Research Article
BibTex RIS Cite
Year 2020, Volume: 4 Issue: 1, 24 - 31, 15.06.2020
https://doi.org/10.33435/tcandtc.674902

Abstract

References

  • [1] G. D. H. Hutcheson, Jerry D, Technology and economics in the semiconductor industry, Scientific American. 274 (1996) 54-62.
  • [2] R. Boča, Magnetic parameters and magnetic functions in mononuclear complexes beyond the spin-Hamiltonian formalism. Magnetic Functions Beyond the Spin-Hamiltonian: Springer, 117 (2006) 1-264.
  • [3] M. G. Faucher, D. Caro, P. Derouet, J. Porcher, P, The anomalous crystal field splittings of 2H11/2 (Nd 3+, 4f3). Journal de Physique 50 (1989) 219-243.
  • [4] Y. X. Li, Yuanjiang. Wen, Shuangchun. Yong, Junhai. Fan, Dianyuan, Tunable terahertz-mirror and multi-channel terahertz-filter based on one-dimensional photonic crystals containing semiconductors. Journal of Applied Physics 110 (211) 073111.
  • [5] M. D. Regulacio and M.-Y. Han, Composition-tunable alloyed semiconductor nanocrystals. Accounts of chemical research 43 (2010) 621-630.
  • [6] J. L. Hudgins, G. S. Simin, E. Santi, M. A. Khan, An assessment of wide bandgap semiconductors for power devices, IEEE Transactions on Power Electronics, 18 (2003) 907-914.
  • [7] L. L. Gu, V. Srot, W. Sigle, C. Koch, P. V. Aken, F. Scholz, S. B. Thapa, C. Kirchner, M. Jetter, M. Rühle, Manfred Band-gap measurements of direct and indirect semiconductors using monochromated electrons. Physical Review B 75 (2007) 195214.
  • [8] K.-H. K. Park, Tae-Young; Han, Shin; Ko, Hyun-Seok; Lee, Suk-Ho; Song, Yong-Min; Kim, Jung-Hun; Lee, Jae-Wook, Light harvesting over a wide range of wavelength using natural dyes of gardenia and cochineal for dye-sensitized solar cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 128(2014) 868-873, 2014.
  • [9] A. Badano and J. Kanicki, Monte Carlo analysis of the spectral photon emission and extraction efficiency of organic light-emitting devices. Journal of Applied Physics 90 (2001) 1827-1830.
  • [10] N. G. Narendran, Y; Freyssinier‐Nova, JP; Zhu, Y, Extracting phosphor‐scattered photons to improve white LED efficiency. physica status solidi (a) 202 (2005) R60-R62.
  • [11] S. J. Lee, Study of photon extraction efficiency in InGaN light-emitting diodes depending on chip structures and chip-mount schemes. Optical Engineering 45 (2006) 014601.
  • [12] M. M. Hasan, A. Ajoy, U. Chakma, Theoretical Investigation of Doping Effect of Fe for SnWO4 in Electronic Structure and Optical Properties: DFT Based First Principle Study. Advanced Journal of Chemistry-Section A 2020 (2020), no. In Press, 2020.
  • [13] M. J. Islam, A. Kumer, First-principles study of structural, electronic and optical properties of AgSbO3 and AgSb0.78 Se0.22O3 photocatalyst. SN Applied Sciences 2(2020) 251.
  • [14] B. C. A. Kamal, Kumer; Unesco, Chakma; Debashis, Howlader; Md Tawhidul, Islam;, A theoretical investigation for electronics structure of Mg(BiO2)2 semiconductor using first principle approach. International Journal of New Chemistry, vol. 2020, no. In Press, 2020.
  • [15] U. Chakma, A. Kumer, K. B. Chakma, M. T. Islam, D. Howlader, Electronics Structure and Optical Properties of Ag2BiO3,(Ag2) 0.88 Fe0. 12BiO3: A First Principle Approach, Advanced Journal of Chemistry. Section A: Theoretical, Engineering and Applied Chemistry 3 (2020) 542–550.
  • [16] U. Chakma, A. Kumer, K. B. Chakma, M. T. Islam, D. Howlader, Mohamed, Rasha M K, Electronics structure and optical properties of SrPbO3 and SrPb0. 94Fe0. 06O3: A first principle approach. Eurasian Chemical Communications 2(2020) 573-580.
  • [17] D. Wood and J. Tauc, Weak absorption tails in amorphous semiconductors. Physical Review B 5 (1972) 3144,.
  • [18] R. K. Waring Jr and W. Y. Hsu, Urbach rule behavior in strongly absorbing fine particle solids, Journal of Applied Physics 54(1983) 4093-4096.
  • [19] A. F. Henglein, Anton; Welter, Horst Reactions on colloidal semiconductor particles. Berichte der Bunsengesellschaft für physikalische Chemie 91 (1987) 441- 446.
  • [20] E. Davis and N. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philosophical Magazine 22 (1970) 0903-0922.
  • [21] A. Addamiano, Preparation and Photoluminescence of Silicon Carbide Phosphors Doped with Group III a Elements and/or Nitrogen. Journal of The Electrochemical Society 113 (1966) 134-136.
  • [22] Y. T. Nakato, Akira; Tsubomura, Hiroshi, Efficient Photoelectrochemical Conversion of Solar Energy with N-Type Silicon Semiconductor Electrodes Surface-Doped with IIIA-Group Elements. Chemistry Letters 11 (1982) 1071-1074.
  • [23] A. D. Barros, R; Deschamp, J; Boutinaud, P; Chadeyron, Geneviève; Mahiou, R; Cavalli, E; Brik, MG, Optical properties and electronic band structure of BiMg2PO6, BiMg2VO6, BiMg2VO6: Pr3+ and BiMg2VO6: Eu3+. Optical Materials 36 (2014) 1724-1729.
  • [24] Y. W. Huang, Wei; Zhang, Qian; Cao, Jun-ji; Huang, Ru-jin; Ho, Wingkei; Lee, Shun Cheng, In situ fabrication of α-Bi 2 O 3/(BiO) 2 CO 3 nanoplate heterojunctions with tunable optical property and photocatalytic activity. Scientific reports 6 (2016) 23435.
  • [25] H. C. Punetha, M; Bhutia, S; Tripathi, Sonal; Prakash, Om, Antioxidative properties and mineral composition of defatted meal of oileferous Brassica germplasm. Journal of Biologically Active Products from Nature 5 (2015) 43-51.
  • [26] L. W. JI, Yu-min; SHI, Nan-lin, TEM Analysis of Interface in SiC Fibre Reinforced Aluminium Matrix Composite Prepared with Semi-solid Diffusing Method [J]. Journal of Materials Engineering 6 (2009) 46-50.
  • [27] H. L. QIAO, Qingtang; FU, Hanguang; LEI, Yongping, Microstructure and properties of in-situ synthesized ceramic phase reinforced Fe-based coating by laser cladding. Transactions of the China Welding Institution, (2015) 17.
  • [28] J. P. B. Perdew, Kieron; Ernzerhof, Matthias, Generalized gradient approximation made simple. Physical review letters 77 (1996) 3865.
  • [29] J. P. Dowling and C. M. Bowden, Anomalous index of refraction in photonic bandgap materials. Journal of Modern Optics 41 (1994) 345-351.
  • [30] F. P. P. Bolin, Luther E; Taylor, Roy C; Ference, Robert J, Refractive index of some mammalian tissues using a fiber optic cladding method. Applied optics 28 (1989) 2297-2303.
  • [31] X.-J. M. Wang, Thomas E; De Boer, Johannes F; Zhang, Yi; Pashley, David H; Nelson, J Stuart, Characterization of dentin and enamel by use of optical coherence tomography. Applied optics 38 (1999) 2092-2096.
  • [32] G. F. I. Bertsch, J, I; Rubio, Angel; Yabana, Kazuhiro;, Real-space, real-time method for the dielectric function, Physical Review B, vol. 62, no. 12, p. 7998, 2000.

Electronics structure and optical properties of Mg(BiO2)4 and Mg (Bi0.91Ge0.083O2)4: A first principle approach

Year 2020, Volume: 4 Issue: 1, 24 - 31, 15.06.2020
https://doi.org/10.33435/tcandtc.674902

Abstract

The new compounds, Mg(BiO2)4 was synthesized and structurally characterized semiconductor. Due to theoretical investigation for both of Mg(BiO2)4 and Mg(Bi0.91Ge0.083O2)4, computational tools were used. To calculated the electronic band structures, the total density of state, the partial density of state, and optical properties were used Generalized Gradient Approximation (GGA) based on the Perdew–Burke–Ernzerhoff (PBE0) using first principle method for Mg(BiO2)4. The band gap was recorded 0.545 eV which is supported for good semiconductor. The density of states was simulated for evaluating the nature of 3s, 3p for Mg, 6s 6p, 4d, and 2s, 2p for O atoms. Furthermore, the optical properties including absorption, reflection, refractive index, conductivity, dielectric function, and loss function were simulated which can account for the superior absorption of the visible light. The key point of this research to determine the activity of Ge doped by 11.0%, whereas the band gap, density of state, and optical properties were affected. Analysis of the band gap and optical properties of both of Mg (BiO2)4 and Mg(Bi0.91Ge0.083O2)4, the Ge doped shows the high conductivity than undoped.

References

  • [1] G. D. H. Hutcheson, Jerry D, Technology and economics in the semiconductor industry, Scientific American. 274 (1996) 54-62.
  • [2] R. Boča, Magnetic parameters and magnetic functions in mononuclear complexes beyond the spin-Hamiltonian formalism. Magnetic Functions Beyond the Spin-Hamiltonian: Springer, 117 (2006) 1-264.
  • [3] M. G. Faucher, D. Caro, P. Derouet, J. Porcher, P, The anomalous crystal field splittings of 2H11/2 (Nd 3+, 4f3). Journal de Physique 50 (1989) 219-243.
  • [4] Y. X. Li, Yuanjiang. Wen, Shuangchun. Yong, Junhai. Fan, Dianyuan, Tunable terahertz-mirror and multi-channel terahertz-filter based on one-dimensional photonic crystals containing semiconductors. Journal of Applied Physics 110 (211) 073111.
  • [5] M. D. Regulacio and M.-Y. Han, Composition-tunable alloyed semiconductor nanocrystals. Accounts of chemical research 43 (2010) 621-630.
  • [6] J. L. Hudgins, G. S. Simin, E. Santi, M. A. Khan, An assessment of wide bandgap semiconductors for power devices, IEEE Transactions on Power Electronics, 18 (2003) 907-914.
  • [7] L. L. Gu, V. Srot, W. Sigle, C. Koch, P. V. Aken, F. Scholz, S. B. Thapa, C. Kirchner, M. Jetter, M. Rühle, Manfred Band-gap measurements of direct and indirect semiconductors using monochromated electrons. Physical Review B 75 (2007) 195214.
  • [8] K.-H. K. Park, Tae-Young; Han, Shin; Ko, Hyun-Seok; Lee, Suk-Ho; Song, Yong-Min; Kim, Jung-Hun; Lee, Jae-Wook, Light harvesting over a wide range of wavelength using natural dyes of gardenia and cochineal for dye-sensitized solar cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 128(2014) 868-873, 2014.
  • [9] A. Badano and J. Kanicki, Monte Carlo analysis of the spectral photon emission and extraction efficiency of organic light-emitting devices. Journal of Applied Physics 90 (2001) 1827-1830.
  • [10] N. G. Narendran, Y; Freyssinier‐Nova, JP; Zhu, Y, Extracting phosphor‐scattered photons to improve white LED efficiency. physica status solidi (a) 202 (2005) R60-R62.
  • [11] S. J. Lee, Study of photon extraction efficiency in InGaN light-emitting diodes depending on chip structures and chip-mount schemes. Optical Engineering 45 (2006) 014601.
  • [12] M. M. Hasan, A. Ajoy, U. Chakma, Theoretical Investigation of Doping Effect of Fe for SnWO4 in Electronic Structure and Optical Properties: DFT Based First Principle Study. Advanced Journal of Chemistry-Section A 2020 (2020), no. In Press, 2020.
  • [13] M. J. Islam, A. Kumer, First-principles study of structural, electronic and optical properties of AgSbO3 and AgSb0.78 Se0.22O3 photocatalyst. SN Applied Sciences 2(2020) 251.
  • [14] B. C. A. Kamal, Kumer; Unesco, Chakma; Debashis, Howlader; Md Tawhidul, Islam;, A theoretical investigation for electronics structure of Mg(BiO2)2 semiconductor using first principle approach. International Journal of New Chemistry, vol. 2020, no. In Press, 2020.
  • [15] U. Chakma, A. Kumer, K. B. Chakma, M. T. Islam, D. Howlader, Electronics Structure and Optical Properties of Ag2BiO3,(Ag2) 0.88 Fe0. 12BiO3: A First Principle Approach, Advanced Journal of Chemistry. Section A: Theoretical, Engineering and Applied Chemistry 3 (2020) 542–550.
  • [16] U. Chakma, A. Kumer, K. B. Chakma, M. T. Islam, D. Howlader, Mohamed, Rasha M K, Electronics structure and optical properties of SrPbO3 and SrPb0. 94Fe0. 06O3: A first principle approach. Eurasian Chemical Communications 2(2020) 573-580.
  • [17] D. Wood and J. Tauc, Weak absorption tails in amorphous semiconductors. Physical Review B 5 (1972) 3144,.
  • [18] R. K. Waring Jr and W. Y. Hsu, Urbach rule behavior in strongly absorbing fine particle solids, Journal of Applied Physics 54(1983) 4093-4096.
  • [19] A. F. Henglein, Anton; Welter, Horst Reactions on colloidal semiconductor particles. Berichte der Bunsengesellschaft für physikalische Chemie 91 (1987) 441- 446.
  • [20] E. Davis and N. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philosophical Magazine 22 (1970) 0903-0922.
  • [21] A. Addamiano, Preparation and Photoluminescence of Silicon Carbide Phosphors Doped with Group III a Elements and/or Nitrogen. Journal of The Electrochemical Society 113 (1966) 134-136.
  • [22] Y. T. Nakato, Akira; Tsubomura, Hiroshi, Efficient Photoelectrochemical Conversion of Solar Energy with N-Type Silicon Semiconductor Electrodes Surface-Doped with IIIA-Group Elements. Chemistry Letters 11 (1982) 1071-1074.
  • [23] A. D. Barros, R; Deschamp, J; Boutinaud, P; Chadeyron, Geneviève; Mahiou, R; Cavalli, E; Brik, MG, Optical properties and electronic band structure of BiMg2PO6, BiMg2VO6, BiMg2VO6: Pr3+ and BiMg2VO6: Eu3+. Optical Materials 36 (2014) 1724-1729.
  • [24] Y. W. Huang, Wei; Zhang, Qian; Cao, Jun-ji; Huang, Ru-jin; Ho, Wingkei; Lee, Shun Cheng, In situ fabrication of α-Bi 2 O 3/(BiO) 2 CO 3 nanoplate heterojunctions with tunable optical property and photocatalytic activity. Scientific reports 6 (2016) 23435.
  • [25] H. C. Punetha, M; Bhutia, S; Tripathi, Sonal; Prakash, Om, Antioxidative properties and mineral composition of defatted meal of oileferous Brassica germplasm. Journal of Biologically Active Products from Nature 5 (2015) 43-51.
  • [26] L. W. JI, Yu-min; SHI, Nan-lin, TEM Analysis of Interface in SiC Fibre Reinforced Aluminium Matrix Composite Prepared with Semi-solid Diffusing Method [J]. Journal of Materials Engineering 6 (2009) 46-50.
  • [27] H. L. QIAO, Qingtang; FU, Hanguang; LEI, Yongping, Microstructure and properties of in-situ synthesized ceramic phase reinforced Fe-based coating by laser cladding. Transactions of the China Welding Institution, (2015) 17.
  • [28] J. P. B. Perdew, Kieron; Ernzerhof, Matthias, Generalized gradient approximation made simple. Physical review letters 77 (1996) 3865.
  • [29] J. P. Dowling and C. M. Bowden, Anomalous index of refraction in photonic bandgap materials. Journal of Modern Optics 41 (1994) 345-351.
  • [30] F. P. P. Bolin, Luther E; Taylor, Roy C; Ference, Robert J, Refractive index of some mammalian tissues using a fiber optic cladding method. Applied optics 28 (1989) 2297-2303.
  • [31] X.-J. M. Wang, Thomas E; De Boer, Johannes F; Zhang, Yi; Pashley, David H; Nelson, J Stuart, Characterization of dentin and enamel by use of optical coherence tomography. Applied optics 38 (1999) 2092-2096.
  • [32] G. F. I. Bertsch, J, I; Rubio, Angel; Yabana, Kazuhiro;, Real-space, real-time method for the dielectric function, Physical Review B, vol. 62, no. 12, p. 7998, 2000.
There are 32 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Article
Authors

Md. Tawhidul Islam 0000-0002-5024-5781

Ajoy Kumer 0000-0001-5136-6166

Debashis Howlader 0000-0003-4149-971X

Kamal Bikash Chakma

Unesco Chakma 0000-0003-1711-7216

Publication Date June 15, 2020
Submission Date January 14, 2020
Published in Issue Year 2020 Volume: 4 Issue: 1

Cite

APA Islam, M. T., Kumer, A., Howlader, D., Chakma, K. B., et al. (2020). Electronics structure and optical properties of Mg(BiO2)4 and Mg (Bi0.91Ge0.083O2)4: A first principle approach. Turkish Computational and Theoretical Chemistry, 4(1), 24-31. https://doi.org/10.33435/tcandtc.674902
AMA Islam MT, Kumer A, Howlader D, Chakma KB, Chakma U. Electronics structure and optical properties of Mg(BiO2)4 and Mg (Bi0.91Ge0.083O2)4: A first principle approach. Turkish Comp Theo Chem (TC&TC). June 2020;4(1):24-31. doi:10.33435/tcandtc.674902
Chicago Islam, Md. Tawhidul, Ajoy Kumer, Debashis Howlader, Kamal Bikash Chakma, and Unesco Chakma. “Electronics Structure and Optical Properties of Mg(BiO2)4 and Mg (Bi0.91Ge0.083O2)4: A First Principle Approach”. Turkish Computational and Theoretical Chemistry 4, no. 1 (June 2020): 24-31. https://doi.org/10.33435/tcandtc.674902.
EndNote Islam MT, Kumer A, Howlader D, Chakma KB, Chakma U (June 1, 2020) Electronics structure and optical properties of Mg(BiO2)4 and Mg (Bi0.91Ge0.083O2)4: A first principle approach. Turkish Computational and Theoretical Chemistry 4 1 24–31.
IEEE M. T. Islam, A. Kumer, D. Howlader, K. B. Chakma, and U. Chakma, “Electronics structure and optical properties of Mg(BiO2)4 and Mg (Bi0.91Ge0.083O2)4: A first principle approach”, Turkish Comp Theo Chem (TC&TC), vol. 4, no. 1, pp. 24–31, 2020, doi: 10.33435/tcandtc.674902.
ISNAD Islam, Md. Tawhidul et al. “Electronics Structure and Optical Properties of Mg(BiO2)4 and Mg (Bi0.91Ge0.083O2)4: A First Principle Approach”. Turkish Computational and Theoretical Chemistry 4/1 (June 2020), 24-31. https://doi.org/10.33435/tcandtc.674902.
JAMA Islam MT, Kumer A, Howlader D, Chakma KB, Chakma U. Electronics structure and optical properties of Mg(BiO2)4 and Mg (Bi0.91Ge0.083O2)4: A first principle approach. Turkish Comp Theo Chem (TC&TC). 2020;4:24–31.
MLA Islam, Md. Tawhidul et al. “Electronics Structure and Optical Properties of Mg(BiO2)4 and Mg (Bi0.91Ge0.083O2)4: A First Principle Approach”. Turkish Computational and Theoretical Chemistry, vol. 4, no. 1, 2020, pp. 24-31, doi:10.33435/tcandtc.674902.
Vancouver Islam MT, Kumer A, Howlader D, Chakma KB, Chakma U. Electronics structure and optical properties of Mg(BiO2)4 and Mg (Bi0.91Ge0.083O2)4: A first principle approach. Turkish Comp Theo Chem (TC&TC). 2020;4(1):24-31.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)