Research Article
BibTex RIS Cite
Year 2023, Volume: 7 Issue: 2, 34 - 57, 15.05.2023
https://doi.org/10.33435/tcandtc.1151841

Abstract

References

  • [1] D.M. Knipe, P.M. Howley, “Fields Virology,” Annals of Internal Medicine, 113 (1990) 258.
  • [1] D.M. Knipe, P.M. Howley, “Fields Virology,” Annals of Internal Medicine, 113 (1990) 258.
  • [2] “International Committee on Taxonomy of Viruses Virus taxonomy,” (2018).
  • [2] “International Committee on Taxonomy of Viruses Virus taxonomy,” (2018).
  • [3] “Center for Systems Science and Engineering at Johns Hopkins University,” COVID-19 Dashboard., (2020).
  • [3] “Center for Systems Science and Engineering at Johns Hopkins University,” COVID-19 Dashboard., (2020).
  • [4] N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu, P. Niu, F. Zhan, X. Ma, D. Wang, W. Xu, G. Wu, G.F. Gao, W. Tan, “A Novel Coronavirus from Patients with Pneumonia in China, 2019,” New England Journal of Medicine, 382 (2020) 727–733.
  • [4] N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu, P. Niu, F. Zhan, X. Ma, D. Wang, W. Xu, G. Wu, G.F. Gao, W. Tan, “A Novel Coronavirus from Patients with Pneumonia in China, 2019,” New England Journal of Medicine, 382 (2020) 727–733.
  • [5] “Pfizer and BioNTech Announce Vaccine Candidate Against COVID-19 Achieved Success in First Interim Analysis from Phase 3 Study | Pfizer,” (n.d.).
  • [5] “Pfizer and BioNTech Announce Vaccine Candidate Against COVID-19 Achieved Success in First Interim Analysis from Phase 3 Study | Pfizer,” (n.d.).
  • [6] “Moderna’s COVID-19 Vaccine Candidate Meets its Primary Efficacy Endpoint in the First Interim Analysis of the Phase 3 COVE Study | Moderna, Inc.,” (n.d.).
  • [6] “Moderna’s COVID-19 Vaccine Candidate Meets its Primary Efficacy Endpoint in the First Interim Analysis of the Phase 3 COVE Study | Moderna, Inc.,” (n.d.).
  • [7] “AZD1222 vaccine met primary efficacy endpoint in preventing COVID-19,” (n.d.).
  • [7] “AZD1222 vaccine met primary efficacy endpoint in preventing COVID-19,” (n.d.).
  • [8] “Oxford University breakthrough on global COVID-19 vaccine | Research | University of Oxford,” (n.d.).
  • [8] “Oxford University breakthrough on global COVID-19 vaccine | Research | University of Oxford,” (n.d.).
  • [9] T.T. Le, J.P. Cramer, R. Chen, S. Mayhew, “Evolution of the COVID-19 vaccine development landscape,” Nature Reviews. Drug Discovery, 19 (2020) 667–668.
  • [9] T.T. Le, J.P. Cramer, R. Chen, S. Mayhew, “Evolution of the COVID-19 vaccine development landscape,” Nature Reviews. Drug Discovery, 19 (2020) 667–668.
  • [10] “COVID19 Vaccine Tracker,” (2021).
  • [10] “COVID19 Vaccine Tracker,” (2021).
  • [11] E.P.K. Parker, M. Shrotri, B. Kampmann, “Keeping track of the SARS-CoV-2 vaccine pipeline,” Nature Reviews Immunology, 20 (2020) 650.
  • [11] E.P.K. Parker, M. Shrotri, B. Kampmann, “Keeping track of the SARS-CoV-2 vaccine pipeline,” Nature Reviews Immunology, 20 (2020) 650.
  • [12] H. Chen, L.-S. Lee, G. Li, S.-W. Tsao, J.-F. Chiu, “Upregulation of glycolysis and oxidative phosphorylation in benzo[beta]pyrene and arsenic-induced rat lung epithelial transformed cells,” Oncotarget, 7 (2016) 40674–40689.
  • [12] H. Chen, L.-S. Lee, G. Li, S.-W. Tsao, J.-F. Chiu, “Upregulation of glycolysis and oxidative phosphorylation in benzo[beta]pyrene and arsenic-induced rat lung epithelial transformed cells,” Oncotarget, 7 (2016) 40674–40689.
  • [13] Y.N. Cao, L. Li, Z.M. Feng, S.Q. Wan, P.D. Huang, X.H. Sun, F. Wen, X.L. Huang, G. Ning, W.Q. Wang, “Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations,” Cell Discovery, 6 (2020).
  • [13] Y.N. Cao, L. Li, Z.M. Feng, S.Q. Wan, P.D. Huang, X.H. Sun, F. Wen, X.L. Huang, G. Ning, W.Q. Wang, “Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations,” Cell Discovery, 6 (2020).
  • [14] X. Liu, B. Zhang, Z. Jin, H. Yang, Z. Rao, “The crystal structure of COVID-19 main protease in complex with an inhibitor N3.,” Protein Data Bank, (2020).
  • [14] X. Liu, B. Zhang, Z. Jin, H. Yang, Z. Rao, “The crystal structure of COVID-19 main protease in complex with an inhibitor N3.,” Protein Data Bank, (2020).
  • [15] Z. Jin, X. Du, Y. Xu, Y. Deng, M. Liu, Y. Zhao, B. Zhang, X. Li, L. Zhang, C. Peng, Y. Duan, J. Yu, L. Wang, K. Yang, F. Liu, R. Jiang, X. Yang, T. You, X. Liu, X. Yang, F. Bai, H. Liu, X. Liu, L.W. Guddat, W. Xu, G. Xiao, C. Qin, Z. Shi, H. Jiang, Z. Rao, H. Yang, “Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors,” Nature, 582 (2020) 289–293.
  • [15] Z. Jin, X. Du, Y. Xu, Y. Deng, M. Liu, Y. Zhao, B. Zhang, X. Li, L. Zhang, C. Peng, Y. Duan, J. Yu, L. Wang, K. Yang, F. Liu, R. Jiang, X. Yang, T. You, X. Liu, X. Yang, F. Bai, H. Liu, X. Liu, L.W. Guddat, W. Xu, G. Xiao, C. Qin, Z. Shi, H. Jiang, Z. Rao, H. Yang, “Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors,” Nature, 582 (2020) 289–293.
  • [16] F.S. Wang, C. Zhang, “What to do next to control the 2019-nCoV epidemic?,” The Lancet, 395 (2020) 391–393.
  • [16] F.S. Wang, C. Zhang, “What to do next to control the 2019-nCoV epidemic?,” The Lancet, 395 (2020) 391–393.
  • [17] B. Benarba, A. Pandiella, “Medicinal Plants as Sources of Active Molecules Against COVID-19,” Frontiers in Pharmacology, 11 (2020) 1189.
  • [17] B. Benarba, A. Pandiella, “Medicinal Plants as Sources of Active Molecules Against COVID-19,” Frontiers in Pharmacology, 11 (2020) 1189.
  • [18] H.Z. Du, X.Y. Hou, Y.H. Miao, B.S. Huang, D.H. Liu, “Traditional Chinese Medicine: an effective treatment for 2019 novel coronavirus pneumonia (NCP),” Chinese Journal of Natural Medicines, 18 (2020) 206–210.
  • [18] H.Z. Du, X.Y. Hou, Y.H. Miao, B.S. Huang, D.H. Liu, “Traditional Chinese Medicine: an effective treatment for 2019 novel coronavirus pneumonia (NCP),” Chinese Journal of Natural Medicines, 18 (2020) 206–210.
  • [19] K. Xu, H. Cai, Y. Shen, Q. Ni, Y. Chen, S. Hu, J. Li, H. Wang, L. Yu, H. Huang, Y. Qiu, G. Wei, Q. Fang, J. Zhou, J. Sheng, T. Liang, L. Li, “Management of corona virus disease-19 (COVID-19): the Zhejiang experience.,” Zhejiang da xue xue bao. Yi xue ban = Journal of Zhejiang University. Medical sciences, 49 (2020) 147–157.
  • [19] K. Xu, H. Cai, Y. Shen, Q. Ni, Y. Chen, S. Hu, J. Li, H. Wang, L. Yu, H. Huang, Y. Qiu, G. Wei, Q. Fang, J. Zhou, J. Sheng, T. Liang, L. Li, “Management of corona virus disease-19 (COVID-19): the Zhejiang experience.,” Zhejiang da xue xue bao. Yi xue ban = Journal of Zhejiang University. Medical sciences, 49 (2020) 147–157.
  • [20] H. Lu, “Drug treatment options for the 2019-new coronavirus (2019- nCoV),” 14 (2020) 69–71.
  • [20] H. Lu, “Drug treatment options for the 2019-new coronavirus (2019- nCoV),” 14 (2020) 69–71.
  • [21] Y.H. Jin, L. Cai, Z.S. Cheng, H. Cheng, T. Deng, Y.P. Fan, C. Fang, D. Huang, L.Q. Huang, Q. Huang, Y. Han, B. Hu, F. Hu, B.H. Li, Y.R. Li, K. Liang, L.K. Lin, L.S. Luo, J. Ma, L.L. Ma, Z.Y. Peng, Y.B. Pan, Z.Y. Pan, X.Q. Ren, H.M. Sun, Y. Wang, Y.Y. Wang, H. Weng, C.J. Wei, D.F. Wu, J. Xia, Y. Xiong, H.B. Xu, X.M. Yao, T.S. Ye, Y.F. Yuan, X.C. Zhang, Y.W. Zhang, Y.G. Zhang, H.M. Zhang, Y. Zhao, M.J. Zhao, H. Zi, X.T. Zeng, Y.Y. Wang, X.H. Wang, “A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version),” Medical Journal of Chinese People’s Liberation Army, 45 (2020) 1–20.
  • [21] Y.H. Jin, L. Cai, Z.S. Cheng, H. Cheng, T. Deng, Y.P. Fan, C. Fang, D. Huang, L.Q. Huang, Q. Huang, Y. Han, B. Hu, F. Hu, B.H. Li, Y.R. Li, K. Liang, L.K. Lin, L.S. Luo, J. Ma, L.L. Ma, Z.Y. Peng, Y.B. Pan, Z.Y. Pan, X.Q. Ren, H.M. Sun, Y. Wang, Y.Y. Wang, H. Weng, C.J. Wei, D.F. Wu, J. Xia, Y. Xiong, H.B. Xu, X.M. Yao, T.S. Ye, Y.F. Yuan, X.C. Zhang, Y.W. Zhang, Y.G. Zhang, H.M. Zhang, Y. Zhao, M.J. Zhao, H. Zi, X.T. Zeng, Y.Y. Wang, X.H. Wang, “A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version),” Medical Journal of Chinese People’s Liberation Army, 45 (2020) 1–20.
  • [22] H. De Groot, U. Rauen, “Tissue injury by reactive oxygen species and the protective effects of flavonoids,” Fundamental and Clinical Pharmacology, 12 (1998) 249–255.
  • [22] H. De Groot, U. Rauen, “Tissue injury by reactive oxygen species and the protective effects of flavonoids,” Fundamental and Clinical Pharmacology, 12 (1998) 249–255.
  • [23] A.R. Tapas, D.M. Sakarkar, R.B. Kakde, “Flavonoids as nutraceuticals,” The Science of Flavonoids, 7 (2006) 213–238.
  • [23] A.R. Tapas, D.M. Sakarkar, R.B. Kakde, “Flavonoids as nutraceuticals,” The Science of Flavonoids, 7 (2006) 213–238.
  • [24] G. Xu, J. Dou, L. Zhang, Q. Guo, C. Zhou, “Inhibitory effects of baicalein on the influenza virus in vivo is determined by baicalin in the serum,” Biological and Pharmaceutical Bulletin, 33 (2010) 238–243.
  • [24] G. Xu, J. Dou, L. Zhang, Q. Guo, C. Zhou, “Inhibitory effects of baicalein on the influenza virus in vivo is determined by baicalin in the serum,” Biological and Pharmaceutical Bulletin, 33 (2010) 238–243.
  • [25] J. Dou, L. Chen, G. Xu, L. Zhang, H. Zhou, H. Wang, Z. Su, M. Ke, Q. Guo, C. Zhou, “Effects of baicalein on Sendai virus in vivo are linked to serum baicalin and its inhibition of hemagglutinin-neuraminidase,” Archives of Virology, 156 (2011) 793–801.
  • [25] J. Dou, L. Chen, G. Xu, L. Zhang, H. Zhou, H. Wang, Z. Su, M. Ke, Q. Guo, C. Zhou, “Effects of baicalein on Sendai virus in vivo are linked to serum baicalin and its inhibition of hemagglutinin-neuraminidase,” Archives of Virology, 156 (2011) 793–801.
  • [26] T.T.H. Nguyen, H.J. Woo, H.K. Kang, V.D. Nguyen, Y.M. Kim, D.W. Kim, S.A. Ahn, Y. Xia, D. Kim, “Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris,” Biotechnology Letters, 34 (2012) 831–838.
  • [26] T.T.H. Nguyen, H.J. Woo, H.K. Kang, V.D. Nguyen, Y.M. Kim, D.W. Kim, S.A. Ahn, Y. Xia, D. Kim, “Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris,” Biotechnology Letters, 34 (2012) 831–838.
  • [27] S. Schwarz, D. Sauter, K. Wang, R. Zhang, B. Sun, A. Karioti, A.R. Bilia, T. Efferth, W. Schwarz, “Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus,” Planta Medica, 80 (2014) 177–182.
  • [27] S. Schwarz, D. Sauter, K. Wang, R. Zhang, B. Sun, A. Karioti, A.R. Bilia, T. Efferth, W. Schwarz, “Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus,” Planta Medica, 80 (2014) 177–182.
  • [28] C.N. Chen, C.P.C. Lin, K.K. Huang, W.C. Chen, H.P. Hsieh, P.H. Liang, J.T.A. Hsu, “Inhibition of SARS-CoV 3C-like protease activity by theaflavin-3,3′- digallate (TF3),” Evidence-Based Complementary and Alternative Medicine, 2 (2005) 209–215.
  • [28] C.N. Chen, C.P.C. Lin, K.K. Huang, W.C. Chen, H.P. Hsieh, P.H. Liang, J.T.A. Hsu, “Inhibition of SARS-CoV 3C-like protease activity by theaflavin-3,3′- digallate (TF3),” Evidence-Based Complementary and Alternative Medicine, 2 (2005) 209–215.
  • [29] L. Chen, J. Li, C. Luo, H. Liu, W. Xu, G. Chen, O.W. Liew, W. Zhu, C.M. Puah, X. Shen, H. Jiang, “Binding interaction of quercetin-3-β-galactoside and its synthetic derivatives with SARS-CoV 3CLpro: Structure-activity relationship studies reveal salient pharmacophore features,” Bioorganic and Medicinal Chemistry, 14 (2006) 8295–8306.
  • [29] L. Chen, J. Li, C. Luo, H. Liu, W. Xu, G. Chen, O.W. Liew, W. Zhu, C.M. Puah, X. Shen, H. Jiang, “Binding interaction of quercetin-3-β-galactoside and its synthetic derivatives with SARS-CoV 3CLpro: Structure-activity relationship studies reveal salient pharmacophore features,” Bioorganic and Medicinal Chemistry, 14 (2006) 8295–8306.
  • [30] L. Yi, Z. Li, K. Yuan, X. Qu, J. Chen, G. Wang, H. Zhang, H. Luo, L. Zhu, P. Jiang, L. Chen, Y. Shen, M. Luo, G. Zuo, J. Hu, D. Duan, Y. Nie, X. Shi, W. Wang, Y. Han, T. Li, Y. Liu, M. Ding, H. Deng, X. Xu, “Small Molecules Blocking the Entry of Severe Acute Respiratory Syndrome Coronavirus into Host Cells,” Journal of Virology, 78 (2004) 11334–11339.
  • [30] L. Yi, Z. Li, K. Yuan, X. Qu, J. Chen, G. Wang, H. Zhang, H. Luo, L. Zhu, P. Jiang, L. Chen, Y. Shen, M. Luo, G. Zuo, J. Hu, D. Duan, Y. Nie, X. Shi, W. Wang, Y. Han, T. Li, Y. Liu, M. Ding, H. Deng, X. Xu, “Small Molecules Blocking the Entry of Severe Acute Respiratory Syndrome Coronavirus into Host Cells,” Journal of Virology, 78 (2004) 11334–11339.
  • [31] Y. Erdogdu, O. Unsalan, M. Tahir Gulluoglu, “FT-Raman, FT-IR spectral and DFT studies on 6, 8-dichloroflavone and 6,8-dibromoflavone,” Journal of Raman Spectroscopy, 41 (2010) 820–828.
  • [31] Y. Erdogdu, O. Unsalan, M. Tahir Gulluoglu, “FT-Raman, FT-IR spectral and DFT studies on 6, 8-dichloroflavone and 6,8-dibromoflavone,” Journal of Raman Spectroscopy, 41 (2010) 820–828.
  • [32] Y. Erdoǧdu, O. Ünsalan, M.T. Güllüoǧlu, “Vibrational analysis of flavone,” Turkish Journal of Physics, 33 (2009) 249–259.
  • [32] Y. Erdoǧdu, O. Ünsalan, M.T. Güllüoǧlu, “Vibrational analysis of flavone,” Turkish Journal of Physics, 33 (2009) 249–259.
  • [33] Y. Erdogdu, O. Unsalan, D. Sajan, M.T. Gulluoglu, “Structural conformations and vibrational spectral study of chloroflavone with density functional theoretical simulations,” Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 76 (2010) 130–136.
  • [33] Y. Erdogdu, O. Unsalan, D. Sajan, M.T. Gulluoglu, “Structural conformations and vibrational spectral study of chloroflavone with density functional theoretical simulations,” Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 76 (2010) 130–136.
  • [34] Y. Erdogdu, O. Unsalan, M. Amalanathan, I. Hubert Joe, “Infrared and Raman spectra, vibrational assignment, NBO analysis and DFT calculations of 6-aminoflavone,” Journal of Molecular Structure, 980 (2010) 24–30.
  • [34] Y. Erdogdu, O. Unsalan, M. Amalanathan, I. Hubert Joe, “Infrared and Raman spectra, vibrational assignment, NBO analysis and DFT calculations of 6-aminoflavone,” Journal of Molecular Structure, 980 (2010) 24–30.
  • [35] Y. Erdogdu, Ö. Dereli, D. Sajan, L. Joseph, O. Unsalan, M.T. Gulluoglu, “Vibrational (FT-IR and FT-Raman) spectral investigations of 7-aminoflavone with density functional theoretical simulations,” Molecular Simulation, 38 (2012) 315–325.
  • [35] Y. Erdogdu, Ö. Dereli, D. Sajan, L. Joseph, O. Unsalan, M.T. Gulluoglu, “Vibrational (FT-IR and FT-Raman) spectral investigations of 7-aminoflavone with density functional theoretical simulations,” Molecular Simulation, 38 (2012) 315–325.
  • [36] O. Unsalan, Y. Erdogdu, M.T. Gulluoglu, “FT-Raman and FT-IR spectral and quantum chemical studies on some flavonoid derivatives: Baicalein and Naringenin,” Journal of Raman Spectroscopy, 40 (2009).
  • [36] O. Unsalan, Y. Erdogdu, M.T. Gulluoglu, “FT-Raman and FT-IR spectral and quantum chemical studies on some flavonoid derivatives: Baicalein and Naringenin,” Journal of Raman Spectroscopy, 40 (2009).
  • [37] S. Lalani, C.L. Poh, “Flavonoids as antiviral agents for enterovirus A71 (EV-A71),” Viruses, 12 (2020).
  • [37] S. Lalani, C.L. Poh, “Flavonoids as antiviral agents for enterovirus A71 (EV-A71),” Viruses, 12 (2020).
  • [38] S. Qian, W. Fan, P. Qian, D. Zhang, Y. Wei, H. Chen, X. Li, “Apigenin restricts FMDV infection and inhibits viral IRES driven translational activity,” Viruses, 7 (2015) 1613–1626.
  • [38] S. Qian, W. Fan, P. Qian, D. Zhang, Y. Wei, H. Chen, X. Li, “Apigenin restricts FMDV infection and inhibits viral IRES driven translational activity,” Viruses, 7 (2015) 1613–1626.
  • [39] J. Steinmann, J. Buer, T. Pietschmann, E. Steinmann, “Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea,” British Journal of Pharmacology, 168 (2013) 1059–1073.
  • [39] J. Steinmann, J. Buer, T. Pietschmann, E. Steinmann, “Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea,” British Journal of Pharmacology, 168 (2013) 1059–1073.
  • [40] A. Chauhan, S. Kalra, “Identification of potent COVID-19 main protease (MPRO) inhibitors from flavonoids,” (2020) 1–11.
  • [40] A. Chauhan, S. Kalra, “Identification of potent COVID-19 main protease (MPRO) inhibitors from flavonoids,” (2020) 1–11.
  • [41] A.D. Mesecar, “A taxonomically-driven approach to development of potent, broad-spectrum inhibitors of coronavirus main protease including SARS-CoV-2 (COVID-19). To Be Published,” (2020).
  • [41] A.D. Mesecar, “A taxonomically-driven approach to development of potent, broad-spectrum inhibitors of coronavirus main protease including SARS-CoV-2 (COVID-19). To Be Published,” (2020).
  • [42] K. Bolelli, T. Ertan-Bolelli, O. Unsalan, C. Altunayar-Unsalan, “Fenoterol and dobutamine as SARS-CoV-2 main protease inhibitors: A virtual screening study,” Journal of Molecular Structure, 1228 (2021) 129449.
  • [42] K. Bolelli, T. Ertan-Bolelli, O. Unsalan, C. Altunayar-Unsalan, “Fenoterol and dobutamine as SARS-CoV-2 main protease inhibitors: A virtual screening study,” Journal of Molecular Structure, 1228 (2021) 129449.
  • [43] H.T. Balaydin, S. Durdagi, D. Ekinci, M. Senturk, S. Goksu, A. Menzek, “Inhibition of human carbonic anhydrase isozymes I, II and VI with a series of bisphenol, methoxy and bromophenol compounds,” Journal of Enzyme Inhibition and Medicinal Chemistry, 27 (2012) 467–475.
  • [43] H.T. Balaydin, S. Durdagi, D. Ekinci, M. Senturk, S. Goksu, A. Menzek, “Inhibition of human carbonic anhydrase isozymes I, II and VI with a series of bisphenol, methoxy and bromophenol compounds,” Journal of Enzyme Inhibition and Medicinal Chemistry, 27 (2012) 467–475.
  • [44] S. Durdagi, “An Integrated Computational Approach for the Discovery of Ubiquitin Specific Protease 7 (USP7) Inhibitors as Potential Cancer Therapies,” Biophysical Journal, 118 (2020) 47a-47a.
  • [44] S. Durdagi, “An Integrated Computational Approach for the Discovery of Ubiquitin Specific Protease 7 (USP7) Inhibitors as Potential Cancer Therapies,” Biophysical Journal, 118 (2020) 47a-47a.
  • [45] G. Kayik, N.S. Tuzun, S. Durdagi, “In silico design of novel hERG-neutral sildenafil-like PDE5 inhibitors,” Journal of Biomolecular Structure & Dynamics, 35 (2017) 2830–2852.
  • [45] G. Kayik, N.S. Tuzun, S. Durdagi, “In silico design of novel hERG-neutral sildenafil-like PDE5 inhibitors,” Journal of Biomolecular Structure & Dynamics, 35 (2017) 2830–2852.
  • [46] S.S. Kulabas, F.C. Onder, Y.B. Yilmaz, A. Ozleyen, S. Durdagi, K. Sahin, M. Ay, T.B. Tumer, “In vitro and in silico studies of nitrobenzamide derivatives as potential anti-neuroinflammatory agents,” Journal of Biomolecular Structure & Dynamics, (2019).
  • [46] S.S. Kulabas, F.C. Onder, Y.B. Yilmaz, A. Ozleyen, S. Durdagi, K. Sahin, M. Ay, T.B. Tumer, “In vitro and in silico studies of nitrobenzamide derivatives as potential anti-neuroinflammatory agents,” Journal of Biomolecular Structure & Dynamics, (2019).
  • [47] S.A. Kulkarni, S.K. Nagarajan, V. Ramesh, V. Palaniyandi, S.P. Selvam, T. Madhavan, “Computational evaluation of major components from plant essential oils as potent inhibitors of SARS-CoV-2 spike protein,” Journal of Molecular Structure, 1221 (2020) 128823.
  • [47] S.A. Kulkarni, S.K. Nagarajan, V. Ramesh, V. Palaniyandi, S.P. Selvam, T. Madhavan, “Computational evaluation of major components from plant essential oils as potent inhibitors of SARS-CoV-2 spike protein,” Journal of Molecular Structure, 1221 (2020) 128823.
  • [48] D.L. Ma, D.S.H. Chan, C.H. Leung, “Drug repositioning by structure-based virtual screening,” Chemical Society Reviews, 42 (2013) 2130–2141.
  • [48] D.L. Ma, D.S.H. Chan, C.H. Leung, “Drug repositioning by structure-based virtual screening,” Chemical Society Reviews, 42 (2013) 2130–2141.
  • [49] T. Mavromoustakos, S. Durdagi, C. Koukoulitsa, M. Simcic, M.G. Papadopoulos, M. Hodoscek, S.G. Grdadolnik, “Strategies in the Rational Drug Design,” Current Medicinal Chemistry, 18 (2011) 2517–2530.
  • [49] T. Mavromoustakos, S. Durdagi, C. Koukoulitsa, M. Simcic, M.G. Papadopoulos, M. Hodoscek, S.G. Grdadolnik, “Strategies in the Rational Drug Design,” Current Medicinal Chemistry, 18 (2011) 2517–2530.
  • [50] S.B. Mirza, R.E. Salmas, M.Q. Fatmi, S. Durdagi, “Virtual screening of eighteen million compounds against dengue virus: Combined molecular docking and molecular dynamics simulations study,” Journal of Molecular Graphics & Modelling, 66 (2016) 99–107.
  • [50] S.B. Mirza, R.E. Salmas, M.Q. Fatmi, S. Durdagi, “Virtual screening of eighteen million compounds against dengue virus: Combined molecular docking and molecular dynamics simulations study,” Journal of Molecular Graphics & Modelling, 66 (2016) 99–107.
  • [51] I.E. Orhan, F.S.S. Deniz, R.E. Salmas, S. Durdagi, F. Epifano, S. Genovese, S. Fiorito, “Combined molecular modeling and cholinesterase inhibition studies on some natural and semisynthetic O-alkylcoumarin derivatives,” Bioorganic Chemistry, 84 (2019) 355–362.
  • [51] I.E. Orhan, F.S.S. Deniz, R.E. Salmas, S. Durdagi, F. Epifano, S. Genovese, S. Fiorito, “Combined molecular modeling and cholinesterase inhibition studies on some natural and semisynthetic O-alkylcoumarin derivatives,” Bioorganic Chemistry, 84 (2019) 355–362.
  • [52] I.E. Orhan, D. Jedrejek, F.S. Senol, R.E. Salmas, S. Durdagi, I. Kowalska, L. Pecio, W. Oleszek, “Molecular modeling and in vitro approaches towards cholinesterase inhibitory effect of some natural xanthohumol, naringenin, and acyl phloroglucinol derivatives,” Phytomedicine, 42 (2018) 25–33.
  • [52] I.E. Orhan, D. Jedrejek, F.S. Senol, R.E. Salmas, S. Durdagi, I. Kowalska, L. Pecio, W. Oleszek, “Molecular modeling and in vitro approaches towards cholinesterase inhibitory effect of some natural xanthohumol, naringenin, and acyl phloroglucinol derivatives,” Phytomedicine, 42 (2018) 25–33.
  • [53] E. Pitsillou, J. Liang, C. Karagiannis, K. Ververis, K.K. Darmawan, K. Ng, A. Hung, T.C. Karagiannis, “Interaction of small molecules with the SARS-CoV-2 main protease in silico and in vitro validation of potential lead compounds using an enzyme-linked immunosorbent assay,” Computational Biology and Chemistry, 89 (2020) 1476–9271.
  • [53] E. Pitsillou, J. Liang, C. Karagiannis, K. Ververis, K.K. Darmawan, K. Ng, A. Hung, T.C. Karagiannis, “Interaction of small molecules with the SARS-CoV-2 main protease in silico and in vitro validation of potential lead compounds using an enzyme-linked immunosorbent assay,” Computational Biology and Chemistry, 89 (2020) 1476–9271.
  • [54] K. Sahin, S. Durdagi, “Identifying new piperazine-based PARP1 inhibitors using text mining and integrated molecular modeling approaches,” Journal of Biomolecular Structure & Dynamics, (2020).
  • [54] K. Sahin, S. Durdagi, “Identifying new piperazine-based PARP1 inhibitors using text mining and integrated molecular modeling approaches,” Journal of Biomolecular Structure & Dynamics, (2020).
  • [55] S. Durdagi, J.Q. Guo, J.P. Lees-Miller, S.Y. Noskov, H.J. Duff, “Structure-Guided Topographic Mapping and Mutagenesis to Elucidate Binding Sites for the Human Ether-a-Go-Go-Related Gene 1 Potassium Channel (KCNH2) Activator NS1643,” Journal of Pharmacology and Experimental Therapeutics, 342 (2012) 441–452.
  • [55] S. Durdagi, J.Q. Guo, J.P. Lees-Miller, S.Y. Noskov, H.J. Duff, “Structure-Guided Topographic Mapping and Mutagenesis to Elucidate Binding Sites for the Human Ether-a-Go-Go-Related Gene 1 Potassium Channel (KCNH2) Activator NS1643,” Journal of Pharmacology and Experimental Therapeutics, 342 (2012) 441–452.
  • [56] R. Singh, A. Gautam, S. Chandel, A. Ghosh, D. Dey, S. Roy, V. Ravichandiran, D. Ghosh, R.E. Duval, R.J. Richardson, “molecules Protease Inhibitory Effect of Natural Polyphenolic Compounds on SARS-CoV-2: An In Silico Study,” (2020).
  • [56] R. Singh, A. Gautam, S. Chandel, A. Ghosh, D. Dey, S. Roy, V. Ravichandiran, D. Ghosh, R.E. Duval, R.J. Richardson, “molecules Protease Inhibitory Effect of Natural Polyphenolic Compounds on SARS-CoV-2: An In Silico Study,” (2020).
  • [57] S. Durdagi, A. Kapou, T. Kourouli, T. Andreou, S.P. Nikas, V.R. Nahmias, D.P. Papahatjis, M.G. Papadopoulos, T. Mavromoustakos, “The application of 3D-QSAR studies for novel cannabinoid ligands substituted at the C1’ position of the alkyl side chain on the structural requirements for binding to cannabinoid receptors CB1 and CB2,” Journal of Medicinal Chemistry, 50 (2007) 2875–2885.
  • [57] S. Durdagi, A. Kapou, T. Kourouli, T. Andreou, S.P. Nikas, V.R. Nahmias, D.P. Papahatjis, M.G. Papadopoulos, T. Mavromoustakos, “The application of 3D-QSAR studies for novel cannabinoid ligands substituted at the C1’ position of the alkyl side chain on the structural requirements for binding to cannabinoid receptors CB1 and CB2,” Journal of Medicinal Chemistry, 50 (2007) 2875–2885.
  • [58] S. Durdagi, C. Koukoulitsa, A. Kapou, T. Kourouli, T. Andreou, S.P. Nikas, V.R. Nahmias, D.P. Papahatjis, M.G. Papadopoulos, T. Mavromoustakos, “Testing the 3D QSAR/ComFA-CoMSIA results of flexible bioactive compounds with molecular docking studies,” Drugs of the Future, 32 (2007) 79.
  • [58] S. Durdagi, C. Koukoulitsa, A. Kapou, T. Kourouli, T. Andreou, S.P. Nikas, V.R. Nahmias, D.P. Papahatjis, M.G. Papadopoulos, T. Mavromoustakos, “Testing the 3D QSAR/ComFA-CoMSIA results of flexible bioactive compounds with molecular docking studies,” Drugs of the Future, 32 (2007) 79.
  • [59] S. Durdagi, T. Mavromoustakos, M.G. Papadopoulos, “3D QSAR CoMFA/CoMSIA, molecular docking and molecular dynamics studies of fullerene-based HIV-1 PR inhibitors,” Bioorganic & Medicinal Chemistry Letters, 18 (2008) 6283–6289.
  • [59] S. Durdagi, T. Mavromoustakos, M.G. Papadopoulos, “3D QSAR CoMFA/CoMSIA, molecular docking and molecular dynamics studies of fullerene-based HIV-1 PR inhibitors,” Bioorganic & Medicinal Chemistry Letters, 18 (2008) 6283–6289.
  • [60] S. Durdagi, R.E. Salmas, M. Stein, M. Yurtsever, P. Seeman, “Binding Interactions of Dopamine and Apomorphine in D2High and D2Low States of Human Dopamine D2 Receptor Using Computational and Experimental Techniques,” Acs Chemical Neuroscience, 7 (2016) 185–195.
  • [60] S. Durdagi, R.E. Salmas, M. Stein, M. Yurtsever, P. Seeman, “Binding Interactions of Dopamine and Apomorphine in D2High and D2Low States of Human Dopamine D2 Receptor Using Computational and Experimental Techniques,” Acs Chemical Neuroscience, 7 (2016) 185–195.
  • [61] S. Durdagi, C.T. Supuran, T.A. Strom, N. Doostdar, M.K. Kumar, A.R. Barron, T. Mavromoustakos, M.G. Papadopoulos, “In Silico Drug Screening Approach for the Design of Magic Bullets: A Successful Example with Anti-HIV Fullerene Derivatized Amino Acids,” Journal of Chemical Information and Modeling, 49 (2009) 1139–1143.
  • [61] S. Durdagi, C.T. Supuran, T.A. Strom, N. Doostdar, M.K. Kumar, A.R. Barron, T. Mavromoustakos, M.G. Papadopoulos, “In Silico Drug Screening Approach for the Design of Magic Bullets: A Successful Example with Anti-HIV Fullerene Derivatized Amino Acids,” Journal of Chemical Information and Modeling, 49 (2009) 1139–1143.
  • [62] J. Iqbal, M. Al-Rashida, S. Durdagi, V. Alterio, A. Di Fiore, “Recent Developments of Carbonic Anhydrase Inhibitors as Potential Drugs,” Biomed Research International, (2015).
  • [62] J. Iqbal, M. Al-Rashida, S. Durdagi, V. Alterio, A. Di Fiore, “Recent Developments of Carbonic Anhydrase Inhibitors as Potential Drugs,” Biomed Research International, (2015).
  • [63] G. Kayik, N.S. Tuzun, S. Durdagi, “Investigation of PDE5/PDE6 and PDE5/PDE11 selective potent tadalafil-like PDE5 inhibitors using combination of molecular modeling approaches, molecular fingerprint-based virtual screening protocols and structure-based pharmacophore development,” Journal of Enzyme Inhibition and Medicinal Chemistry, 32 (2017) 311–330.
  • [63] G. Kayik, N.S. Tuzun, S. Durdagi, “Investigation of PDE5/PDE6 and PDE5/PDE11 selective potent tadalafil-like PDE5 inhibitors using combination of molecular modeling approaches, molecular fingerprint-based virtual screening protocols and structure-based pharmacophore development,” Journal of Enzyme Inhibition and Medicinal Chemistry, 32 (2017) 311–330.
  • [64] S. Adem, V. Eyupoglu, I. Sarfraz, A. Rasul, M. Ali, “Identification of Potent COVID-19 Main Protease (Mpro) Inhibitors from Natural Polyphenols: An in Silico Strategy Unveils a Hope against CORONA,” (2020).
  • [64] S. Adem, V. Eyupoglu, I. Sarfraz, A. Rasul, M. Ali, “Identification of Potent COVID-19 Main Protease (Mpro) Inhibitors from Natural Polyphenols: An in Silico Strategy Unveils a Hope against CORONA,” (2020).
  • [65] K.F. Azim, S.R. Ahmed, A. Banik, M.M.R. Khan, A. Deb, S.R. Somana, “Screening and druggability analysis of some plant metabolites against SARS-CoV-2: An integrative computational approach,” Informatics in Medicine Unlocked, 20 (2020) 100367.
  • [65] K.F. Azim, S.R. Ahmed, A. Banik, M.M.R. Khan, A. Deb, S.R. Somana, “Screening and druggability analysis of some plant metabolites against SARS-CoV-2: An integrative computational approach,” Informatics in Medicine Unlocked, 20 (2020) 100367.
  • [66] P. Bellavite, A. Donzelli, “Hesperidin and SARS-CoV-2: New light on the healthy function of citrus fruits,” Antioxidants, 9 (2020) 1–18.
  • [66] P. Bellavite, A. Donzelli, “Hesperidin and SARS-CoV-2: New light on the healthy function of citrus fruits,” Antioxidants, 9 (2020) 1–18.
  • [67] S.A. Cherrak, H. Merzouk, N. Mokhtari-Soulimane, “Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies,” PLoS ONE, 15 (2020) 1–14.
  • [67] S.A. Cherrak, H. Merzouk, N. Mokhtari-Soulimane, “Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies,” PLoS ONE, 15 (2020) 1–14.
  • [68] C.A. Ramos-Guzmán, J.J. Ruiz-Pernía, I. Tuñón, “Unraveling the SARS-CoV-2 Main Protease Mechanism Using Multiscale Methods,” ACS Catalysis, 10 (2020) 12544–12554.
  • [68] C.A. Ramos-Guzmán, J.J. Ruiz-Pernía, I. Tuñón, “Unraveling the SARS-CoV-2 Main Protease Mechanism Using Multiscale Methods,” ACS Catalysis, 10 (2020) 12544–12554.
  • [69] M. Russo, S. Moccia, C. Spagnuolo, I. Tedesco, G.L. Russo, “Roles of flavonoids against coronavirus infection,” Chemico-Biological Interactions, 328 (2020) 109211.
  • [69] M. Russo, S. Moccia, C. Spagnuolo, I. Tedesco, G.L. Russo, “Roles of flavonoids against coronavirus infection,” Chemico-Biological Interactions, 328 (2020) 109211.
  • [70] Z. Xu, L. Yang, X. Zhang, Q. Zhang, Z. Yang, Y. Liu, S. Wei, W. Liu, “Discovery of Potential Flavonoid Inhibitors Against COVID-19 3CL Proteinase Based on Virtual Screening Strategy,” Frontiers in Molecular Biosciences, 7 (2020) 1–8.
  • [70] Z. Xu, L. Yang, X. Zhang, Q. Zhang, Z. Yang, Y. Liu, S. Wei, W. Liu, “Discovery of Potential Flavonoid Inhibitors Against COVID-19 3CL Proteinase Based on Virtual Screening Strategy,” Frontiers in Molecular Biosciences, 7 (2020) 1–8.
  • [71] F. Li, A.P. Michelson, R. Foraker, M. Zhan, P.R.O. Payne, “Computational analysis to repurpose drugs for COVID-19 based on transcriptional response of host cells to SARS-CoV-2,” BMC Medical Informatics and Decision Making, 21 (2021) 1–13.
  • [71] F. Li, A.P. Michelson, R. Foraker, M. Zhan, P.R.O. Payne, “Computational analysis to repurpose drugs for COVID-19 based on transcriptional response of host cells to SARS-CoV-2,” BMC Medical Informatics and Decision Making, 21 (2021) 1–13.
  • [72] R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic, D.T. Mainz, M.P. Repasky, E.H. Knoll, M. Shelley, J.K. Perry, D.E. Shaw, P. Francis, P.S. Shenkin, “Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy,” Journal of Medicinal Chemistry, 47 (2004) 1739–1749.
  • [72] R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic, D.T. Mainz, M.P. Repasky, E.H. Knoll, M. Shelley, J.K. Perry, D.E. Shaw, P. Francis, P.S. Shenkin, “Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy,” Journal of Medicinal Chemistry, 47 (2004) 1739–1749.
  • [73] R.A. Friesner, R.B. Murphy, M.P. Repasky, L.L. Frye, J.R. Greenwood, T.A. Halgren, P.C. Sanschagrin, D.T. Mainz, “Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes,” Journal of Medicinal Chemistry, 49 (2006) 6177–6196.
  • [73] R.A. Friesner, R.B. Murphy, M.P. Repasky, L.L. Frye, J.R. Greenwood, T.A. Halgren, P.C. Sanschagrin, D.T. Mainz, “Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes,” Journal of Medicinal Chemistry, 49 (2006) 6177–6196.
  • [74] A.D. Mesecar, “Structure of COVID-19 main protease bound to potent broad-spectrum non-covalent inhibitor X77,” (2020).
  • [74] A.D. Mesecar, “Structure of COVID-19 main protease bound to potent broad-spectrum non-covalent inhibitor X77,” (2020).
  • [75] T. Sterling, J.J. Irwin, “ZINC 15 – Ligand Discovery for Everyone,” Journal of Chemical Information and Modeling, 55 (2015) 2324–2337.
  • [75] T. Sterling, J.J. Irwin, “ZINC 15 – Ligand Discovery for Everyone,” Journal of Chemical Information and Modeling, 55 (2015) 2324–2337.
  • [76] “Schrödinger LLC. New York, USA:,” Schrodinger Inc., (2018).
  • [76] “Schrödinger LLC. New York, USA:,” Schrodinger Inc., (2018).
  • [77] T.A. Halgren, R.B. Murphy, R.A. Friesner, H.S. Beard, L.L. Frye, W.T. Pollard, J.L. Banks, “Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening,” Journal of Medicinal Chemistry, 47 (2004) 1750–1759.
  • [77] T.A. Halgren, R.B. Murphy, R.A. Friesner, H.S. Beard, L.L. Frye, W.T. Pollard, J.L. Banks, “Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening,” Journal of Medicinal Chemistry, 47 (2004) 1750–1759.
  • [78] H. Yang, M. Yang, Y. Ding, Y. Liu, Z. Lou, Z. Zhou, L. Sun, L. Mo, S. Ye, H. Pang, G.F. Gao, K. Anand, M. Bartlam, R. Hilgenfeld, Z. Rao, “The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor,” Proceedings of the National Academy of Sciences of the United States of America, 100 (2003) 13190–13195.
  • [78] H. Yang, M. Yang, Y. Ding, Y. Liu, Z. Lou, Z. Zhou, L. Sun, L. Mo, S. Ye, H. Pang, G.F. Gao, K. Anand, M. Bartlam, R. Hilgenfeld, Z. Rao, “The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor,” Proceedings of the National Academy of Sciences of the United States of America, 100 (2003) 13190–13195.
  • [79] Q. Zhao, S. Li, F. Xue, Y. Zou, C. Chen, M. Bartlam, Z. Rao, “Structure of the Main Protease from a Global Infectious Human Coronavirus, HCoV-HKU1,” Journal of Virology, 82 (2008) 8647–8655.
  • [79] Q. Zhao, S. Li, F. Xue, Y. Zou, C. Chen, M. Bartlam, Z. Rao, “Structure of the Main Protease from a Global Infectious Human Coronavirus, HCoV-HKU1,” Journal of Virology, 82 (2008) 8647–8655.
  • [80] F. Wang, C. Chen, W. Tan, K. Yang, H. Yang, “Structure of Main Protease from Human Coronavirus NL63: Insights for Wide Spectrum Anti-Coronavirus Drug Design,” Scientific Reports, 6 (2016) 1–12.
  • [80] F. Wang, C. Chen, W. Tan, K. Yang, H. Yang, “Structure of Main Protease from Human Coronavirus NL63: Insights for Wide Spectrum Anti-Coronavirus Drug Design,” Scientific Reports, 6 (2016) 1–12.
  • [81] R. Yoshino, N. Yasuo, M. Sekijima, “Identification of key interactions between SARS ‑ CoV ‑ 2 main protease and inhibitor drug candidates,” Scientific Reports, (2020) 1–8.
  • [81] R. Yoshino, N. Yasuo, M. Sekijima, “Identification of key interactions between SARS ‑ CoV ‑ 2 main protease and inhibitor drug candidates,” Scientific Reports, (2020) 1–8.
  • [82] H. Yang, W. Xie, X. Xue, K. Yang, J. Ma, W. Liang, Q. Zhao, Z. Zhou, D. Pei, J. Ziebuhr, R. Hilgenfeld, K.Y. Yuen, L. Wong, G. Gao, S. Chen, Z. Chen, D. Ma, M. Bartlam, Z. Rao, “Design of Wide-Spectrum Inhibitors Targeting Coronavirus Main Proteases,” Plos Biol., 3 (2005) e324–e324.
  • [82] H. Yang, W. Xie, X. Xue, K. Yang, J. Ma, W. Liang, Q. Zhao, Z. Zhou, D. Pei, J. Ziebuhr, R. Hilgenfeld, K.Y. Yuen, L. Wong, G. Gao, S. Chen, Z. Chen, D. Ma, M. Bartlam, Z. Rao, “Design of Wide-Spectrum Inhibitors Targeting Coronavirus Main Proteases,” Plos Biol., 3 (2005) e324–e324.
  • [83] L. Lecoq, C. Bougault, J.E. Hugonnet, C. Veckerlé, O. Pessey, M. Arthur, J.P. Simorre, “Dynamics induced by β-lactam antibiotics in the active site of Bacillus subtilis l,d-transpeptidase,” Structure, 20 (2012) 850–861.
  • [83] L. Lecoq, C. Bougault, J.E. Hugonnet, C. Veckerlé, O. Pessey, M. Arthur, J.P. Simorre, “Dynamics induced by β-lactam antibiotics in the active site of Bacillus subtilis l,d-transpeptidase,” Structure, 20 (2012) 850–861.
  • [84] C.S. Ealand, E.E. Machowski, B.D. Kana, “β-lactam resistance: The role of low molecular weight penicillin binding proteins, β-lactamases and ld-transpeptidases in bacteria associated with respiratory tract infections,” IUBMB Life, 70 (2018) 855–868.
  • [84] C.S. Ealand, E.E. Machowski, B.D. Kana, “β-lactam resistance: The role of low molecular weight penicillin binding proteins, β-lactamases and ld-transpeptidases in bacteria associated with respiratory tract infections,” IUBMB Life, 70 (2018) 855–868.
  • [85] Z. Jin, Y. Zhao, Y. Sun, B. Zhang, H. Wang, Y. Wu, Y. Zhu, C. Zhu, T. Hu, X. Du, Y. Duan, J. Yu, X. Yang, X. Yang, K. Yang, X. Liu, L.W. Guddat, G. Xiao, L. Zhang, H. Yang, Z. Rao, “Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur,” Nature Structural and Molecular Biology, 27 (2020) 529–532.
  • [85] Z. Jin, Y. Zhao, Y. Sun, B. Zhang, H. Wang, Y. Wu, Y. Zhu, C. Zhu, T. Hu, X. Du, Y. Duan, J. Yu, X. Yang, X. Yang, K. Yang, X. Liu, L.W. Guddat, G. Xiao, L. Zhang, H. Yang, Z. Rao, “Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur,” Nature Structural and Molecular Biology, 27 (2020) 529–532.
  • [86] G.J. Lockbaum, A.C. Reyes, J.M. Lee, R. Tilvawala, E.A. Nalivaika, A. Ali, N.K. Yilmaz, P.R. Thompson, C.A. Schiffer, “Crystal structure of sars-cov-2 main protease in complex with the non-covalent inhibitor ml188,” Viruses, 13 (2021).
  • [86] G.J. Lockbaum, A.C. Reyes, J.M. Lee, R. Tilvawala, E.A. Nalivaika, A. Ali, N.K. Yilmaz, P.R. Thompson, C.A. Schiffer, “Crystal structure of sars-cov-2 main protease in complex with the non-covalent inhibitor ml188,” Viruses, 13 (2021).
  • [87] S. Günther, P.Y. A Reinke, Y. Fernández-García, J. Lieske, T.J. Lane, H.M. Ginn, F.H. M Koua, C. Ehrt, W. Ewert, D. Oberthuer, O. Yefanov, S. Meier, K. Lorenzen, B. Krichel, J.-D. Kopicki, L. Gelisio, W. Brehm, I. Dunkel, B. Seychell, H. Gieseler, B. Norton-Baker, B. Escudero-Pérez, M. Domaracky, S. Saouane, A. Tolstikova, T.A. White, A. Hänle, M. Groessler, H. Fleckenstein, F. Trost, M. Galchenkova, Y. Gevorkov, C. Li, S. Awel, A. Peck, M. Barthelmess, F. Schlünzen, P. Lourdu Xavier, N. Werner, H. Andaleeb, N. Ullah, S. Falke, V. Srinivasan, B. Alves França, M. Schwinzer, H. Brognaro, C. Rogers, D. Melo, J.J. Zaitseva-Doyle, J. Knoska, G.E. Peña-Murillo, A. Rahmani Mashhour, V. Hennicke, P. Fischer, J. Hakanpää, J. Meyer, P. Gribbon, B. Ellinger, M. Kuzikov, M. Wolf, A.R. Beccari, C. Uetrecht, R. Cox, A. Zaliani, T. Beck, M. Rarey, S. Günther, D. Turk, W. Hinrichs, H.N. Chapman, A.R. Pearson, C. Betzel, A. Meents, “X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease,” Jonathan Pletzer-Zelgert, 18 (n.d.) 22.
  • [87] S. Günther, P.Y. A Reinke, Y. Fernández-García, J. Lieske, T.J. Lane, H.M. Ginn, F.H. M Koua, C. Ehrt, W. Ewert, D. Oberthuer, O. Yefanov, S. Meier, K. Lorenzen, B. Krichel, J.-D. Kopicki, L. Gelisio, W. Brehm, I. Dunkel, B. Seychell, H. Gieseler, B. Norton-Baker, B. Escudero-Pérez, M. Domaracky, S. Saouane, A. Tolstikova, T.A. White, A. Hänle, M. Groessler, H. Fleckenstein, F. Trost, M. Galchenkova, Y. Gevorkov, C. Li, S. Awel, A. Peck, M. Barthelmess, F. Schlünzen, P. Lourdu Xavier, N. Werner, H. Andaleeb, N. Ullah, S. Falke, V. Srinivasan, B. Alves França, M. Schwinzer, H. Brognaro, C. Rogers, D. Melo, J.J. Zaitseva-Doyle, J. Knoska, G.E. Peña-Murillo, A. Rahmani Mashhour, V. Hennicke, P. Fischer, J. Hakanpää, J. Meyer, P. Gribbon, B. Ellinger, M. Kuzikov, M. Wolf, A.R. Beccari, C. Uetrecht, R. Cox, A. Zaliani, T. Beck, M. Rarey, S. Günther, D. Turk, W. Hinrichs, H.N. Chapman, A.R. Pearson, C. Betzel, A. Meents, “X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease,” Jonathan Pletzer-Zelgert, 18 (n.d.) 22.
  • [88] Y. Erdogdu, O. Unsalan, D. Sajan, M.T. Gulluoglu, “Structural conformations and vibrational spectral study of chloroflavone with density functional theoretical simulations,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 76 (2010) 130–136.
  • [88] Y. Erdogdu, O. Unsalan, D. Sajan, M.T. Gulluoglu, “Structural conformations and vibrational spectral study of chloroflavone with density functional theoretical simulations,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 76 (2010) 130–136.
  • [89] O. Unsalan, Y. Erdogdu, M.T. Gulluoglu, “FT-Raman and FT-IR spectral and quantum chemical studies on some flavonoid derivatives: Baicalein and Naringenin,” Journal of Raman Spectroscopy, 40 (2009) 562–570.
  • [89] O. Unsalan, Y. Erdogdu, M.T. Gulluoglu, “FT-Raman and FT-IR spectral and quantum chemical studies on some flavonoid derivatives: Baicalein and Naringenin,” Journal of Raman Spectroscopy, 40 (2009) 562–570.
  • [90] Y. Erdogdu, O. Unsalan, M. Amalanathan, I. Hubert Joe, “Infrared and Raman spectra, vibrational assignment, NBO analysis and DFT calculations of 6-aminoflavone,” Journal of Molecular Structure, 980 (2010) 24–30.
  • [90] Y. Erdogdu, O. Unsalan, M. Amalanathan, I. Hubert Joe, “Infrared and Raman spectra, vibrational assignment, NBO analysis and DFT calculations of 6-aminoflavone,” Journal of Molecular Structure, 980 (2010) 24–30.
  • [91] Y. Erdogdu, O. Unsalan, M. Tahir Gulluoglu, “FT-Raman, FT-IR spectral and DFT studies on 6, 8-dichloroflavone and 6,8-dibromoflavone,” Journal of Raman Spectroscopy, 41 (2010) 820–828.
  • [91] Y. Erdogdu, O. Unsalan, M. Tahir Gulluoglu, “FT-Raman, FT-IR spectral and DFT studies on 6, 8-dichloroflavone and 6,8-dibromoflavone,” Journal of Raman Spectroscopy, 41 (2010) 820–828.
  • [92] G. Varsanyi, Assignments for vibrational spectra of seven hundred benzene derivatives, Wiley, New York, 1974.
  • [92] G. Varsanyi, Assignments for vibrational spectra of seven hundred benzene derivatives, Wiley, New York, 1974.
  • [93] J. Mohan, Organic Spectroscopy: Principles and Applications, Alpha Science Internatinoal, 2004.
  • [93] J. Mohan, Organic Spectroscopy: Principles and Applications, Alpha Science Internatinoal, 2004.
  • [94] M. Heneczkowski, M. Kopacz, D. Nowak, A. Kuźniar, “Infrared spectrum analysis of some flavonoids,” Acta Poloniae Pharmaceutica - Drug Research, 58 (2001) 415–420.
  • [94] M. Heneczkowski, M. Kopacz, D. Nowak, A. Kuźniar, “Infrared spectrum analysis of some flavonoids,” Acta Poloniae Pharmaceutica - Drug Research, 58 (2001) 415–420.
  • [95] J. Hanuza, P. Godlewska, E. Kucharska, M. Ptak, M. Kopacz, M. Mączka, K. Hermanowicz, L. Macalik, “Molecular structure and vibrational spectra of quercetin and quercetin-5’-sulfonic acid,” Vibrational Spectroscopy, 88 (2017) 94–105.
  • [95] J. Hanuza, P. Godlewska, E. Kucharska, M. Ptak, M. Kopacz, M. Mączka, K. Hermanowicz, L. Macalik, “Molecular structure and vibrational spectra of quercetin and quercetin-5’-sulfonic acid,” Vibrational Spectroscopy, 88 (2017) 94–105.

Effects of flavonoids on SARS–CoV–2 main protease (6W63): A molecular docking study

Year 2023, Volume: 7 Issue: 2, 34 - 57, 15.05.2023
https://doi.org/10.33435/tcandtc.1151841

Abstract

Public health is still under attack by a worldwide pandemic caused by a coronavirus which is known to cause mainly respiratory and enteric disease in humans. Currently, still limited knowledge exists on the exact action mechanism and biology of SARS‒CoV‒2 although there are several effective vaccines and antiviral treatment. Besides, there is a considerable amount of 3D protein structures for SARS–CoV–2, related to its main protease resolved by X–ray diffraction. Here, we used molecular docking strategy to predict possible inhibitory activities of flavonoids on SARS–CoV–2 Mpro enzyme. For this, 800 flavonoids were retrieved from the ZINC database. Results suggested that avicularin was the lead flavonoid which docked to Mpro with the best binding energy. However, most of flavonoids showed H–bond interactions with Hie–41 and Cys–145 catalytic dyad, which were important residues for the catalytic activity of SARS–CoV–2 Mpro. Strong hydrogen bonding (2.36 Å) with Sγ atom of Cys145 residue was observed. This might suggest an initial formation of covalent bonding. Findings showed that selected flavonoids could be promising inhibitors of this enzyme and have the potential for future therapeutic drugs against COVID–19 after immediate experimental validation and clinical approvals.

References

  • [1] D.M. Knipe, P.M. Howley, “Fields Virology,” Annals of Internal Medicine, 113 (1990) 258.
  • [1] D.M. Knipe, P.M. Howley, “Fields Virology,” Annals of Internal Medicine, 113 (1990) 258.
  • [2] “International Committee on Taxonomy of Viruses Virus taxonomy,” (2018).
  • [2] “International Committee on Taxonomy of Viruses Virus taxonomy,” (2018).
  • [3] “Center for Systems Science and Engineering at Johns Hopkins University,” COVID-19 Dashboard., (2020).
  • [3] “Center for Systems Science and Engineering at Johns Hopkins University,” COVID-19 Dashboard., (2020).
  • [4] N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu, P. Niu, F. Zhan, X. Ma, D. Wang, W. Xu, G. Wu, G.F. Gao, W. Tan, “A Novel Coronavirus from Patients with Pneumonia in China, 2019,” New England Journal of Medicine, 382 (2020) 727–733.
  • [4] N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu, P. Niu, F. Zhan, X. Ma, D. Wang, W. Xu, G. Wu, G.F. Gao, W. Tan, “A Novel Coronavirus from Patients with Pneumonia in China, 2019,” New England Journal of Medicine, 382 (2020) 727–733.
  • [5] “Pfizer and BioNTech Announce Vaccine Candidate Against COVID-19 Achieved Success in First Interim Analysis from Phase 3 Study | Pfizer,” (n.d.).
  • [5] “Pfizer and BioNTech Announce Vaccine Candidate Against COVID-19 Achieved Success in First Interim Analysis from Phase 3 Study | Pfizer,” (n.d.).
  • [6] “Moderna’s COVID-19 Vaccine Candidate Meets its Primary Efficacy Endpoint in the First Interim Analysis of the Phase 3 COVE Study | Moderna, Inc.,” (n.d.).
  • [6] “Moderna’s COVID-19 Vaccine Candidate Meets its Primary Efficacy Endpoint in the First Interim Analysis of the Phase 3 COVE Study | Moderna, Inc.,” (n.d.).
  • [7] “AZD1222 vaccine met primary efficacy endpoint in preventing COVID-19,” (n.d.).
  • [7] “AZD1222 vaccine met primary efficacy endpoint in preventing COVID-19,” (n.d.).
  • [8] “Oxford University breakthrough on global COVID-19 vaccine | Research | University of Oxford,” (n.d.).
  • [8] “Oxford University breakthrough on global COVID-19 vaccine | Research | University of Oxford,” (n.d.).
  • [9] T.T. Le, J.P. Cramer, R. Chen, S. Mayhew, “Evolution of the COVID-19 vaccine development landscape,” Nature Reviews. Drug Discovery, 19 (2020) 667–668.
  • [9] T.T. Le, J.P. Cramer, R. Chen, S. Mayhew, “Evolution of the COVID-19 vaccine development landscape,” Nature Reviews. Drug Discovery, 19 (2020) 667–668.
  • [10] “COVID19 Vaccine Tracker,” (2021).
  • [10] “COVID19 Vaccine Tracker,” (2021).
  • [11] E.P.K. Parker, M. Shrotri, B. Kampmann, “Keeping track of the SARS-CoV-2 vaccine pipeline,” Nature Reviews Immunology, 20 (2020) 650.
  • [11] E.P.K. Parker, M. Shrotri, B. Kampmann, “Keeping track of the SARS-CoV-2 vaccine pipeline,” Nature Reviews Immunology, 20 (2020) 650.
  • [12] H. Chen, L.-S. Lee, G. Li, S.-W. Tsao, J.-F. Chiu, “Upregulation of glycolysis and oxidative phosphorylation in benzo[beta]pyrene and arsenic-induced rat lung epithelial transformed cells,” Oncotarget, 7 (2016) 40674–40689.
  • [12] H. Chen, L.-S. Lee, G. Li, S.-W. Tsao, J.-F. Chiu, “Upregulation of glycolysis and oxidative phosphorylation in benzo[beta]pyrene and arsenic-induced rat lung epithelial transformed cells,” Oncotarget, 7 (2016) 40674–40689.
  • [13] Y.N. Cao, L. Li, Z.M. Feng, S.Q. Wan, P.D. Huang, X.H. Sun, F. Wen, X.L. Huang, G. Ning, W.Q. Wang, “Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations,” Cell Discovery, 6 (2020).
  • [13] Y.N. Cao, L. Li, Z.M. Feng, S.Q. Wan, P.D. Huang, X.H. Sun, F. Wen, X.L. Huang, G. Ning, W.Q. Wang, “Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations,” Cell Discovery, 6 (2020).
  • [14] X. Liu, B. Zhang, Z. Jin, H. Yang, Z. Rao, “The crystal structure of COVID-19 main protease in complex with an inhibitor N3.,” Protein Data Bank, (2020).
  • [14] X. Liu, B. Zhang, Z. Jin, H. Yang, Z. Rao, “The crystal structure of COVID-19 main protease in complex with an inhibitor N3.,” Protein Data Bank, (2020).
  • [15] Z. Jin, X. Du, Y. Xu, Y. Deng, M. Liu, Y. Zhao, B. Zhang, X. Li, L. Zhang, C. Peng, Y. Duan, J. Yu, L. Wang, K. Yang, F. Liu, R. Jiang, X. Yang, T. You, X. Liu, X. Yang, F. Bai, H. Liu, X. Liu, L.W. Guddat, W. Xu, G. Xiao, C. Qin, Z. Shi, H. Jiang, Z. Rao, H. Yang, “Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors,” Nature, 582 (2020) 289–293.
  • [15] Z. Jin, X. Du, Y. Xu, Y. Deng, M. Liu, Y. Zhao, B. Zhang, X. Li, L. Zhang, C. Peng, Y. Duan, J. Yu, L. Wang, K. Yang, F. Liu, R. Jiang, X. Yang, T. You, X. Liu, X. Yang, F. Bai, H. Liu, X. Liu, L.W. Guddat, W. Xu, G. Xiao, C. Qin, Z. Shi, H. Jiang, Z. Rao, H. Yang, “Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors,” Nature, 582 (2020) 289–293.
  • [16] F.S. Wang, C. Zhang, “What to do next to control the 2019-nCoV epidemic?,” The Lancet, 395 (2020) 391–393.
  • [16] F.S. Wang, C. Zhang, “What to do next to control the 2019-nCoV epidemic?,” The Lancet, 395 (2020) 391–393.
  • [17] B. Benarba, A. Pandiella, “Medicinal Plants as Sources of Active Molecules Against COVID-19,” Frontiers in Pharmacology, 11 (2020) 1189.
  • [17] B. Benarba, A. Pandiella, “Medicinal Plants as Sources of Active Molecules Against COVID-19,” Frontiers in Pharmacology, 11 (2020) 1189.
  • [18] H.Z. Du, X.Y. Hou, Y.H. Miao, B.S. Huang, D.H. Liu, “Traditional Chinese Medicine: an effective treatment for 2019 novel coronavirus pneumonia (NCP),” Chinese Journal of Natural Medicines, 18 (2020) 206–210.
  • [18] H.Z. Du, X.Y. Hou, Y.H. Miao, B.S. Huang, D.H. Liu, “Traditional Chinese Medicine: an effective treatment for 2019 novel coronavirus pneumonia (NCP),” Chinese Journal of Natural Medicines, 18 (2020) 206–210.
  • [19] K. Xu, H. Cai, Y. Shen, Q. Ni, Y. Chen, S. Hu, J. Li, H. Wang, L. Yu, H. Huang, Y. Qiu, G. Wei, Q. Fang, J. Zhou, J. Sheng, T. Liang, L. Li, “Management of corona virus disease-19 (COVID-19): the Zhejiang experience.,” Zhejiang da xue xue bao. Yi xue ban = Journal of Zhejiang University. Medical sciences, 49 (2020) 147–157.
  • [19] K. Xu, H. Cai, Y. Shen, Q. Ni, Y. Chen, S. Hu, J. Li, H. Wang, L. Yu, H. Huang, Y. Qiu, G. Wei, Q. Fang, J. Zhou, J. Sheng, T. Liang, L. Li, “Management of corona virus disease-19 (COVID-19): the Zhejiang experience.,” Zhejiang da xue xue bao. Yi xue ban = Journal of Zhejiang University. Medical sciences, 49 (2020) 147–157.
  • [20] H. Lu, “Drug treatment options for the 2019-new coronavirus (2019- nCoV),” 14 (2020) 69–71.
  • [20] H. Lu, “Drug treatment options for the 2019-new coronavirus (2019- nCoV),” 14 (2020) 69–71.
  • [21] Y.H. Jin, L. Cai, Z.S. Cheng, H. Cheng, T. Deng, Y.P. Fan, C. Fang, D. Huang, L.Q. Huang, Q. Huang, Y. Han, B. Hu, F. Hu, B.H. Li, Y.R. Li, K. Liang, L.K. Lin, L.S. Luo, J. Ma, L.L. Ma, Z.Y. Peng, Y.B. Pan, Z.Y. Pan, X.Q. Ren, H.M. Sun, Y. Wang, Y.Y. Wang, H. Weng, C.J. Wei, D.F. Wu, J. Xia, Y. Xiong, H.B. Xu, X.M. Yao, T.S. Ye, Y.F. Yuan, X.C. Zhang, Y.W. Zhang, Y.G. Zhang, H.M. Zhang, Y. Zhao, M.J. Zhao, H. Zi, X.T. Zeng, Y.Y. Wang, X.H. Wang, “A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version),” Medical Journal of Chinese People’s Liberation Army, 45 (2020) 1–20.
  • [21] Y.H. Jin, L. Cai, Z.S. Cheng, H. Cheng, T. Deng, Y.P. Fan, C. Fang, D. Huang, L.Q. Huang, Q. Huang, Y. Han, B. Hu, F. Hu, B.H. Li, Y.R. Li, K. Liang, L.K. Lin, L.S. Luo, J. Ma, L.L. Ma, Z.Y. Peng, Y.B. Pan, Z.Y. Pan, X.Q. Ren, H.M. Sun, Y. Wang, Y.Y. Wang, H. Weng, C.J. Wei, D.F. Wu, J. Xia, Y. Xiong, H.B. Xu, X.M. Yao, T.S. Ye, Y.F. Yuan, X.C. Zhang, Y.W. Zhang, Y.G. Zhang, H.M. Zhang, Y. Zhao, M.J. Zhao, H. Zi, X.T. Zeng, Y.Y. Wang, X.H. Wang, “A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version),” Medical Journal of Chinese People’s Liberation Army, 45 (2020) 1–20.
  • [22] H. De Groot, U. Rauen, “Tissue injury by reactive oxygen species and the protective effects of flavonoids,” Fundamental and Clinical Pharmacology, 12 (1998) 249–255.
  • [22] H. De Groot, U. Rauen, “Tissue injury by reactive oxygen species and the protective effects of flavonoids,” Fundamental and Clinical Pharmacology, 12 (1998) 249–255.
  • [23] A.R. Tapas, D.M. Sakarkar, R.B. Kakde, “Flavonoids as nutraceuticals,” The Science of Flavonoids, 7 (2006) 213–238.
  • [23] A.R. Tapas, D.M. Sakarkar, R.B. Kakde, “Flavonoids as nutraceuticals,” The Science of Flavonoids, 7 (2006) 213–238.
  • [24] G. Xu, J. Dou, L. Zhang, Q. Guo, C. Zhou, “Inhibitory effects of baicalein on the influenza virus in vivo is determined by baicalin in the serum,” Biological and Pharmaceutical Bulletin, 33 (2010) 238–243.
  • [24] G. Xu, J. Dou, L. Zhang, Q. Guo, C. Zhou, “Inhibitory effects of baicalein on the influenza virus in vivo is determined by baicalin in the serum,” Biological and Pharmaceutical Bulletin, 33 (2010) 238–243.
  • [25] J. Dou, L. Chen, G. Xu, L. Zhang, H. Zhou, H. Wang, Z. Su, M. Ke, Q. Guo, C. Zhou, “Effects of baicalein on Sendai virus in vivo are linked to serum baicalin and its inhibition of hemagglutinin-neuraminidase,” Archives of Virology, 156 (2011) 793–801.
  • [25] J. Dou, L. Chen, G. Xu, L. Zhang, H. Zhou, H. Wang, Z. Su, M. Ke, Q. Guo, C. Zhou, “Effects of baicalein on Sendai virus in vivo are linked to serum baicalin and its inhibition of hemagglutinin-neuraminidase,” Archives of Virology, 156 (2011) 793–801.
  • [26] T.T.H. Nguyen, H.J. Woo, H.K. Kang, V.D. Nguyen, Y.M. Kim, D.W. Kim, S.A. Ahn, Y. Xia, D. Kim, “Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris,” Biotechnology Letters, 34 (2012) 831–838.
  • [26] T.T.H. Nguyen, H.J. Woo, H.K. Kang, V.D. Nguyen, Y.M. Kim, D.W. Kim, S.A. Ahn, Y. Xia, D. Kim, “Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris,” Biotechnology Letters, 34 (2012) 831–838.
  • [27] S. Schwarz, D. Sauter, K. Wang, R. Zhang, B. Sun, A. Karioti, A.R. Bilia, T. Efferth, W. Schwarz, “Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus,” Planta Medica, 80 (2014) 177–182.
  • [27] S. Schwarz, D. Sauter, K. Wang, R. Zhang, B. Sun, A. Karioti, A.R. Bilia, T. Efferth, W. Schwarz, “Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus,” Planta Medica, 80 (2014) 177–182.
  • [28] C.N. Chen, C.P.C. Lin, K.K. Huang, W.C. Chen, H.P. Hsieh, P.H. Liang, J.T.A. Hsu, “Inhibition of SARS-CoV 3C-like protease activity by theaflavin-3,3′- digallate (TF3),” Evidence-Based Complementary and Alternative Medicine, 2 (2005) 209–215.
  • [28] C.N. Chen, C.P.C. Lin, K.K. Huang, W.C. Chen, H.P. Hsieh, P.H. Liang, J.T.A. Hsu, “Inhibition of SARS-CoV 3C-like protease activity by theaflavin-3,3′- digallate (TF3),” Evidence-Based Complementary and Alternative Medicine, 2 (2005) 209–215.
  • [29] L. Chen, J. Li, C. Luo, H. Liu, W. Xu, G. Chen, O.W. Liew, W. Zhu, C.M. Puah, X. Shen, H. Jiang, “Binding interaction of quercetin-3-β-galactoside and its synthetic derivatives with SARS-CoV 3CLpro: Structure-activity relationship studies reveal salient pharmacophore features,” Bioorganic and Medicinal Chemistry, 14 (2006) 8295–8306.
  • [29] L. Chen, J. Li, C. Luo, H. Liu, W. Xu, G. Chen, O.W. Liew, W. Zhu, C.M. Puah, X. Shen, H. Jiang, “Binding interaction of quercetin-3-β-galactoside and its synthetic derivatives with SARS-CoV 3CLpro: Structure-activity relationship studies reveal salient pharmacophore features,” Bioorganic and Medicinal Chemistry, 14 (2006) 8295–8306.
  • [30] L. Yi, Z. Li, K. Yuan, X. Qu, J. Chen, G. Wang, H. Zhang, H. Luo, L. Zhu, P. Jiang, L. Chen, Y. Shen, M. Luo, G. Zuo, J. Hu, D. Duan, Y. Nie, X. Shi, W. Wang, Y. Han, T. Li, Y. Liu, M. Ding, H. Deng, X. Xu, “Small Molecules Blocking the Entry of Severe Acute Respiratory Syndrome Coronavirus into Host Cells,” Journal of Virology, 78 (2004) 11334–11339.
  • [30] L. Yi, Z. Li, K. Yuan, X. Qu, J. Chen, G. Wang, H. Zhang, H. Luo, L. Zhu, P. Jiang, L. Chen, Y. Shen, M. Luo, G. Zuo, J. Hu, D. Duan, Y. Nie, X. Shi, W. Wang, Y. Han, T. Li, Y. Liu, M. Ding, H. Deng, X. Xu, “Small Molecules Blocking the Entry of Severe Acute Respiratory Syndrome Coronavirus into Host Cells,” Journal of Virology, 78 (2004) 11334–11339.
  • [31] Y. Erdogdu, O. Unsalan, M. Tahir Gulluoglu, “FT-Raman, FT-IR spectral and DFT studies on 6, 8-dichloroflavone and 6,8-dibromoflavone,” Journal of Raman Spectroscopy, 41 (2010) 820–828.
  • [31] Y. Erdogdu, O. Unsalan, M. Tahir Gulluoglu, “FT-Raman, FT-IR spectral and DFT studies on 6, 8-dichloroflavone and 6,8-dibromoflavone,” Journal of Raman Spectroscopy, 41 (2010) 820–828.
  • [32] Y. Erdoǧdu, O. Ünsalan, M.T. Güllüoǧlu, “Vibrational analysis of flavone,” Turkish Journal of Physics, 33 (2009) 249–259.
  • [32] Y. Erdoǧdu, O. Ünsalan, M.T. Güllüoǧlu, “Vibrational analysis of flavone,” Turkish Journal of Physics, 33 (2009) 249–259.
  • [33] Y. Erdogdu, O. Unsalan, D. Sajan, M.T. Gulluoglu, “Structural conformations and vibrational spectral study of chloroflavone with density functional theoretical simulations,” Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 76 (2010) 130–136.
  • [33] Y. Erdogdu, O. Unsalan, D. Sajan, M.T. Gulluoglu, “Structural conformations and vibrational spectral study of chloroflavone with density functional theoretical simulations,” Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 76 (2010) 130–136.
  • [34] Y. Erdogdu, O. Unsalan, M. Amalanathan, I. Hubert Joe, “Infrared and Raman spectra, vibrational assignment, NBO analysis and DFT calculations of 6-aminoflavone,” Journal of Molecular Structure, 980 (2010) 24–30.
  • [34] Y. Erdogdu, O. Unsalan, M. Amalanathan, I. Hubert Joe, “Infrared and Raman spectra, vibrational assignment, NBO analysis and DFT calculations of 6-aminoflavone,” Journal of Molecular Structure, 980 (2010) 24–30.
  • [35] Y. Erdogdu, Ö. Dereli, D. Sajan, L. Joseph, O. Unsalan, M.T. Gulluoglu, “Vibrational (FT-IR and FT-Raman) spectral investigations of 7-aminoflavone with density functional theoretical simulations,” Molecular Simulation, 38 (2012) 315–325.
  • [35] Y. Erdogdu, Ö. Dereli, D. Sajan, L. Joseph, O. Unsalan, M.T. Gulluoglu, “Vibrational (FT-IR and FT-Raman) spectral investigations of 7-aminoflavone with density functional theoretical simulations,” Molecular Simulation, 38 (2012) 315–325.
  • [36] O. Unsalan, Y. Erdogdu, M.T. Gulluoglu, “FT-Raman and FT-IR spectral and quantum chemical studies on some flavonoid derivatives: Baicalein and Naringenin,” Journal of Raman Spectroscopy, 40 (2009).
  • [36] O. Unsalan, Y. Erdogdu, M.T. Gulluoglu, “FT-Raman and FT-IR spectral and quantum chemical studies on some flavonoid derivatives: Baicalein and Naringenin,” Journal of Raman Spectroscopy, 40 (2009).
  • [37] S. Lalani, C.L. Poh, “Flavonoids as antiviral agents for enterovirus A71 (EV-A71),” Viruses, 12 (2020).
  • [37] S. Lalani, C.L. Poh, “Flavonoids as antiviral agents for enterovirus A71 (EV-A71),” Viruses, 12 (2020).
  • [38] S. Qian, W. Fan, P. Qian, D. Zhang, Y. Wei, H. Chen, X. Li, “Apigenin restricts FMDV infection and inhibits viral IRES driven translational activity,” Viruses, 7 (2015) 1613–1626.
  • [38] S. Qian, W. Fan, P. Qian, D. Zhang, Y. Wei, H. Chen, X. Li, “Apigenin restricts FMDV infection and inhibits viral IRES driven translational activity,” Viruses, 7 (2015) 1613–1626.
  • [39] J. Steinmann, J. Buer, T. Pietschmann, E. Steinmann, “Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea,” British Journal of Pharmacology, 168 (2013) 1059–1073.
  • [39] J. Steinmann, J. Buer, T. Pietschmann, E. Steinmann, “Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea,” British Journal of Pharmacology, 168 (2013) 1059–1073.
  • [40] A. Chauhan, S. Kalra, “Identification of potent COVID-19 main protease (MPRO) inhibitors from flavonoids,” (2020) 1–11.
  • [40] A. Chauhan, S. Kalra, “Identification of potent COVID-19 main protease (MPRO) inhibitors from flavonoids,” (2020) 1–11.
  • [41] A.D. Mesecar, “A taxonomically-driven approach to development of potent, broad-spectrum inhibitors of coronavirus main protease including SARS-CoV-2 (COVID-19). To Be Published,” (2020).
  • [41] A.D. Mesecar, “A taxonomically-driven approach to development of potent, broad-spectrum inhibitors of coronavirus main protease including SARS-CoV-2 (COVID-19). To Be Published,” (2020).
  • [42] K. Bolelli, T. Ertan-Bolelli, O. Unsalan, C. Altunayar-Unsalan, “Fenoterol and dobutamine as SARS-CoV-2 main protease inhibitors: A virtual screening study,” Journal of Molecular Structure, 1228 (2021) 129449.
  • [42] K. Bolelli, T. Ertan-Bolelli, O. Unsalan, C. Altunayar-Unsalan, “Fenoterol and dobutamine as SARS-CoV-2 main protease inhibitors: A virtual screening study,” Journal of Molecular Structure, 1228 (2021) 129449.
  • [43] H.T. Balaydin, S. Durdagi, D. Ekinci, M. Senturk, S. Goksu, A. Menzek, “Inhibition of human carbonic anhydrase isozymes I, II and VI with a series of bisphenol, methoxy and bromophenol compounds,” Journal of Enzyme Inhibition and Medicinal Chemistry, 27 (2012) 467–475.
  • [43] H.T. Balaydin, S. Durdagi, D. Ekinci, M. Senturk, S. Goksu, A. Menzek, “Inhibition of human carbonic anhydrase isozymes I, II and VI with a series of bisphenol, methoxy and bromophenol compounds,” Journal of Enzyme Inhibition and Medicinal Chemistry, 27 (2012) 467–475.
  • [44] S. Durdagi, “An Integrated Computational Approach for the Discovery of Ubiquitin Specific Protease 7 (USP7) Inhibitors as Potential Cancer Therapies,” Biophysical Journal, 118 (2020) 47a-47a.
  • [44] S. Durdagi, “An Integrated Computational Approach for the Discovery of Ubiquitin Specific Protease 7 (USP7) Inhibitors as Potential Cancer Therapies,” Biophysical Journal, 118 (2020) 47a-47a.
  • [45] G. Kayik, N.S. Tuzun, S. Durdagi, “In silico design of novel hERG-neutral sildenafil-like PDE5 inhibitors,” Journal of Biomolecular Structure & Dynamics, 35 (2017) 2830–2852.
  • [45] G. Kayik, N.S. Tuzun, S. Durdagi, “In silico design of novel hERG-neutral sildenafil-like PDE5 inhibitors,” Journal of Biomolecular Structure & Dynamics, 35 (2017) 2830–2852.
  • [46] S.S. Kulabas, F.C. Onder, Y.B. Yilmaz, A. Ozleyen, S. Durdagi, K. Sahin, M. Ay, T.B. Tumer, “In vitro and in silico studies of nitrobenzamide derivatives as potential anti-neuroinflammatory agents,” Journal of Biomolecular Structure & Dynamics, (2019).
  • [46] S.S. Kulabas, F.C. Onder, Y.B. Yilmaz, A. Ozleyen, S. Durdagi, K. Sahin, M. Ay, T.B. Tumer, “In vitro and in silico studies of nitrobenzamide derivatives as potential anti-neuroinflammatory agents,” Journal of Biomolecular Structure & Dynamics, (2019).
  • [47] S.A. Kulkarni, S.K. Nagarajan, V. Ramesh, V. Palaniyandi, S.P. Selvam, T. Madhavan, “Computational evaluation of major components from plant essential oils as potent inhibitors of SARS-CoV-2 spike protein,” Journal of Molecular Structure, 1221 (2020) 128823.
  • [47] S.A. Kulkarni, S.K. Nagarajan, V. Ramesh, V. Palaniyandi, S.P. Selvam, T. Madhavan, “Computational evaluation of major components from plant essential oils as potent inhibitors of SARS-CoV-2 spike protein,” Journal of Molecular Structure, 1221 (2020) 128823.
  • [48] D.L. Ma, D.S.H. Chan, C.H. Leung, “Drug repositioning by structure-based virtual screening,” Chemical Society Reviews, 42 (2013) 2130–2141.
  • [48] D.L. Ma, D.S.H. Chan, C.H. Leung, “Drug repositioning by structure-based virtual screening,” Chemical Society Reviews, 42 (2013) 2130–2141.
  • [49] T. Mavromoustakos, S. Durdagi, C. Koukoulitsa, M. Simcic, M.G. Papadopoulos, M. Hodoscek, S.G. Grdadolnik, “Strategies in the Rational Drug Design,” Current Medicinal Chemistry, 18 (2011) 2517–2530.
  • [49] T. Mavromoustakos, S. Durdagi, C. Koukoulitsa, M. Simcic, M.G. Papadopoulos, M. Hodoscek, S.G. Grdadolnik, “Strategies in the Rational Drug Design,” Current Medicinal Chemistry, 18 (2011) 2517–2530.
  • [50] S.B. Mirza, R.E. Salmas, M.Q. Fatmi, S. Durdagi, “Virtual screening of eighteen million compounds against dengue virus: Combined molecular docking and molecular dynamics simulations study,” Journal of Molecular Graphics & Modelling, 66 (2016) 99–107.
  • [50] S.B. Mirza, R.E. Salmas, M.Q. Fatmi, S. Durdagi, “Virtual screening of eighteen million compounds against dengue virus: Combined molecular docking and molecular dynamics simulations study,” Journal of Molecular Graphics & Modelling, 66 (2016) 99–107.
  • [51] I.E. Orhan, F.S.S. Deniz, R.E. Salmas, S. Durdagi, F. Epifano, S. Genovese, S. Fiorito, “Combined molecular modeling and cholinesterase inhibition studies on some natural and semisynthetic O-alkylcoumarin derivatives,” Bioorganic Chemistry, 84 (2019) 355–362.
  • [51] I.E. Orhan, F.S.S. Deniz, R.E. Salmas, S. Durdagi, F. Epifano, S. Genovese, S. Fiorito, “Combined molecular modeling and cholinesterase inhibition studies on some natural and semisynthetic O-alkylcoumarin derivatives,” Bioorganic Chemistry, 84 (2019) 355–362.
  • [52] I.E. Orhan, D. Jedrejek, F.S. Senol, R.E. Salmas, S. Durdagi, I. Kowalska, L. Pecio, W. Oleszek, “Molecular modeling and in vitro approaches towards cholinesterase inhibitory effect of some natural xanthohumol, naringenin, and acyl phloroglucinol derivatives,” Phytomedicine, 42 (2018) 25–33.
  • [52] I.E. Orhan, D. Jedrejek, F.S. Senol, R.E. Salmas, S. Durdagi, I. Kowalska, L. Pecio, W. Oleszek, “Molecular modeling and in vitro approaches towards cholinesterase inhibitory effect of some natural xanthohumol, naringenin, and acyl phloroglucinol derivatives,” Phytomedicine, 42 (2018) 25–33.
  • [53] E. Pitsillou, J. Liang, C. Karagiannis, K. Ververis, K.K. Darmawan, K. Ng, A. Hung, T.C. Karagiannis, “Interaction of small molecules with the SARS-CoV-2 main protease in silico and in vitro validation of potential lead compounds using an enzyme-linked immunosorbent assay,” Computational Biology and Chemistry, 89 (2020) 1476–9271.
  • [53] E. Pitsillou, J. Liang, C. Karagiannis, K. Ververis, K.K. Darmawan, K. Ng, A. Hung, T.C. Karagiannis, “Interaction of small molecules with the SARS-CoV-2 main protease in silico and in vitro validation of potential lead compounds using an enzyme-linked immunosorbent assay,” Computational Biology and Chemistry, 89 (2020) 1476–9271.
  • [54] K. Sahin, S. Durdagi, “Identifying new piperazine-based PARP1 inhibitors using text mining and integrated molecular modeling approaches,” Journal of Biomolecular Structure & Dynamics, (2020).
  • [54] K. Sahin, S. Durdagi, “Identifying new piperazine-based PARP1 inhibitors using text mining and integrated molecular modeling approaches,” Journal of Biomolecular Structure & Dynamics, (2020).
  • [55] S. Durdagi, J.Q. Guo, J.P. Lees-Miller, S.Y. Noskov, H.J. Duff, “Structure-Guided Topographic Mapping and Mutagenesis to Elucidate Binding Sites for the Human Ether-a-Go-Go-Related Gene 1 Potassium Channel (KCNH2) Activator NS1643,” Journal of Pharmacology and Experimental Therapeutics, 342 (2012) 441–452.
  • [55] S. Durdagi, J.Q. Guo, J.P. Lees-Miller, S.Y. Noskov, H.J. Duff, “Structure-Guided Topographic Mapping and Mutagenesis to Elucidate Binding Sites for the Human Ether-a-Go-Go-Related Gene 1 Potassium Channel (KCNH2) Activator NS1643,” Journal of Pharmacology and Experimental Therapeutics, 342 (2012) 441–452.
  • [56] R. Singh, A. Gautam, S. Chandel, A. Ghosh, D. Dey, S. Roy, V. Ravichandiran, D. Ghosh, R.E. Duval, R.J. Richardson, “molecules Protease Inhibitory Effect of Natural Polyphenolic Compounds on SARS-CoV-2: An In Silico Study,” (2020).
  • [56] R. Singh, A. Gautam, S. Chandel, A. Ghosh, D. Dey, S. Roy, V. Ravichandiran, D. Ghosh, R.E. Duval, R.J. Richardson, “molecules Protease Inhibitory Effect of Natural Polyphenolic Compounds on SARS-CoV-2: An In Silico Study,” (2020).
  • [57] S. Durdagi, A. Kapou, T. Kourouli, T. Andreou, S.P. Nikas, V.R. Nahmias, D.P. Papahatjis, M.G. Papadopoulos, T. Mavromoustakos, “The application of 3D-QSAR studies for novel cannabinoid ligands substituted at the C1’ position of the alkyl side chain on the structural requirements for binding to cannabinoid receptors CB1 and CB2,” Journal of Medicinal Chemistry, 50 (2007) 2875–2885.
  • [57] S. Durdagi, A. Kapou, T. Kourouli, T. Andreou, S.P. Nikas, V.R. Nahmias, D.P. Papahatjis, M.G. Papadopoulos, T. Mavromoustakos, “The application of 3D-QSAR studies for novel cannabinoid ligands substituted at the C1’ position of the alkyl side chain on the structural requirements for binding to cannabinoid receptors CB1 and CB2,” Journal of Medicinal Chemistry, 50 (2007) 2875–2885.
  • [58] S. Durdagi, C. Koukoulitsa, A. Kapou, T. Kourouli, T. Andreou, S.P. Nikas, V.R. Nahmias, D.P. Papahatjis, M.G. Papadopoulos, T. Mavromoustakos, “Testing the 3D QSAR/ComFA-CoMSIA results of flexible bioactive compounds with molecular docking studies,” Drugs of the Future, 32 (2007) 79.
  • [58] S. Durdagi, C. Koukoulitsa, A. Kapou, T. Kourouli, T. Andreou, S.P. Nikas, V.R. Nahmias, D.P. Papahatjis, M.G. Papadopoulos, T. Mavromoustakos, “Testing the 3D QSAR/ComFA-CoMSIA results of flexible bioactive compounds with molecular docking studies,” Drugs of the Future, 32 (2007) 79.
  • [59] S. Durdagi, T. Mavromoustakos, M.G. Papadopoulos, “3D QSAR CoMFA/CoMSIA, molecular docking and molecular dynamics studies of fullerene-based HIV-1 PR inhibitors,” Bioorganic & Medicinal Chemistry Letters, 18 (2008) 6283–6289.
  • [59] S. Durdagi, T. Mavromoustakos, M.G. Papadopoulos, “3D QSAR CoMFA/CoMSIA, molecular docking and molecular dynamics studies of fullerene-based HIV-1 PR inhibitors,” Bioorganic & Medicinal Chemistry Letters, 18 (2008) 6283–6289.
  • [60] S. Durdagi, R.E. Salmas, M. Stein, M. Yurtsever, P. Seeman, “Binding Interactions of Dopamine and Apomorphine in D2High and D2Low States of Human Dopamine D2 Receptor Using Computational and Experimental Techniques,” Acs Chemical Neuroscience, 7 (2016) 185–195.
  • [60] S. Durdagi, R.E. Salmas, M. Stein, M. Yurtsever, P. Seeman, “Binding Interactions of Dopamine and Apomorphine in D2High and D2Low States of Human Dopamine D2 Receptor Using Computational and Experimental Techniques,” Acs Chemical Neuroscience, 7 (2016) 185–195.
  • [61] S. Durdagi, C.T. Supuran, T.A. Strom, N. Doostdar, M.K. Kumar, A.R. Barron, T. Mavromoustakos, M.G. Papadopoulos, “In Silico Drug Screening Approach for the Design of Magic Bullets: A Successful Example with Anti-HIV Fullerene Derivatized Amino Acids,” Journal of Chemical Information and Modeling, 49 (2009) 1139–1143.
  • [61] S. Durdagi, C.T. Supuran, T.A. Strom, N. Doostdar, M.K. Kumar, A.R. Barron, T. Mavromoustakos, M.G. Papadopoulos, “In Silico Drug Screening Approach for the Design of Magic Bullets: A Successful Example with Anti-HIV Fullerene Derivatized Amino Acids,” Journal of Chemical Information and Modeling, 49 (2009) 1139–1143.
  • [62] J. Iqbal, M. Al-Rashida, S. Durdagi, V. Alterio, A. Di Fiore, “Recent Developments of Carbonic Anhydrase Inhibitors as Potential Drugs,” Biomed Research International, (2015).
  • [62] J. Iqbal, M. Al-Rashida, S. Durdagi, V. Alterio, A. Di Fiore, “Recent Developments of Carbonic Anhydrase Inhibitors as Potential Drugs,” Biomed Research International, (2015).
  • [63] G. Kayik, N.S. Tuzun, S. Durdagi, “Investigation of PDE5/PDE6 and PDE5/PDE11 selective potent tadalafil-like PDE5 inhibitors using combination of molecular modeling approaches, molecular fingerprint-based virtual screening protocols and structure-based pharmacophore development,” Journal of Enzyme Inhibition and Medicinal Chemistry, 32 (2017) 311–330.
  • [63] G. Kayik, N.S. Tuzun, S. Durdagi, “Investigation of PDE5/PDE6 and PDE5/PDE11 selective potent tadalafil-like PDE5 inhibitors using combination of molecular modeling approaches, molecular fingerprint-based virtual screening protocols and structure-based pharmacophore development,” Journal of Enzyme Inhibition and Medicinal Chemistry, 32 (2017) 311–330.
  • [64] S. Adem, V. Eyupoglu, I. Sarfraz, A. Rasul, M. Ali, “Identification of Potent COVID-19 Main Protease (Mpro) Inhibitors from Natural Polyphenols: An in Silico Strategy Unveils a Hope against CORONA,” (2020).
  • [64] S. Adem, V. Eyupoglu, I. Sarfraz, A. Rasul, M. Ali, “Identification of Potent COVID-19 Main Protease (Mpro) Inhibitors from Natural Polyphenols: An in Silico Strategy Unveils a Hope against CORONA,” (2020).
  • [65] K.F. Azim, S.R. Ahmed, A. Banik, M.M.R. Khan, A. Deb, S.R. Somana, “Screening and druggability analysis of some plant metabolites against SARS-CoV-2: An integrative computational approach,” Informatics in Medicine Unlocked, 20 (2020) 100367.
  • [65] K.F. Azim, S.R. Ahmed, A. Banik, M.M.R. Khan, A. Deb, S.R. Somana, “Screening and druggability analysis of some plant metabolites against SARS-CoV-2: An integrative computational approach,” Informatics in Medicine Unlocked, 20 (2020) 100367.
  • [66] P. Bellavite, A. Donzelli, “Hesperidin and SARS-CoV-2: New light on the healthy function of citrus fruits,” Antioxidants, 9 (2020) 1–18.
  • [66] P. Bellavite, A. Donzelli, “Hesperidin and SARS-CoV-2: New light on the healthy function of citrus fruits,” Antioxidants, 9 (2020) 1–18.
  • [67] S.A. Cherrak, H. Merzouk, N. Mokhtari-Soulimane, “Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies,” PLoS ONE, 15 (2020) 1–14.
  • [67] S.A. Cherrak, H. Merzouk, N. Mokhtari-Soulimane, “Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies,” PLoS ONE, 15 (2020) 1–14.
  • [68] C.A. Ramos-Guzmán, J.J. Ruiz-Pernía, I. Tuñón, “Unraveling the SARS-CoV-2 Main Protease Mechanism Using Multiscale Methods,” ACS Catalysis, 10 (2020) 12544–12554.
  • [68] C.A. Ramos-Guzmán, J.J. Ruiz-Pernía, I. Tuñón, “Unraveling the SARS-CoV-2 Main Protease Mechanism Using Multiscale Methods,” ACS Catalysis, 10 (2020) 12544–12554.
  • [69] M. Russo, S. Moccia, C. Spagnuolo, I. Tedesco, G.L. Russo, “Roles of flavonoids against coronavirus infection,” Chemico-Biological Interactions, 328 (2020) 109211.
  • [69] M. Russo, S. Moccia, C. Spagnuolo, I. Tedesco, G.L. Russo, “Roles of flavonoids against coronavirus infection,” Chemico-Biological Interactions, 328 (2020) 109211.
  • [70] Z. Xu, L. Yang, X. Zhang, Q. Zhang, Z. Yang, Y. Liu, S. Wei, W. Liu, “Discovery of Potential Flavonoid Inhibitors Against COVID-19 3CL Proteinase Based on Virtual Screening Strategy,” Frontiers in Molecular Biosciences, 7 (2020) 1–8.
  • [70] Z. Xu, L. Yang, X. Zhang, Q. Zhang, Z. Yang, Y. Liu, S. Wei, W. Liu, “Discovery of Potential Flavonoid Inhibitors Against COVID-19 3CL Proteinase Based on Virtual Screening Strategy,” Frontiers in Molecular Biosciences, 7 (2020) 1–8.
  • [71] F. Li, A.P. Michelson, R. Foraker, M. Zhan, P.R.O. Payne, “Computational analysis to repurpose drugs for COVID-19 based on transcriptional response of host cells to SARS-CoV-2,” BMC Medical Informatics and Decision Making, 21 (2021) 1–13.
  • [71] F. Li, A.P. Michelson, R. Foraker, M. Zhan, P.R.O. Payne, “Computational analysis to repurpose drugs for COVID-19 based on transcriptional response of host cells to SARS-CoV-2,” BMC Medical Informatics and Decision Making, 21 (2021) 1–13.
  • [72] R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic, D.T. Mainz, M.P. Repasky, E.H. Knoll, M. Shelley, J.K. Perry, D.E. Shaw, P. Francis, P.S. Shenkin, “Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy,” Journal of Medicinal Chemistry, 47 (2004) 1739–1749.
  • [72] R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic, D.T. Mainz, M.P. Repasky, E.H. Knoll, M. Shelley, J.K. Perry, D.E. Shaw, P. Francis, P.S. Shenkin, “Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy,” Journal of Medicinal Chemistry, 47 (2004) 1739–1749.
  • [73] R.A. Friesner, R.B. Murphy, M.P. Repasky, L.L. Frye, J.R. Greenwood, T.A. Halgren, P.C. Sanschagrin, D.T. Mainz, “Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes,” Journal of Medicinal Chemistry, 49 (2006) 6177–6196.
  • [73] R.A. Friesner, R.B. Murphy, M.P. Repasky, L.L. Frye, J.R. Greenwood, T.A. Halgren, P.C. Sanschagrin, D.T. Mainz, “Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes,” Journal of Medicinal Chemistry, 49 (2006) 6177–6196.
  • [74] A.D. Mesecar, “Structure of COVID-19 main protease bound to potent broad-spectrum non-covalent inhibitor X77,” (2020).
  • [74] A.D. Mesecar, “Structure of COVID-19 main protease bound to potent broad-spectrum non-covalent inhibitor X77,” (2020).
  • [75] T. Sterling, J.J. Irwin, “ZINC 15 – Ligand Discovery for Everyone,” Journal of Chemical Information and Modeling, 55 (2015) 2324–2337.
  • [75] T. Sterling, J.J. Irwin, “ZINC 15 – Ligand Discovery for Everyone,” Journal of Chemical Information and Modeling, 55 (2015) 2324–2337.
  • [76] “Schrödinger LLC. New York, USA:,” Schrodinger Inc., (2018).
  • [76] “Schrödinger LLC. New York, USA:,” Schrodinger Inc., (2018).
  • [77] T.A. Halgren, R.B. Murphy, R.A. Friesner, H.S. Beard, L.L. Frye, W.T. Pollard, J.L. Banks, “Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening,” Journal of Medicinal Chemistry, 47 (2004) 1750–1759.
  • [77] T.A. Halgren, R.B. Murphy, R.A. Friesner, H.S. Beard, L.L. Frye, W.T. Pollard, J.L. Banks, “Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening,” Journal of Medicinal Chemistry, 47 (2004) 1750–1759.
  • [78] H. Yang, M. Yang, Y. Ding, Y. Liu, Z. Lou, Z. Zhou, L. Sun, L. Mo, S. Ye, H. Pang, G.F. Gao, K. Anand, M. Bartlam, R. Hilgenfeld, Z. Rao, “The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor,” Proceedings of the National Academy of Sciences of the United States of America, 100 (2003) 13190–13195.
  • [78] H. Yang, M. Yang, Y. Ding, Y. Liu, Z. Lou, Z. Zhou, L. Sun, L. Mo, S. Ye, H. Pang, G.F. Gao, K. Anand, M. Bartlam, R. Hilgenfeld, Z. Rao, “The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor,” Proceedings of the National Academy of Sciences of the United States of America, 100 (2003) 13190–13195.
  • [79] Q. Zhao, S. Li, F. Xue, Y. Zou, C. Chen, M. Bartlam, Z. Rao, “Structure of the Main Protease from a Global Infectious Human Coronavirus, HCoV-HKU1,” Journal of Virology, 82 (2008) 8647–8655.
  • [79] Q. Zhao, S. Li, F. Xue, Y. Zou, C. Chen, M. Bartlam, Z. Rao, “Structure of the Main Protease from a Global Infectious Human Coronavirus, HCoV-HKU1,” Journal of Virology, 82 (2008) 8647–8655.
  • [80] F. Wang, C. Chen, W. Tan, K. Yang, H. Yang, “Structure of Main Protease from Human Coronavirus NL63: Insights for Wide Spectrum Anti-Coronavirus Drug Design,” Scientific Reports, 6 (2016) 1–12.
  • [80] F. Wang, C. Chen, W. Tan, K. Yang, H. Yang, “Structure of Main Protease from Human Coronavirus NL63: Insights for Wide Spectrum Anti-Coronavirus Drug Design,” Scientific Reports, 6 (2016) 1–12.
  • [81] R. Yoshino, N. Yasuo, M. Sekijima, “Identification of key interactions between SARS ‑ CoV ‑ 2 main protease and inhibitor drug candidates,” Scientific Reports, (2020) 1–8.
  • [81] R. Yoshino, N. Yasuo, M. Sekijima, “Identification of key interactions between SARS ‑ CoV ‑ 2 main protease and inhibitor drug candidates,” Scientific Reports, (2020) 1–8.
  • [82] H. Yang, W. Xie, X. Xue, K. Yang, J. Ma, W. Liang, Q. Zhao, Z. Zhou, D. Pei, J. Ziebuhr, R. Hilgenfeld, K.Y. Yuen, L. Wong, G. Gao, S. Chen, Z. Chen, D. Ma, M. Bartlam, Z. Rao, “Design of Wide-Spectrum Inhibitors Targeting Coronavirus Main Proteases,” Plos Biol., 3 (2005) e324–e324.
  • [82] H. Yang, W. Xie, X. Xue, K. Yang, J. Ma, W. Liang, Q. Zhao, Z. Zhou, D. Pei, J. Ziebuhr, R. Hilgenfeld, K.Y. Yuen, L. Wong, G. Gao, S. Chen, Z. Chen, D. Ma, M. Bartlam, Z. Rao, “Design of Wide-Spectrum Inhibitors Targeting Coronavirus Main Proteases,” Plos Biol., 3 (2005) e324–e324.
  • [83] L. Lecoq, C. Bougault, J.E. Hugonnet, C. Veckerlé, O. Pessey, M. Arthur, J.P. Simorre, “Dynamics induced by β-lactam antibiotics in the active site of Bacillus subtilis l,d-transpeptidase,” Structure, 20 (2012) 850–861.
  • [83] L. Lecoq, C. Bougault, J.E. Hugonnet, C. Veckerlé, O. Pessey, M. Arthur, J.P. Simorre, “Dynamics induced by β-lactam antibiotics in the active site of Bacillus subtilis l,d-transpeptidase,” Structure, 20 (2012) 850–861.
  • [84] C.S. Ealand, E.E. Machowski, B.D. Kana, “β-lactam resistance: The role of low molecular weight penicillin binding proteins, β-lactamases and ld-transpeptidases in bacteria associated with respiratory tract infections,” IUBMB Life, 70 (2018) 855–868.
  • [84] C.S. Ealand, E.E. Machowski, B.D. Kana, “β-lactam resistance: The role of low molecular weight penicillin binding proteins, β-lactamases and ld-transpeptidases in bacteria associated with respiratory tract infections,” IUBMB Life, 70 (2018) 855–868.
  • [85] Z. Jin, Y. Zhao, Y. Sun, B. Zhang, H. Wang, Y. Wu, Y. Zhu, C. Zhu, T. Hu, X. Du, Y. Duan, J. Yu, X. Yang, X. Yang, K. Yang, X. Liu, L.W. Guddat, G. Xiao, L. Zhang, H. Yang, Z. Rao, “Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur,” Nature Structural and Molecular Biology, 27 (2020) 529–532.
  • [85] Z. Jin, Y. Zhao, Y. Sun, B. Zhang, H. Wang, Y. Wu, Y. Zhu, C. Zhu, T. Hu, X. Du, Y. Duan, J. Yu, X. Yang, X. Yang, K. Yang, X. Liu, L.W. Guddat, G. Xiao, L. Zhang, H. Yang, Z. Rao, “Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur,” Nature Structural and Molecular Biology, 27 (2020) 529–532.
  • [86] G.J. Lockbaum, A.C. Reyes, J.M. Lee, R. Tilvawala, E.A. Nalivaika, A. Ali, N.K. Yilmaz, P.R. Thompson, C.A. Schiffer, “Crystal structure of sars-cov-2 main protease in complex with the non-covalent inhibitor ml188,” Viruses, 13 (2021).
  • [86] G.J. Lockbaum, A.C. Reyes, J.M. Lee, R. Tilvawala, E.A. Nalivaika, A. Ali, N.K. Yilmaz, P.R. Thompson, C.A. Schiffer, “Crystal structure of sars-cov-2 main protease in complex with the non-covalent inhibitor ml188,” Viruses, 13 (2021).
  • [87] S. Günther, P.Y. A Reinke, Y. Fernández-García, J. Lieske, T.J. Lane, H.M. Ginn, F.H. M Koua, C. Ehrt, W. Ewert, D. Oberthuer, O. Yefanov, S. Meier, K. Lorenzen, B. Krichel, J.-D. Kopicki, L. Gelisio, W. Brehm, I. Dunkel, B. Seychell, H. Gieseler, B. Norton-Baker, B. Escudero-Pérez, M. Domaracky, S. Saouane, A. Tolstikova, T.A. White, A. Hänle, M. Groessler, H. Fleckenstein, F. Trost, M. Galchenkova, Y. Gevorkov, C. Li, S. Awel, A. Peck, M. Barthelmess, F. Schlünzen, P. Lourdu Xavier, N. Werner, H. Andaleeb, N. Ullah, S. Falke, V. Srinivasan, B. Alves França, M. Schwinzer, H. Brognaro, C. Rogers, D. Melo, J.J. Zaitseva-Doyle, J. Knoska, G.E. Peña-Murillo, A. Rahmani Mashhour, V. Hennicke, P. Fischer, J. Hakanpää, J. Meyer, P. Gribbon, B. Ellinger, M. Kuzikov, M. Wolf, A.R. Beccari, C. Uetrecht, R. Cox, A. Zaliani, T. Beck, M. Rarey, S. Günther, D. Turk, W. Hinrichs, H.N. Chapman, A.R. Pearson, C. Betzel, A. Meents, “X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease,” Jonathan Pletzer-Zelgert, 18 (n.d.) 22.
  • [87] S. Günther, P.Y. A Reinke, Y. Fernández-García, J. Lieske, T.J. Lane, H.M. Ginn, F.H. M Koua, C. Ehrt, W. Ewert, D. Oberthuer, O. Yefanov, S. Meier, K. Lorenzen, B. Krichel, J.-D. Kopicki, L. Gelisio, W. Brehm, I. Dunkel, B. Seychell, H. Gieseler, B. Norton-Baker, B. Escudero-Pérez, M. Domaracky, S. Saouane, A. Tolstikova, T.A. White, A. Hänle, M. Groessler, H. Fleckenstein, F. Trost, M. Galchenkova, Y. Gevorkov, C. Li, S. Awel, A. Peck, M. Barthelmess, F. Schlünzen, P. Lourdu Xavier, N. Werner, H. Andaleeb, N. Ullah, S. Falke, V. Srinivasan, B. Alves França, M. Schwinzer, H. Brognaro, C. Rogers, D. Melo, J.J. Zaitseva-Doyle, J. Knoska, G.E. Peña-Murillo, A. Rahmani Mashhour, V. Hennicke, P. Fischer, J. Hakanpää, J. Meyer, P. Gribbon, B. Ellinger, M. Kuzikov, M. Wolf, A.R. Beccari, C. Uetrecht, R. Cox, A. Zaliani, T. Beck, M. Rarey, S. Günther, D. Turk, W. Hinrichs, H.N. Chapman, A.R. Pearson, C. Betzel, A. Meents, “X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease,” Jonathan Pletzer-Zelgert, 18 (n.d.) 22.
  • [88] Y. Erdogdu, O. Unsalan, D. Sajan, M.T. Gulluoglu, “Structural conformations and vibrational spectral study of chloroflavone with density functional theoretical simulations,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 76 (2010) 130–136.
  • [88] Y. Erdogdu, O. Unsalan, D. Sajan, M.T. Gulluoglu, “Structural conformations and vibrational spectral study of chloroflavone with density functional theoretical simulations,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 76 (2010) 130–136.
  • [89] O. Unsalan, Y. Erdogdu, M.T. Gulluoglu, “FT-Raman and FT-IR spectral and quantum chemical studies on some flavonoid derivatives: Baicalein and Naringenin,” Journal of Raman Spectroscopy, 40 (2009) 562–570.
  • [89] O. Unsalan, Y. Erdogdu, M.T. Gulluoglu, “FT-Raman and FT-IR spectral and quantum chemical studies on some flavonoid derivatives: Baicalein and Naringenin,” Journal of Raman Spectroscopy, 40 (2009) 562–570.
  • [90] Y. Erdogdu, O. Unsalan, M. Amalanathan, I. Hubert Joe, “Infrared and Raman spectra, vibrational assignment, NBO analysis and DFT calculations of 6-aminoflavone,” Journal of Molecular Structure, 980 (2010) 24–30.
  • [90] Y. Erdogdu, O. Unsalan, M. Amalanathan, I. Hubert Joe, “Infrared and Raman spectra, vibrational assignment, NBO analysis and DFT calculations of 6-aminoflavone,” Journal of Molecular Structure, 980 (2010) 24–30.
  • [91] Y. Erdogdu, O. Unsalan, M. Tahir Gulluoglu, “FT-Raman, FT-IR spectral and DFT studies on 6, 8-dichloroflavone and 6,8-dibromoflavone,” Journal of Raman Spectroscopy, 41 (2010) 820–828.
  • [91] Y. Erdogdu, O. Unsalan, M. Tahir Gulluoglu, “FT-Raman, FT-IR spectral and DFT studies on 6, 8-dichloroflavone and 6,8-dibromoflavone,” Journal of Raman Spectroscopy, 41 (2010) 820–828.
  • [92] G. Varsanyi, Assignments for vibrational spectra of seven hundred benzene derivatives, Wiley, New York, 1974.
  • [92] G. Varsanyi, Assignments for vibrational spectra of seven hundred benzene derivatives, Wiley, New York, 1974.
  • [93] J. Mohan, Organic Spectroscopy: Principles and Applications, Alpha Science Internatinoal, 2004.
  • [93] J. Mohan, Organic Spectroscopy: Principles and Applications, Alpha Science Internatinoal, 2004.
  • [94] M. Heneczkowski, M. Kopacz, D. Nowak, A. Kuźniar, “Infrared spectrum analysis of some flavonoids,” Acta Poloniae Pharmaceutica - Drug Research, 58 (2001) 415–420.
  • [94] M. Heneczkowski, M. Kopacz, D. Nowak, A. Kuźniar, “Infrared spectrum analysis of some flavonoids,” Acta Poloniae Pharmaceutica - Drug Research, 58 (2001) 415–420.
  • [95] J. Hanuza, P. Godlewska, E. Kucharska, M. Ptak, M. Kopacz, M. Mączka, K. Hermanowicz, L. Macalik, “Molecular structure and vibrational spectra of quercetin and quercetin-5’-sulfonic acid,” Vibrational Spectroscopy, 88 (2017) 94–105.
  • [95] J. Hanuza, P. Godlewska, E. Kucharska, M. Ptak, M. Kopacz, M. Mączka, K. Hermanowicz, L. Macalik, “Molecular structure and vibrational spectra of quercetin and quercetin-5’-sulfonic acid,” Vibrational Spectroscopy, 88 (2017) 94–105.
There are 190 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Article
Authors

Tugba Ertan-bolelli 0000-0001-9740-7023

Kayhan Bolelli 0000-0002-2179-997X

Cisem Altunayar-unsalan 0000-0001-6479-4223

Ozan Ünsalan 0000-0001-5736-7530

Bergüzar Yılmaz

Early Pub Date April 30, 2023
Publication Date May 15, 2023
Submission Date July 31, 2022
Published in Issue Year 2023 Volume: 7 Issue: 2

Cite

APA Ertan-bolelli, T., Bolelli, K., Altunayar-unsalan, C., Ünsalan, O., et al. (2023). Effects of flavonoids on SARS–CoV–2 main protease (6W63): A molecular docking study. Turkish Computational and Theoretical Chemistry, 7(2), 34-57. https://doi.org/10.33435/tcandtc.1151841
AMA Ertan-bolelli T, Bolelli K, Altunayar-unsalan C, Ünsalan O, Yılmaz B. Effects of flavonoids on SARS–CoV–2 main protease (6W63): A molecular docking study. Turkish Comp Theo Chem (TC&TC). May 2023;7(2):34-57. doi:10.33435/tcandtc.1151841
Chicago Ertan-bolelli, Tugba, Kayhan Bolelli, Cisem Altunayar-unsalan, Ozan Ünsalan, and Bergüzar Yılmaz. “Effects of Flavonoids on SARS–CoV–2 Main Protease (6W63): A Molecular Docking Study”. Turkish Computational and Theoretical Chemistry 7, no. 2 (May 2023): 34-57. https://doi.org/10.33435/tcandtc.1151841.
EndNote Ertan-bolelli T, Bolelli K, Altunayar-unsalan C, Ünsalan O, Yılmaz B (May 1, 2023) Effects of flavonoids on SARS–CoV–2 main protease (6W63): A molecular docking study. Turkish Computational and Theoretical Chemistry 7 2 34–57.
IEEE T. Ertan-bolelli, K. Bolelli, C. Altunayar-unsalan, O. Ünsalan, and B. Yılmaz, “Effects of flavonoids on SARS–CoV–2 main protease (6W63): A molecular docking study”, Turkish Comp Theo Chem (TC&TC), vol. 7, no. 2, pp. 34–57, 2023, doi: 10.33435/tcandtc.1151841.
ISNAD Ertan-bolelli, Tugba et al. “Effects of Flavonoids on SARS–CoV–2 Main Protease (6W63): A Molecular Docking Study”. Turkish Computational and Theoretical Chemistry 7/2 (May 2023), 34-57. https://doi.org/10.33435/tcandtc.1151841.
JAMA Ertan-bolelli T, Bolelli K, Altunayar-unsalan C, Ünsalan O, Yılmaz B. Effects of flavonoids on SARS–CoV–2 main protease (6W63): A molecular docking study. Turkish Comp Theo Chem (TC&TC). 2023;7:34–57.
MLA Ertan-bolelli, Tugba et al. “Effects of Flavonoids on SARS–CoV–2 Main Protease (6W63): A Molecular Docking Study”. Turkish Computational and Theoretical Chemistry, vol. 7, no. 2, 2023, pp. 34-57, doi:10.33435/tcandtc.1151841.
Vancouver Ertan-bolelli T, Bolelli K, Altunayar-unsalan C, Ünsalan O, Yılmaz B. Effects of flavonoids on SARS–CoV–2 main protease (6W63): A molecular docking study. Turkish Comp Theo Chem (TC&TC). 2023;7(2):34-57.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)