelgesi: Temel Prensipler ve Uygulamalar.- Türkiye Entomoloji Derneği I. Çalıştayı, Ekoloji Çalışma Grubu, Isparta.
  • Özgökçe M.S. & R. Atlıhan, 2004. Biological features and life table parameters of mealy plum aphid, Hyalopterus pruni on Different Apricot Cultivars. Phytoparasitica, 33(1): 7-14.
  • Root T.L., J.T. Price, K.R. Hall & S.H. Schneider, 2003. Fingerprints of global warming on wild animals and plants. Nature, 421: 57-60.
  • Salinger M.J., M.V.K. Sivakumar & R. Motha, 2005. Reducing vulnerability of agriculture and forestry to climate variability and change. Climatic Change, 70(1/2): 341-342.
  • Stathas G.J., 2000. Rhyzobius lophanthae prey consumption and fecundity. Phytoparasitica, 28(3): 203-211.
  • Stathas G.J., P.A. Eliopoulos, D.C. Kontodimas & D.Th. Siamos, 2002. Adult morphology and life cycle under constant temperature of the predator Rhyzobius lophanthae Blaisdell (Col., Coccinellidae). Journal of Pest Science, 75: 105-109.
  • Stathas G.J., D.C. Kontodimas, S.L. Bouras & L.P. Economou, 2005. Life table parameters of Rhyzobius lophanthae Blaisdell (Coleoptera: Coccinellidae). Integrated Protection of Olive Crops, IOBC/WPRS Bulletin, 28(9): 147-155.
  • Şimşek B., İ. Karaca & A. Kayahan A, 2016. Determination of developmental and life table parameters of Rhyzobius lophanthae Blaisdell (Coleoptera: Coccinellidae) on three armored scale insects (Hemiptera: Diaspididae). Redia XCIX, 219-223.
  • Uygun N. & E. Şekeroğlu, 1981. Yeni kurulan turunçgil bahçelerinde tüm savaş çalışmaları. Çukurova Üniversitesi, Ziraat Fakültesi Yayınları, Adana, No: 41, 13s.
  • Uygun N. & İ. Karaca, 1998. Türkiye’de turunçgil zararlıları ve mücadelesi.- Türkiye II. Turunçgil Kongresi. Adana, 7 (22): 39-46.
  • Uygun N., E. Şekeroğlu & İ. Karaca, 1987. Çukurova’da yeni kurulan bir turunçgil bahçesinde entegre savaş çalışmaları. Türkiye I. Entomoloji Kongresi Bildirileri, 12-14 Şubat, Adana, (3): 459-469.
  • Yakhanttov V.V., 1966. Diapause in Coccinellidae of central Asia. In: Hodek, I. (Ed.) Ecology of Aphidophagous Insects. Academia, Prague and Dr.W. Junk, The Hague, 107-108.

The effects of different temperatures on the biology of Rhyzobius lophanthae Blaisdell (Coleoptera: Coccinellidae)

Yıl 2022, , 75 - 87, 05.07.2022
https://doi.org/10.31019/tbmd.1105690

Öz

The purple-scale predator, Rhyzobius lophanthae Blaisdell (Coleoptera: Coccinellidae), is a coccidophagous ladybug. The aim of the present study was to determine the optimal temperature for this species to be most efficient reproductively.. For that purpose, the life cycle parameters of R. lophanthae were determined at different temperatures, namely14, 16, 18, 20, 22, 24, 26, 28, 30 and 32 °C, 60% RH and long day photoperiod, with Aspidiotus nerii Bouché (Hemiptera: Diaspididae) as the prey. Calculations were performed with RmStat-3 software, based on the use of the Euler-Lotka equation. At 26, 28 and 30 °C, the intrinsic reproduction rates (rm) were 0.120, 0.142 and 0.132 females/day, respectively, and the net reproduction rates (R0) were 56.883, 80.944 and 31.149 females/generation, respectively. Mean generation times (T0) were 33.801, 30.866 and 25.978 days, respectively. Total productivity rates (GRR) were 177.779, 303.751 and 105.751 eggs/female, respectively. In this study, 28 °C was the optimal temperature for the reproductive efficiency of R. lophanthae under laboratory conditions. There is a need for further studies on the interactions between pests, predators and environmental conditions.

Proje Numarası

4636-D2-16

Kaynakça

  • Alloush A.A., 2019. Developmental duration and predation rate of the coccidophagous coccinellid Rhyzobius lophanthae (Blaisdell) (Coleoptera: Coccinellidae) on Aspidiotus nerii Bouche. Bulletin of Entomological Research, 109(5): 612-616.
  • Bale J.S., G.J. Masters, I.D. Hodkinson, C. Awmack, T.M. Bezemer, V.K. Brown, J. Butterfield, A. Buse, J.C. Coulson, J. Farrar, J.E.G. Good, R. Harrington, S. Hartley, T.H. Jones, R.L. Lindroth, M.C. Pres, I. Symrnioudis, A.D. Watt & J.B. Whittaker, 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology, 8: 1-16.
  • Birch L.C., 1948. The intrinsic rate of natural increase of an insect population. Journal of Animal Ecology, 17: 15-26.
  • Branco B., L. Dalmau, I. Borges & A.O. Soares, 2017. Life-history traits of the predator Rhyzobius lophanthae reared on the scale Chrysomphalus dictyospermi. Bulletin Insectology, 70(2): 231-235.
  • Collins W., R. Colman, J. Haywood, R.R. Manning & P. Mote, 2007. The physical science behind climate change. Scientific American, 297(2): 64-73.
  • DeBach P., 1969. Biological control of diaspine scale insect on citrus in California. Proceedings First International Citrus Symposium, March 16-26, Riverside, California, 2, 801-815.
  • Erler F. & I. Tunç, 2001. ASurvey (1992-1996) of Natural Enemies of Diaspididae Species in Antalya, Turkey. Phytoparasitica, 29(4): 299-305.
  • Gao G., S. Liu, L. Feng, Y. Wang & Z. Lu, 2020. Effect of temperature on predation by Harmonia axyridis (Pall.) (Coleoptera: Coccinellidae) on the walnut aphids Chromaphis juglandicola Kalt. and Panaphis juglandis (Goeze). Egyptian Journal of Biological Pest Control, 30: 137.
  • Harrington R., R.A. Fleming & P. Woiwod, 2001. Climate change impacts on insect management and conservation in temperate regions: can they be predicted?. Agricultural and Forest Entomology, 3: 233-240.
  • Hodek I. & A. Honek, 1996. Ecology of Coccinellidae.- Kulver Academic Publisher, the Netherlands 464p.
  • Houghton J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell & C.A. Johnson, 2001. Climate Change 2001: the Scientific Basis. Cambridge University Press, Cambridge, UK.
  • Imura O., 1987. Demographic attributes of Tribolium freeman Hinton (Coleoptera: Tenebrionidae). Applied Entomology and Zoology, 22(4): 449-455.
  • Kairo M.T.K. & S.T. Murphy, 1995. The life history of Rodolia iceryae Janson (Coleoptera: Coccinellidae) and the potential for use in innoculative releases against Icerya pattersoni Newstead (Homoptera: Margarodidae) on coffee. Journal of Applied Entomology, 119: 487-491.
  • Kayahan A. & İ. Karaca, 2020. Development periods of immature stages of Rhyzobius lophanthae blaisdell (coleoptera: coccinellidae) at different temperatures. Fresenius Environ Bulletin, 29(09A): 8168-8192.
  • Luhring T.M., J.M. Vavra, C.E. Cressler & J.P. Delong, 2019. Phenotypically plastic responses to predation risk are temperature dependent. Oecologia, 191: 709-719.
  • Mellado J.J.S., 2011. Biological control of California red scale, Aonidiella aurantii (Hemiptera: Diaspididae): spatial and temporal distribution of natural enemies, parasitism levels and climate effects. PhD Thesis, Universitat Politécnica De Valencia, Instituto Agroforestal, Mediterráneo, 175p.
  • Meyer J.S., C.G. Ingersoll, L.L. Mcdonald & M.S. Boyce, 1986. Estimating uncertainty in population growth rates: Jackknife vs. Bootstrap techniques. Ecology, 67: 1156-1166.
  • Nar E., R. Ulusoy & İ. Karaca, 2009. Farklı sıcaklıkların avcı böcek, Rhyzobius lophantae Blaisdell (Coleoptera: Coccinellidae)’nin gelişmesi üzerine etkisi. Süleyman Demirel Üniversitesi, Fen Dergisi, 4 (1): 59-74.
  • Olkowski W., E. Dietrick & H. Olkowski, 1992. The biological control industry in United States. IPM-Practitioner, 14(3): 1-7.
  • Ögür E. & C. Tuncer, 2011. Küresel ısınmanın böceklere etkisi. Anadolu Tarım Bilimleri Dergisi, 26(1): 83-90.
  • Özgökçe M.S. & İ. Karaca, 2010. Yaşam Çizelgesi: Temel Prensipler ve Uygulamalar.- Türkiye Entomoloji Derneği I. Çalıştayı, Ekoloji Çalışma Grubu, Isparta.
  • Özgökçe M.S. & R. Atlıhan, 2004. Biological features and life table parameters of mealy plum aphid, Hyalopterus pruni on Different Apricot Cultivars. Phytoparasitica, 33(1): 7-14.
  • Root T.L., J.T. Price, K.R. Hall & S.H. Schneider, 2003. Fingerprints of global warming on wild animals and plants. Nature, 421: 57-60.
  • Salinger M.J., M.V.K. Sivakumar & R. Motha, 2005. Reducing vulnerability of agriculture and forestry to climate variability and change. Climatic Change, 70(1/2): 341-342.
  • Stathas G.J., 2000. Rhyzobius lophanthae prey consumption and fecundity. Phytoparasitica, 28(3): 203-211.
  • Stathas G.J., P.A. Eliopoulos, D.C. Kontodimas & D.Th. Siamos, 2002. Adult morphology and life cycle under constant temperature of the predator Rhyzobius lophanthae Blaisdell (Col., Coccinellidae). Journal of Pest Science, 75: 105-109.
  • Stathas G.J., D.C. Kontodimas, S.L. Bouras & L.P. Economou, 2005. Life table parameters of Rhyzobius lophanthae Blaisdell (Coleoptera: Coccinellidae). Integrated Protection of Olive Crops, IOBC/WPRS Bulletin, 28(9): 147-155.
  • Şimşek B., İ. Karaca & A. Kayahan A, 2016. Determination of developmental and life table parameters of Rhyzobius lophanthae Blaisdell (Coleoptera: Coccinellidae) on three armored scale insects (Hemiptera: Diaspididae). Redia XCIX, 219-223.
  • Uygun N. & E. Şekeroğlu, 1981. Yeni kurulan turunçgil bahçelerinde tüm savaş çalışmaları. Çukurova Üniversitesi, Ziraat Fakültesi Yayınları, Adana, No: 41, 13s.
  • Uygun N. & İ. Karaca, 1998. Türkiye’de turunçgil zararlıları ve mücadelesi.- Türkiye II. Turunçgil Kongresi. Adana, 7 (22): 39-46.
  • Uygun N., E. Şekeroğlu & İ. Karaca, 1987. Çukurova’da yeni kurulan bir turunçgil bahçesinde entegre savaş çalışmaları. Türkiye I. Entomoloji Kongresi Bildirileri, 12-14 Şubat, Adana, (3): 459-469.
  • Yakhanttov V.V., 1966. Diapause in Coccinellidae of central Asia. In: Hodek, I. (Ed.) Ecology of Aphidophagous Insects. Academia, Prague and Dr.W. Junk, The Hague, 107-108.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği
Bölüm Makaleler
Yazarlar

Ali Kayahan 0000-0002-3671-254X

İsmail Karaca 0000-0002-0975-789X

Proje Numarası 4636-D2-16
Yayımlanma Tarihi 5 Temmuz 2022
Gönderilme Tarihi 19 Nisan 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Kayahan, A., & Karaca, İ. (2022). Farklı sıcaklıkların Rhyzobius lophanthae Blaisdell (Coleoptera: Coccinellidae)’nin biyolojisi üzerindeki etkileri. Türkiye Biyolojik Mücadele Dergisi, 13(1), 75-87. https://doi.org/10.31019/tbmd.1105690
AMA Kayahan A, Karaca İ. Farklı sıcaklıkların Rhyzobius lophanthae Blaisdell (Coleoptera: Coccinellidae)’nin biyolojisi üzerindeki etkileri. Türk. biyo. müc. derg. Temmuz 2022;13(1):75-87. doi:10.31019/tbmd.1105690
Chicago Kayahan, Ali, ve İsmail Karaca. “Farklı sıcaklıkların Rhyzobius Lophanthae Blaisdell (Coleoptera: Coccinellidae)’nin Biyolojisi üzerindeki Etkileri”. Türkiye Biyolojik Mücadele Dergisi 13, sy. 1 (Temmuz 2022): 75-87. https://doi.org/10.31019/tbmd.1105690.
EndNote Kayahan A, Karaca İ (01 Temmuz 2022) Farklı sıcaklıkların Rhyzobius lophanthae Blaisdell (Coleoptera: Coccinellidae)’nin biyolojisi üzerindeki etkileri. Türkiye Biyolojik Mücadele Dergisi 13 1 75–87.
IEEE A. Kayahan ve İ. Karaca, “Farklı sıcaklıkların Rhyzobius lophanthae Blaisdell (Coleoptera: Coccinellidae)’nin biyolojisi üzerindeki etkileri”, Türk. biyo. müc. derg, c. 13, sy. 1, ss. 75–87, 2022, doi: 10.31019/tbmd.1105690.
ISNAD Kayahan, Ali - Karaca, İsmail. “Farklı sıcaklıkların Rhyzobius Lophanthae Blaisdell (Coleoptera: Coccinellidae)’nin Biyolojisi üzerindeki Etkileri”. Türkiye Biyolojik Mücadele Dergisi 13/1 (Temmuz 2022), 75-87. https://doi.org/10.31019/tbmd.1105690.
JAMA Kayahan A, Karaca İ. Farklı sıcaklıkların Rhyzobius lophanthae Blaisdell (Coleoptera: Coccinellidae)’nin biyolojisi üzerindeki etkileri. Türk. biyo. müc. derg. 2022;13:75–87.
MLA Kayahan, Ali ve İsmail Karaca. “Farklı sıcaklıkların Rhyzobius Lophanthae Blaisdell (Coleoptera: Coccinellidae)’nin Biyolojisi üzerindeki Etkileri”. Türkiye Biyolojik Mücadele Dergisi, c. 13, sy. 1, 2022, ss. 75-87, doi:10.31019/tbmd.1105690.
Vancouver Kayahan A, Karaca İ. Farklı sıcaklıkların Rhyzobius lophanthae Blaisdell (Coleoptera: Coccinellidae)’nin biyolojisi üzerindeki etkileri. Türk. biyo. müc. derg. 2022;13(1):75-87.