Research Article
BibTex RIS Cite
Year 2024, Volume: 8 Issue: 1, 10 - 39, 15.01.2024
https://doi.org/10.33435/tcandtc.1196019

Abstract

References

  • [1] M. Lyu, G. Fan, G. Xiao, T. Wang, D. Xu, J. Gao, S. Ge, Q. Li, Y. Ma, H. Zhang, J. Wang, Y Cui, J. Zhang, Y. Zhu, B. Zhang, Traditional Chinese medicine in COVID-19. Acta Pharm. Sin. B 11(11) (2021) 3337e3363. DOI: 10.1016/j.apsb.2021.09.008.
  • [2] S.V. Stoddard, S.D. Stoddard, B.K. Oelkers, K. Fitts, K. Whalum, K. Whalum, A.D. Hemphill, J. Manikonda, L.M. Martinez, E.G. Riley, C.M. Roof, N. Sarwar, D.M. Thomas, E. Ulmer, F.E. Wallace, P. Pandey, S. Roy, Optimization Rules for SARS-CoV-2 Mpro Antivirals: Ensemble Docking and Exploration of the Coronavirus Protease Active Site. Viruses. 12 (2020) 942. DOI: 10.3390/v12090942.
  • [3] H., Karataş, B., Tüzün, Z., Kökbudak, Could pyrimidine derivative be effective against Omicron of SARS-CoV-2?. BRATISLAVA MEDICAL JOURNAL-BRATISLAVSKE LEKARSKE LISTY 123(7) (2022) 505-513.
  • [4] B., Tüzün, K., Sayin, H., Ataseven, Could Momordica Charantia Be Effective In The Treatment of COVID19?. Cumhuriyet Science Journal, 43(2) (2022) 211-220.
  • [5] E.I. Edache, A. Uzairu, P.A. Mamza, G.A. Shallengwa, QSAR, homology modeling, and docking simulation on SARS‑CoV‑2 and pseudomonas aeruginosa inhibitors, ADMET, and molecular dynamic simulations to find a possible oral lead candidate. J. Genet. Eng. Biotechnol. 20 (2022) 88. DOI: 10.1186/S43141-022-00362-Z.
  • [6] Md.M. Rahman, T. Saha, K.J. Islam, R.H. Suman, S. Biswas, E.U. Rahat, Md.R. Hossen, R. Islam, Md.N. Hossain, A. Al Mamun, M. Khan, Md.A. Ali Md. M.A. Halim, Virtual screening, molecular dynamics and structure–activity relationship studies to identify potent approved drugs for Covid-19 treatment, J. Biomol. Struct. Dyn. (2020). DOI: 10.1080/07391102.2020.1794974.
  • [7] K. Mou, M. Abdalla, D.Q. Wei, M.T. Khan, M.S. Lodhi, D.B. Darwish, M. Sharaf, X. Tu, Emerging mutations in envelope protein of SARS-CoV-2 and their effect on thermodynamic properties. Inform. Med. Unlocked. 25 (2021) 100675. https://doi.org/10.1016/j.imu.2021.100675.
  • [8] A. Ghosh, M. Chakraborty, A. Chandra, M.P. Alam, Structure-activity relationship (SAR) and molecular dynamics study of withaferin-A fragment derivatives as potential therapeutic lead against main protease (Mpro) of SARS-CoV-2. J Mol Model. 27 (2021) 97. DOI: 10.1007/S00894-021-04703-6.
  • [9] World Health Organization. Report on global sexually transmitted infection surveillance, 2018, p. 1-62.
  • [10] P.D.Tamma. S.E. Cosgrove, L.L. Maragakis, Combination Therapy for Treatment of Infections with Gram-Negative Bacteria. Clin. Microbiol. Rev. 25 (2012) 450–470. DOI: 10.1128/CMR.05041-11.
  • [11] E.I. Edache, A. Uzairu, P.A. Mamza, G.A. Shallengwa, Docking Simulations and Virtual Screening to find Novel Ligands for T3S in Yersinia pseudotuberculosis YPIII, A drug target for type III secretion (T3S) in the Gram-negative pathogen Yersinia pseudotuberculosis. Chem Rev Lett. 4 (2021) 130-144. DOI: 10.22034/CRL.2021.254804.1088.
  • [12] E. Lanjouw, S. Ouburg, H.J. De Vries, A. Stary, K. Radcliffe, M. Unemo, 2015 European guideline on the management of Chlamydia trachomatis infections. Int. J. STD AIDS. 27(5) (2016) 333-348. DOI: 10.1177/0956462415618837.
  • [13] K.A. Workowski, S.M. Berman, Centers for Disease Control and Prevention sexually transmitted disease treatment guidelines. Clin. Infect. Dis. 53(suppl_3) (2011) S59-S63. https://doi.org/10.1093/cid/cir694.
  • [14] H.C. Wiesenfeld, Screening for Chlamydia trachomatis infections in women. N. Engl. J. Med. NEW. 376(8) (2017) 765-773, DOI: 10.1056/NEJMcp1412935.
  • [15] H.C. Wiesenfeld, S.L. Hillier, M.A. Krohn, D.V. Landers, R.L. Sweet, Bacterial vaginosis is a strong predictor of Neisseria gonorrhoeae and Chlamydia trachomatis infection. Clin Infect Dis. 36(5) (2003) 663-668. DOI: 10.1086/367658.
  • [16] K.A. Redgrove, E.A. McLaughlin, The Role of the Immune Response in Chlamydia trachomatis Infection of the Male Genital Tract: A Double-Edged Sword. Front Immunol. 5 (2014) 534, DOI: 10.3389/fimmu.2014.00534.
  • [17] E.I. Edache, A. Uzairu, P.A. Mamza, G.A. Shallengwa, Theoretical Investigation of the Cooperation of Iminoguanidine with the Enzymes-Binding Domain of Covid-19 and Bacterial Lysozyme Inhibitors and their Pharmacokinetic Properties. J. Mex. Chem. Soc. 66(4) (2022) 513-542. DOI: http://dx.doi.org/10.29356/jmcs.v66i4.1726.
  • [18] H., Sadeghi-Nejad, M., Wasserman, W., Weidner, D., Richardson, D., Goldmeier, Sexually transmitted diseases and sexual function. J. Sex. Med. 7(1) (2010) 389-413, DOI:10.1111/j.1743-6109.2009.01622.x.
  • [19] C., Brookings, D., Goldmeier, H., Sadeghi-Nejad, Sexually transmitted infections and sexual function in relation to male fertility. Korean J. Urol. 54(3) (2013) 149-56, DOI: 10.4111/kju.2013.54.3.149.
  • [20] A., González-Sánchez, J. J., Reyes-Lagos, Peña-Castillo, M.A., Nirmalkar, K., García-Mena, J. and Pacheco-López, G., Vaginal Microbiota Is Stable and Mainly Dominated by Lactobacillus at Third Trimester of Pregnancy and Active Childbirth: A Longitudinal Study of Ten Mexican Women. Current Microbiology, 79(8) (2022) 1-8.
  • [21] A. S., Roy, M. I. Q., Tonmoy, A., Fariha, I., Hami, I. K., Afif, M. A., Munim, M. et al. Multi-epitope Based Peptide Vaccine Design Using Three Structural Proteins (S, E, and M) of SARS-CoV-2: An In Silico Approach. J. Appl. Biotechnol. Rep. 8(2) (2021) 146-154, DOI:10.30491/JABR.2020.253820.1303.
  • [22] S. A., Kohlhoff, M. R., Hammerschlag, M. Treatment of chlamydial infections: 2014 update. Expert Opin. Pharmacother. 16(2) (2015) 205-212, DOI: 10.1517/14656566.2015.999041.
  • [23] E. I., Edache, A. Uzairu, G. A., Shallengwa, P. A., Mamza, Virtual screening, pharmacokinetics, and molecular dynamics simulations studies to identify potent approved drugs for Chlamydia trachomatis treatment. Futur J Pharm Sci. 7 (2021) 220, DOI: 10.1186/S43094-021-00367-4.
  • [24] E. S. Okeke, C. V. Olovo, N. E. Nkwoemeka, C. O. Okoye, C. E. I. Nwankwo, C. J. Onu, Microbial ecology and evolution is key to pandemics: using the coronavirus model to mitigate future public health challenges. Heliyon. 8(5) (2022) e09449. DOI: 10.1016/j.heliyon.2022.e09449.
  • [25] D. Kang, A. V. Revtovich, A. E. Deyanov, N. V. Kirienko, Pyoverdine inhibitors and gallium nitrate synergistically affect Pseudomonas aeruginosa. MSphere. 6 (2021) e00401-21. DOI: 10.1128/MSPHERE.00401-21.
  • [26] L. Scotti, M. T. Scotti, Computer aided drug design studies in the discovery of secondary metabolites targeted against age-related neurodegenerative diseases. Curr. Top. Med. Chem. 15(21) (2015) 2239-2252. DOI: 10.2174/1568026615666150610143510.
  • [27] M.H. Baig, K. Ahmad, S. Roy, J. M. Ashraf, M. Adil, M.H. Siddiqui, S. Khan, M. A. Kamal, I. Provazník, I. Choi, Computer Aided Drug Design: Success and Limitations. Curr. Pharm. Des. 22(5) (2016) 572-581. DOI: 10.2174/1381612822666151125000550.
  • [28] A. B. Gurung, M. A. Ali, J. Lee, M. A. Farah, K. M. Al-Anazi, An Updated Review of Computer-Aided Drug Design and Its Application to COVID-19. Biomed Res. Int. 2021 (2021) 1-18. DOI: 10.1155/2021/8853056.
  • [29] S. Belaidi, O. Youcef, T. Salah, T. Lanez, In Silico Approach for Conformational Analysis, Drug-Likeness Properties and Structure Activity Relationships of 12-Membered Macrolides. J. Comput. Theor. Nanosci., 12 (2015) 1–7. DOI:10.1166/jctn.2015.4451.
  • [30] E. I. Edache, H. U. Hambali, D. E. Arthur, A. Oluwaseye, O. C. Chinweuba, In-silico Discovery and Simulated Selection of Multi-target Anti-HIV-1 Inhibitors. Int Res J Pure Appl Chem. 11 (2016) 1-15. DOI: 10.9734/IRJPAC/2016/22863.
  • [31] M. J.; Frisch, Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; aramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, J. B.; Foresman, J. V.; Ortiz, J.; Cioslowski, D. J., Fox: Wallingford CT, 2013. Gaussian 09, Revision A.02.
  • [32] A. D. Becke, Density-functional thermochemistry 3. The role of exact exchange. J. Chem. Phys. 1993, 98 (1993) 5648. DOI: 10.1063/1.464913.
  • [33] C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter. 37 (1988) 785–789, DOI: 10.1103/physrevb.37.785.
  • [34] C. W. Yap, PaDEL-Descriptor: An open-source software to calculate molecular descriptors and fingerprints. J Comput Chem. 32 (2011) 1466–1474. DOI:10.1002/jcc.21707.
  • [35] P. Gramatica, N. Chirico, E. Papa, S. Cassani, S.; Kovarich, QSARINS: A New Software for the Development, Analysis, and Validation of QSAR MLR Models. J. Comput. Chem. 34 (2013) 2121–2132. DOI: 10.1002/jcc.23361.
  • [36] P. Gramatica, S. Cassani, N. Chirico, QSARINS-Chem: Insubria Datasets and New QSAR/QSPR Models for Environmental Pollutants in QSARINS. J.Comput.Chem. 35 (2014) 1036–1044. DOI:10.1002/jcc.23576.
  • [37] N. Chirico, A. Sangion, P. Gramatica, L. Bertato, I. Casartelli, E. Papa, QSARINS-Chem standalone version: A new platform-independent software to profile chemicals for physico-chemical properties, fate, and toxicity. J Comput Chem. 42(20) (2021) 1–9. DOI: 10.1002/JCC.26551.
  • [38] A. Golbraikh, A. Tropsha, Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. Mol. Divers. 5(4) (2002) 231-243. DOI: 10.1023/A:1021372108686.
  • [39] C. Delevoye, M. Nilges, A. Dautry-Varsat, A. Subtil, Conservation of the biochemical properties of IncA from Chlamydia trachomatis and Chlamydia caviae: oligomerization of IncA mediates interaction between facing membranes J. Biol. Chem. 279(45) (2004) 46896-46906. DOI: 10.1074/jbc.M407227200.
  • [40] S.F. Altschul, W. Gish, W. Miller, E.W. Myers D.J. Lipman, Basic local alignment search tool. J. Mol. Biol. 215(3) (1990) 403-410. DOI: 10.1016/S0022-2836(05)80360-2.
  • [41] S. Kumar, G. Stecher, M. Li, C. Knyaz, K. Tamura, MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol. 35 (2018) 1547-1549. DOI: 10.1093/molbev/msy096.
  • [42] P.H.A. Sneath, R.R. Sokal, Numerical Taxonomy. Freeman, San Francisco: (1973) 1.
  • [43] E. Zuckerkandl, L. PaulingEvolutionary Divergence and Convergence in Proteins. In: Bryson, V. and Vogel, H.J., Eds., Evolving Genes and Proteins, Academic Press, New York: (1965) 97-166. DOI: 10.1016/B978-1-4832-2734-4.50017-6.
  • [44] B. Webb, A. Sali, Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinforma. 20(54) (2016) 5.6.1–5.6.37. DOI: 10.1002/cpbi.3.
  • [45] B. Webb, A. Sali, Protein structure modeling with MODELLER. Protein Structure Prediction. 1137 (2014) 1-15. DOI 10.1007/978-1-4939-0366-5_1.
  • [46] J.U. Bowie, R. Luthy, D. Eisenberg, “A method to identify protein sequences that fold into a known three-dimensional structure,” Science. 253(5016) (1991) 164–170. DOI: 10.1126/science.1853201.
  • [47] D. Eisenberg, R. Luthy, J.U Bowie, VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol. 277 (1997) 396–404. DOI: 10.1016/S0076-6879(97)77022-8.
  • [48] ] R.A. Laskoswki, M.W. MacArthur, D.S. Moss, J.M. Thornton, PROCHECK: a program to check the stereo chemical quality of protein structures. J Appl Cryst. 26 (1993) 283–291, DOI: 10.1107/S0021889892009944.
  • [49] S.C. Lovell, I.W. Davis, W.B. Arendall III, P.I.W. Bakker, J.M. de Word, M.G. Prisant, J.S. Richardson, D.C. Richardson, Structure validation by Cα geometry: φ,ψ and Cβ deviation. Proteins Struct. Funct. Genet. 50 (2003) 437–450. DOI: 10.1002/prot.10286.
  • [50] C. Colovos, T.O. Yeates, Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 2(9) (1993) 1511–1519. DOI: 10.1002/pro.5560020916.
  • [51] M. Wiederstein, M.J. Sippl, ProSA-web: interactive web service for the recognition of errors in three dimensional structures of proteins. Nucleic Acids Res. 35(suppl 2) (2007) W407-410. DOI:10.1093/nar/gkm290.
  • [52] P.A. Ravindranath, S. Forli, D.S. Goodsell, A.J. Olson, M.F. Sanner, AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility. PLoS Comput Biol. 11(12) (2015) e1004586. DOI:10.1371/journal.pcbi.1004586.
  • [53] J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, K. Schulten, Scalable molecular dynamics with NAMD. Journal of Computational Chemistry 26 (2005) 1781–1802. DOI: 10.1002/jcc.20289.
  • [54] W. Humphrey, A. Dalke, K. Schulten, “VMD – Visual Molecular Dynamics”, Journal of Molecular Graphics 14 (1996) 33-38. DOI: 10.1016/0263-7855(96)00018 -5.
  • [55] Q. Bai, S. Tan, T. Xu, H. Liu, J. Huang, X. Yao, MolAICal: a soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm. Briefings in Bioinformatics 00(00) (2020) 1–12. DOI: 10.1093/bib/bbaa161.
  • [56] W. Zhong-Yu, QSAR Study of Arylpyridone Oxime Based on the SVM and Elman Algorithms. Phys. Chem. Res 8(2) (2020) 215-223. DOI: 10.22036/pcr.2020.205099.1686.
  • [57] O.E. Oyeneyin, B.S. Obadawo, D.S. Metibemu, T.O. Owolabi, T. O.; A.A. Olanrewaju, S.M. Orimoloye, N. Ipinloju, O. Olubosede, An Exploration of the Antiproliferative Potential of Chalcones and Dihydropyrazole Derivatives in Prostate Cancer via Androgen Receptor: Combined QSAR, Machine Learning, and Molecular Docking Techniques. Phys. Chem. Res. 10(2) (2022) 211-223. DOI: 10.22036/pcr.2021.293051.1932.
  • [58] M. Albratty, Quantitative structure-activity relationship modeling and docking of some synthesized bioactive oxopyrolidines against Staphylococcus aureus, J. Saudi Chem. Soc. 26(4) (2022) 1-19. DOI: 10.1016/J.JSCS.2022.101509.
  • [59] S. Bitam, M. Hamadache, S. Hanini, 2D-QSAR, docking, molecular dynamics, studies of PF-07321332 analogues to identify alternative inhibitors against 3CLpro enzyme in SARS-CoV disease, J. Biomol. Struct. Dyn. (2022). DOI: 10.1080/07391102.2022.2113822.
  • [60] R. Kasmia, M. Bouachrineb, A. Ouammoua, Combined 3D-QSAR and Molecular Docking Analysis of Styrylquinoline Derivatives as Potent anti-cancer Agents. Phys. Chem. Res. 10(3) (2022) 345-362. DOI: 10.22036/PCR.2021.304969.1967.
  • [61] F.A. Ugbe,· G.A. Shallangwa, A. Uzairu, I. Abdulkadir, Molecular docking‑based virtual screening, molecular dynamic simulation, and 3‑D QSAR modeling of some pyrazolopyrimidine analogs as potent anti‑filarial agents. In Silico Pharmacology 10 (2022) 21. https://doi.org/10.1007/s40203-022-00136-y.
  • [62] A. Tropsha, A. Golbraikh, Predictive QSAR Modeling Workflow, Model Applicability Domains, and Virtual Screening. Curr. Pharm. Des. 13(34) (2007) 3494–3504. DOI: 10.2174/138161207782794257.
  • [63] B.K. Ho, R. Brasseur, “The Ramachandran plots of glycine and pre-proline,”. BMC Struct Biol. 16(5) (2005) 14. DOI: 10.1186/1472-6807-5-14.
  • [64] R. Sahu, N.S. Shukla, In-silico analysis of ndifferent plant protein and their essential compound with sulfonylurea binding protein of B-cell of homo sapiens for curing diabetes mellitus type II disease. Eur. Chem. Bull. 3 (2014) 568-576. DOI: 10.1016/j.sjbs.2022.103302.
  • [65] K. Tamura, G. Stecher, D. Peterson, A. Filipski, S. Kumar, MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30 (2013) 2725–2729. DOI: 10.1093/molbev/mst197.
  • [66] O. Trott, A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry 31 (2009) 455–461. DOI: 10.1002/jcc.21334.
  • [67] A. Daina, O. Michielin, V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep. 7 (2017) 42717. DOI: 10.1038/srep42717.
  • [68] A. Daina, V. Zoete, A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 11 (2016) 1117–1121. DOI: 10.1002/cmdc.201600182.
  • [69] C.A. Lipinski, Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 1 (2004) 337-341. DOI: 10.1016/J.DDTEC.2004.11.007.
  • [70] D.F. Veber, S.R. Johnson, H.Y. Cheng, B.R. Smith, K.W. Ward, K.D. Kopple, Molecular properties that influence the oral bioavailability of drug candidates, Journal of Medicinal Chemistry 45(12) (2002) 2615-2623. DOI: 10.1021/JM020017N.
  • [71] A.K. Ghose, V.N. Viswanadhan, J.J. Wendoloski, A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. A qualitative and quantitative characterization of known drug databases. J Comb Chem. 1 (1999) 55-68. DOI: 10.1021/cc9800071.
  • [72] W.J. Egan, K.M. Merz, J.J. Jr; Baldwin, Prediction of drug absorption using multivariate statistics. J. Med. Chem. 43(21) (2000) 3867-3877. DOI: 10.1021/JM000292E.
  • [73] P. Ertl, A. Schuffenhauer, Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J. Cheminform. 1(1) (2009) 1-11. DOI: 10.1186/1758-2946-1-8.
  • [74] W.A. Banks, Characteristics of compounds that cross the blood brain barrier. BMC Neurol. 9(Suppl. 1) (2009) 5–9. DOI: 10.1186/1471-2377-9-S1-S3.
  • [75] F.A. Ugbe,· G.A. Shallangwa, A. Uzairu, I. Abdulkadir, Activity modeling, molecular docking and pharmacokinetic studies of some boron-pleuromutilins as anti-wolbachia agents with potential for treatment of filarial diseases. Chemical Data Collections 36 (2021) 100783. https://doi.org/10.1016/j.cdc.2021.100783.
  • [76] F.X. Domínguez-Villa, N.A. Duran-Iturbide, J.G. Avila-Zarraga, Synthesis, molecular docking, and in silico ADME/Tox profiling studies of new 1-aryl-5-(3-azidopropyl) indol-4-ones: potential inhibitors of SARS CoV-2 main protease, Bioorg. Chem. 106 (2021) 104497. DOI: 10.1016/j.bioorg.2020.104497.
  • [77] M.J. De Groot, Designing better drugs: predicting cytochrome P450 metabolism. Drug Discov Today 11(13) (2006) 601–606. DOI:10.1016/j.drudis.2006.05.001.
  • [78] A. Poustforoosh, S. Faramarz, M. Negahdaripour, B. Tüzün, H. Hashemipour, Investigation on the mechanisms by which the herbal remedies induce anti-prostate cancer activity: uncovering the most practical natural compound. Journal of Biomolecular Structure and Dynamics, (2023) 1-14.
  • [79] U.M. Zanger, M. Schwab, Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 138(1) (2013) 103–141. DOI: 10.1016/j.pharmthera.2012.12.007.
  • [80] O. Daoui, S. Elkhattabi, S. Chtita, R. Elkhalabi, H. Zgou, A.T. Benjelloun, QSAR, molecular docking and ADMET properties in silico studies of novel 4,5,6,7-tetrahydrobenzo[D]-thiazol-2-Yl derivatives derived from dimedone as potent anti-tumor agents through inhibition of C-Met receptor tyrosine kinase. Heliyon 7 (2021) e07463. DOI: 10.1016/j.heliyon.2021.e07463.
  • [81] S. Bouamrane, A. Khaldan, H. Hajji, R. El-mernissi, H. Maghat, M.A. Ajana, A. Sbai, M. Bouachrine, T. Lakhlifi, 3D-QSAR, molecular docking, molecular dynamic simulation, and ADMET study of bioactive compounds against candida albicans. Mor. J. Chem. 10 (2022) 523-541. DOI: 10.48317/IMIST.PRSM/MORJCHEM-V10I3.33141.
  • [82] Z. Yan, G.W. Caldwell, Metabolism profiling, and cytochrome P450 inhibition & induction in drug discovery. Curr. Top. Med. Chem. 1 (2001) 403-425. DOI: 10.2174/1568026013395001.
  • [83] I. Shahzadi, A.F. Zahoor, B. Tüzün, A. Mansha, M.N. Anjum, A. Rasul, A. Irfan, K. Kotwica-Mojzych, M. Mojzych, Repositioning of acefylline as anti-cancer drug: Synthesis, anticancer and computational studies of azomethines derived from acefylline tethered 4-amino-3-mercapto-1, 2, 4-triazole. Plos one 17(12) (2022) p.e0278027.
  • [84] G. Sarkı, B. Tüzün, D. Ünlüer, H. Kantekin, Synthesis, characterization, chemical and biological activities of 4-(4-methoxyphenethyl)-5-benzyl-2-hydroxy-2H-1, 2, 4-triazole-3 (4H)-one phthalocyanine derivatives. Inorganica Chimica Acta 545 (2023) 121113.
  • [85] E. Choong, M. Dobrinas, P.A. Carrupt, C.B. Eap, The permeability P- glycoprotein: a focus on enantioselectivity and brain distribution. Expert Opin. Drug Metab. Toxicol. 6 (2010) 953–965. DOI: 10.1517/17425251003789394.
  • [86] B.R. 3rd.Miller, T.D. Jr. McGee, J.M. Swails, N. Homeyer, H. Gohlke, A.E. Roitberg, MMPBSA.Py: An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput. 8(9) (2012) 3314−3321. DOI: 10.1021/ct300418h.
  • [87] P.A. Kollman, I. Massova, C. Reyes, B. Kuhn, S. Huo, L. Chong, M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D.A. Case, T.E. 3rd. Cheatham, Calculating Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and Continuum Models. Acc. Chem. Res. 33 (2000) 889−897. DOI: 10.1021/ar000033j.

Molecular phylogeny, Sequence-based drug design, Docking built virtual screening, dynamics simulations, and ADMET properties of thiazolino 2-pyridone amide derivatives as an inhibitor of Chlamydia trachomatis and SARS-CoV-2 protein

Year 2024, Volume: 8 Issue: 1, 10 - 39, 15.01.2024
https://doi.org/10.33435/tcandtc.1196019

Abstract

The propagation of emerging diseases and the expensive cost and time lost by using the classic methods, especially in the current scenario with the world being plagued by SARS-CoV-2 and Chlamydia trachomatis diseases, make finding another way to invent new medication very important. That's why we used computational approaches to predict protein-ligand interactions of thiazolino 2-pyridone amide derivatives. The high-throughput virtual screening requires extensive combing through existing datasets in the hope of finding possible matches to screen for new molecules able to inhibit SARS-CoV-2 and Chlamydia trachomatis diseases. In this study, 46 thiazolino-2-pyridone amide derivatives were chosen for planning the powerful inhibitors by utilizing various strategies: QSAR analysis, phylogenetic analysis, homology modeling, docking simulation, molecular dynamics (MD) simulation, as well as ADMET Screening. The 2D QSAR investigation uncovers that these compounds show a satisfactory connection with bioactivity. From that point onward, phylogenetic analysis and homology modeling were used to model the selected receptors, which were then evaluated using both the SAVES and PROSA servers, indicating the best correctness of the modeled protein with the experimental results. Additionally, a docking simulation investigation was carried out to comprehend the 46 thiazolino-2-pyridone amide derivatives' interactions with homologous proteins. Additionally, MD simulations coupled with MM/GBSA verified the chosen complex systems' stability over 1000 ps. Two compounds were chosen as possible inhibitors based on these findings. The expected thiazolino-2-pyridone amide's oral bioavailability and toxicity have been discovered under the ADMET. Thus, these discoveries can be leveraged to develop novel molecules with the necessary action.

References

  • [1] M. Lyu, G. Fan, G. Xiao, T. Wang, D. Xu, J. Gao, S. Ge, Q. Li, Y. Ma, H. Zhang, J. Wang, Y Cui, J. Zhang, Y. Zhu, B. Zhang, Traditional Chinese medicine in COVID-19. Acta Pharm. Sin. B 11(11) (2021) 3337e3363. DOI: 10.1016/j.apsb.2021.09.008.
  • [2] S.V. Stoddard, S.D. Stoddard, B.K. Oelkers, K. Fitts, K. Whalum, K. Whalum, A.D. Hemphill, J. Manikonda, L.M. Martinez, E.G. Riley, C.M. Roof, N. Sarwar, D.M. Thomas, E. Ulmer, F.E. Wallace, P. Pandey, S. Roy, Optimization Rules for SARS-CoV-2 Mpro Antivirals: Ensemble Docking and Exploration of the Coronavirus Protease Active Site. Viruses. 12 (2020) 942. DOI: 10.3390/v12090942.
  • [3] H., Karataş, B., Tüzün, Z., Kökbudak, Could pyrimidine derivative be effective against Omicron of SARS-CoV-2?. BRATISLAVA MEDICAL JOURNAL-BRATISLAVSKE LEKARSKE LISTY 123(7) (2022) 505-513.
  • [4] B., Tüzün, K., Sayin, H., Ataseven, Could Momordica Charantia Be Effective In The Treatment of COVID19?. Cumhuriyet Science Journal, 43(2) (2022) 211-220.
  • [5] E.I. Edache, A. Uzairu, P.A. Mamza, G.A. Shallengwa, QSAR, homology modeling, and docking simulation on SARS‑CoV‑2 and pseudomonas aeruginosa inhibitors, ADMET, and molecular dynamic simulations to find a possible oral lead candidate. J. Genet. Eng. Biotechnol. 20 (2022) 88. DOI: 10.1186/S43141-022-00362-Z.
  • [6] Md.M. Rahman, T. Saha, K.J. Islam, R.H. Suman, S. Biswas, E.U. Rahat, Md.R. Hossen, R. Islam, Md.N. Hossain, A. Al Mamun, M. Khan, Md.A. Ali Md. M.A. Halim, Virtual screening, molecular dynamics and structure–activity relationship studies to identify potent approved drugs for Covid-19 treatment, J. Biomol. Struct. Dyn. (2020). DOI: 10.1080/07391102.2020.1794974.
  • [7] K. Mou, M. Abdalla, D.Q. Wei, M.T. Khan, M.S. Lodhi, D.B. Darwish, M. Sharaf, X. Tu, Emerging mutations in envelope protein of SARS-CoV-2 and their effect on thermodynamic properties. Inform. Med. Unlocked. 25 (2021) 100675. https://doi.org/10.1016/j.imu.2021.100675.
  • [8] A. Ghosh, M. Chakraborty, A. Chandra, M.P. Alam, Structure-activity relationship (SAR) and molecular dynamics study of withaferin-A fragment derivatives as potential therapeutic lead against main protease (Mpro) of SARS-CoV-2. J Mol Model. 27 (2021) 97. DOI: 10.1007/S00894-021-04703-6.
  • [9] World Health Organization. Report on global sexually transmitted infection surveillance, 2018, p. 1-62.
  • [10] P.D.Tamma. S.E. Cosgrove, L.L. Maragakis, Combination Therapy for Treatment of Infections with Gram-Negative Bacteria. Clin. Microbiol. Rev. 25 (2012) 450–470. DOI: 10.1128/CMR.05041-11.
  • [11] E.I. Edache, A. Uzairu, P.A. Mamza, G.A. Shallengwa, Docking Simulations and Virtual Screening to find Novel Ligands for T3S in Yersinia pseudotuberculosis YPIII, A drug target for type III secretion (T3S) in the Gram-negative pathogen Yersinia pseudotuberculosis. Chem Rev Lett. 4 (2021) 130-144. DOI: 10.22034/CRL.2021.254804.1088.
  • [12] E. Lanjouw, S. Ouburg, H.J. De Vries, A. Stary, K. Radcliffe, M. Unemo, 2015 European guideline on the management of Chlamydia trachomatis infections. Int. J. STD AIDS. 27(5) (2016) 333-348. DOI: 10.1177/0956462415618837.
  • [13] K.A. Workowski, S.M. Berman, Centers for Disease Control and Prevention sexually transmitted disease treatment guidelines. Clin. Infect. Dis. 53(suppl_3) (2011) S59-S63. https://doi.org/10.1093/cid/cir694.
  • [14] H.C. Wiesenfeld, Screening for Chlamydia trachomatis infections in women. N. Engl. J. Med. NEW. 376(8) (2017) 765-773, DOI: 10.1056/NEJMcp1412935.
  • [15] H.C. Wiesenfeld, S.L. Hillier, M.A. Krohn, D.V. Landers, R.L. Sweet, Bacterial vaginosis is a strong predictor of Neisseria gonorrhoeae and Chlamydia trachomatis infection. Clin Infect Dis. 36(5) (2003) 663-668. DOI: 10.1086/367658.
  • [16] K.A. Redgrove, E.A. McLaughlin, The Role of the Immune Response in Chlamydia trachomatis Infection of the Male Genital Tract: A Double-Edged Sword. Front Immunol. 5 (2014) 534, DOI: 10.3389/fimmu.2014.00534.
  • [17] E.I. Edache, A. Uzairu, P.A. Mamza, G.A. Shallengwa, Theoretical Investigation of the Cooperation of Iminoguanidine with the Enzymes-Binding Domain of Covid-19 and Bacterial Lysozyme Inhibitors and their Pharmacokinetic Properties. J. Mex. Chem. Soc. 66(4) (2022) 513-542. DOI: http://dx.doi.org/10.29356/jmcs.v66i4.1726.
  • [18] H., Sadeghi-Nejad, M., Wasserman, W., Weidner, D., Richardson, D., Goldmeier, Sexually transmitted diseases and sexual function. J. Sex. Med. 7(1) (2010) 389-413, DOI:10.1111/j.1743-6109.2009.01622.x.
  • [19] C., Brookings, D., Goldmeier, H., Sadeghi-Nejad, Sexually transmitted infections and sexual function in relation to male fertility. Korean J. Urol. 54(3) (2013) 149-56, DOI: 10.4111/kju.2013.54.3.149.
  • [20] A., González-Sánchez, J. J., Reyes-Lagos, Peña-Castillo, M.A., Nirmalkar, K., García-Mena, J. and Pacheco-López, G., Vaginal Microbiota Is Stable and Mainly Dominated by Lactobacillus at Third Trimester of Pregnancy and Active Childbirth: A Longitudinal Study of Ten Mexican Women. Current Microbiology, 79(8) (2022) 1-8.
  • [21] A. S., Roy, M. I. Q., Tonmoy, A., Fariha, I., Hami, I. K., Afif, M. A., Munim, M. et al. Multi-epitope Based Peptide Vaccine Design Using Three Structural Proteins (S, E, and M) of SARS-CoV-2: An In Silico Approach. J. Appl. Biotechnol. Rep. 8(2) (2021) 146-154, DOI:10.30491/JABR.2020.253820.1303.
  • [22] S. A., Kohlhoff, M. R., Hammerschlag, M. Treatment of chlamydial infections: 2014 update. Expert Opin. Pharmacother. 16(2) (2015) 205-212, DOI: 10.1517/14656566.2015.999041.
  • [23] E. I., Edache, A. Uzairu, G. A., Shallengwa, P. A., Mamza, Virtual screening, pharmacokinetics, and molecular dynamics simulations studies to identify potent approved drugs for Chlamydia trachomatis treatment. Futur J Pharm Sci. 7 (2021) 220, DOI: 10.1186/S43094-021-00367-4.
  • [24] E. S. Okeke, C. V. Olovo, N. E. Nkwoemeka, C. O. Okoye, C. E. I. Nwankwo, C. J. Onu, Microbial ecology and evolution is key to pandemics: using the coronavirus model to mitigate future public health challenges. Heliyon. 8(5) (2022) e09449. DOI: 10.1016/j.heliyon.2022.e09449.
  • [25] D. Kang, A. V. Revtovich, A. E. Deyanov, N. V. Kirienko, Pyoverdine inhibitors and gallium nitrate synergistically affect Pseudomonas aeruginosa. MSphere. 6 (2021) e00401-21. DOI: 10.1128/MSPHERE.00401-21.
  • [26] L. Scotti, M. T. Scotti, Computer aided drug design studies in the discovery of secondary metabolites targeted against age-related neurodegenerative diseases. Curr. Top. Med. Chem. 15(21) (2015) 2239-2252. DOI: 10.2174/1568026615666150610143510.
  • [27] M.H. Baig, K. Ahmad, S. Roy, J. M. Ashraf, M. Adil, M.H. Siddiqui, S. Khan, M. A. Kamal, I. Provazník, I. Choi, Computer Aided Drug Design: Success and Limitations. Curr. Pharm. Des. 22(5) (2016) 572-581. DOI: 10.2174/1381612822666151125000550.
  • [28] A. B. Gurung, M. A. Ali, J. Lee, M. A. Farah, K. M. Al-Anazi, An Updated Review of Computer-Aided Drug Design and Its Application to COVID-19. Biomed Res. Int. 2021 (2021) 1-18. DOI: 10.1155/2021/8853056.
  • [29] S. Belaidi, O. Youcef, T. Salah, T. Lanez, In Silico Approach for Conformational Analysis, Drug-Likeness Properties and Structure Activity Relationships of 12-Membered Macrolides. J. Comput. Theor. Nanosci., 12 (2015) 1–7. DOI:10.1166/jctn.2015.4451.
  • [30] E. I. Edache, H. U. Hambali, D. E. Arthur, A. Oluwaseye, O. C. Chinweuba, In-silico Discovery and Simulated Selection of Multi-target Anti-HIV-1 Inhibitors. Int Res J Pure Appl Chem. 11 (2016) 1-15. DOI: 10.9734/IRJPAC/2016/22863.
  • [31] M. J.; Frisch, Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; aramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, J. B.; Foresman, J. V.; Ortiz, J.; Cioslowski, D. J., Fox: Wallingford CT, 2013. Gaussian 09, Revision A.02.
  • [32] A. D. Becke, Density-functional thermochemistry 3. The role of exact exchange. J. Chem. Phys. 1993, 98 (1993) 5648. DOI: 10.1063/1.464913.
  • [33] C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter. 37 (1988) 785–789, DOI: 10.1103/physrevb.37.785.
  • [34] C. W. Yap, PaDEL-Descriptor: An open-source software to calculate molecular descriptors and fingerprints. J Comput Chem. 32 (2011) 1466–1474. DOI:10.1002/jcc.21707.
  • [35] P. Gramatica, N. Chirico, E. Papa, S. Cassani, S.; Kovarich, QSARINS: A New Software for the Development, Analysis, and Validation of QSAR MLR Models. J. Comput. Chem. 34 (2013) 2121–2132. DOI: 10.1002/jcc.23361.
  • [36] P. Gramatica, S. Cassani, N. Chirico, QSARINS-Chem: Insubria Datasets and New QSAR/QSPR Models for Environmental Pollutants in QSARINS. J.Comput.Chem. 35 (2014) 1036–1044. DOI:10.1002/jcc.23576.
  • [37] N. Chirico, A. Sangion, P. Gramatica, L. Bertato, I. Casartelli, E. Papa, QSARINS-Chem standalone version: A new platform-independent software to profile chemicals for physico-chemical properties, fate, and toxicity. J Comput Chem. 42(20) (2021) 1–9. DOI: 10.1002/JCC.26551.
  • [38] A. Golbraikh, A. Tropsha, Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. Mol. Divers. 5(4) (2002) 231-243. DOI: 10.1023/A:1021372108686.
  • [39] C. Delevoye, M. Nilges, A. Dautry-Varsat, A. Subtil, Conservation of the biochemical properties of IncA from Chlamydia trachomatis and Chlamydia caviae: oligomerization of IncA mediates interaction between facing membranes J. Biol. Chem. 279(45) (2004) 46896-46906. DOI: 10.1074/jbc.M407227200.
  • [40] S.F. Altschul, W. Gish, W. Miller, E.W. Myers D.J. Lipman, Basic local alignment search tool. J. Mol. Biol. 215(3) (1990) 403-410. DOI: 10.1016/S0022-2836(05)80360-2.
  • [41] S. Kumar, G. Stecher, M. Li, C. Knyaz, K. Tamura, MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol. 35 (2018) 1547-1549. DOI: 10.1093/molbev/msy096.
  • [42] P.H.A. Sneath, R.R. Sokal, Numerical Taxonomy. Freeman, San Francisco: (1973) 1.
  • [43] E. Zuckerkandl, L. PaulingEvolutionary Divergence and Convergence in Proteins. In: Bryson, V. and Vogel, H.J., Eds., Evolving Genes and Proteins, Academic Press, New York: (1965) 97-166. DOI: 10.1016/B978-1-4832-2734-4.50017-6.
  • [44] B. Webb, A. Sali, Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinforma. 20(54) (2016) 5.6.1–5.6.37. DOI: 10.1002/cpbi.3.
  • [45] B. Webb, A. Sali, Protein structure modeling with MODELLER. Protein Structure Prediction. 1137 (2014) 1-15. DOI 10.1007/978-1-4939-0366-5_1.
  • [46] J.U. Bowie, R. Luthy, D. Eisenberg, “A method to identify protein sequences that fold into a known three-dimensional structure,” Science. 253(5016) (1991) 164–170. DOI: 10.1126/science.1853201.
  • [47] D. Eisenberg, R. Luthy, J.U Bowie, VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol. 277 (1997) 396–404. DOI: 10.1016/S0076-6879(97)77022-8.
  • [48] ] R.A. Laskoswki, M.W. MacArthur, D.S. Moss, J.M. Thornton, PROCHECK: a program to check the stereo chemical quality of protein structures. J Appl Cryst. 26 (1993) 283–291, DOI: 10.1107/S0021889892009944.
  • [49] S.C. Lovell, I.W. Davis, W.B. Arendall III, P.I.W. Bakker, J.M. de Word, M.G. Prisant, J.S. Richardson, D.C. Richardson, Structure validation by Cα geometry: φ,ψ and Cβ deviation. Proteins Struct. Funct. Genet. 50 (2003) 437–450. DOI: 10.1002/prot.10286.
  • [50] C. Colovos, T.O. Yeates, Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 2(9) (1993) 1511–1519. DOI: 10.1002/pro.5560020916.
  • [51] M. Wiederstein, M.J. Sippl, ProSA-web: interactive web service for the recognition of errors in three dimensional structures of proteins. Nucleic Acids Res. 35(suppl 2) (2007) W407-410. DOI:10.1093/nar/gkm290.
  • [52] P.A. Ravindranath, S. Forli, D.S. Goodsell, A.J. Olson, M.F. Sanner, AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility. PLoS Comput Biol. 11(12) (2015) e1004586. DOI:10.1371/journal.pcbi.1004586.
  • [53] J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, K. Schulten, Scalable molecular dynamics with NAMD. Journal of Computational Chemistry 26 (2005) 1781–1802. DOI: 10.1002/jcc.20289.
  • [54] W. Humphrey, A. Dalke, K. Schulten, “VMD – Visual Molecular Dynamics”, Journal of Molecular Graphics 14 (1996) 33-38. DOI: 10.1016/0263-7855(96)00018 -5.
  • [55] Q. Bai, S. Tan, T. Xu, H. Liu, J. Huang, X. Yao, MolAICal: a soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm. Briefings in Bioinformatics 00(00) (2020) 1–12. DOI: 10.1093/bib/bbaa161.
  • [56] W. Zhong-Yu, QSAR Study of Arylpyridone Oxime Based on the SVM and Elman Algorithms. Phys. Chem. Res 8(2) (2020) 215-223. DOI: 10.22036/pcr.2020.205099.1686.
  • [57] O.E. Oyeneyin, B.S. Obadawo, D.S. Metibemu, T.O. Owolabi, T. O.; A.A. Olanrewaju, S.M. Orimoloye, N. Ipinloju, O. Olubosede, An Exploration of the Antiproliferative Potential of Chalcones and Dihydropyrazole Derivatives in Prostate Cancer via Androgen Receptor: Combined QSAR, Machine Learning, and Molecular Docking Techniques. Phys. Chem. Res. 10(2) (2022) 211-223. DOI: 10.22036/pcr.2021.293051.1932.
  • [58] M. Albratty, Quantitative structure-activity relationship modeling and docking of some synthesized bioactive oxopyrolidines against Staphylococcus aureus, J. Saudi Chem. Soc. 26(4) (2022) 1-19. DOI: 10.1016/J.JSCS.2022.101509.
  • [59] S. Bitam, M. Hamadache, S. Hanini, 2D-QSAR, docking, molecular dynamics, studies of PF-07321332 analogues to identify alternative inhibitors against 3CLpro enzyme in SARS-CoV disease, J. Biomol. Struct. Dyn. (2022). DOI: 10.1080/07391102.2022.2113822.
  • [60] R. Kasmia, M. Bouachrineb, A. Ouammoua, Combined 3D-QSAR and Molecular Docking Analysis of Styrylquinoline Derivatives as Potent anti-cancer Agents. Phys. Chem. Res. 10(3) (2022) 345-362. DOI: 10.22036/PCR.2021.304969.1967.
  • [61] F.A. Ugbe,· G.A. Shallangwa, A. Uzairu, I. Abdulkadir, Molecular docking‑based virtual screening, molecular dynamic simulation, and 3‑D QSAR modeling of some pyrazolopyrimidine analogs as potent anti‑filarial agents. In Silico Pharmacology 10 (2022) 21. https://doi.org/10.1007/s40203-022-00136-y.
  • [62] A. Tropsha, A. Golbraikh, Predictive QSAR Modeling Workflow, Model Applicability Domains, and Virtual Screening. Curr. Pharm. Des. 13(34) (2007) 3494–3504. DOI: 10.2174/138161207782794257.
  • [63] B.K. Ho, R. Brasseur, “The Ramachandran plots of glycine and pre-proline,”. BMC Struct Biol. 16(5) (2005) 14. DOI: 10.1186/1472-6807-5-14.
  • [64] R. Sahu, N.S. Shukla, In-silico analysis of ndifferent plant protein and their essential compound with sulfonylurea binding protein of B-cell of homo sapiens for curing diabetes mellitus type II disease. Eur. Chem. Bull. 3 (2014) 568-576. DOI: 10.1016/j.sjbs.2022.103302.
  • [65] K. Tamura, G. Stecher, D. Peterson, A. Filipski, S. Kumar, MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30 (2013) 2725–2729. DOI: 10.1093/molbev/mst197.
  • [66] O. Trott, A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry 31 (2009) 455–461. DOI: 10.1002/jcc.21334.
  • [67] A. Daina, O. Michielin, V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep. 7 (2017) 42717. DOI: 10.1038/srep42717.
  • [68] A. Daina, V. Zoete, A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 11 (2016) 1117–1121. DOI: 10.1002/cmdc.201600182.
  • [69] C.A. Lipinski, Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 1 (2004) 337-341. DOI: 10.1016/J.DDTEC.2004.11.007.
  • [70] D.F. Veber, S.R. Johnson, H.Y. Cheng, B.R. Smith, K.W. Ward, K.D. Kopple, Molecular properties that influence the oral bioavailability of drug candidates, Journal of Medicinal Chemistry 45(12) (2002) 2615-2623. DOI: 10.1021/JM020017N.
  • [71] A.K. Ghose, V.N. Viswanadhan, J.J. Wendoloski, A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. A qualitative and quantitative characterization of known drug databases. J Comb Chem. 1 (1999) 55-68. DOI: 10.1021/cc9800071.
  • [72] W.J. Egan, K.M. Merz, J.J. Jr; Baldwin, Prediction of drug absorption using multivariate statistics. J. Med. Chem. 43(21) (2000) 3867-3877. DOI: 10.1021/JM000292E.
  • [73] P. Ertl, A. Schuffenhauer, Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J. Cheminform. 1(1) (2009) 1-11. DOI: 10.1186/1758-2946-1-8.
  • [74] W.A. Banks, Characteristics of compounds that cross the blood brain barrier. BMC Neurol. 9(Suppl. 1) (2009) 5–9. DOI: 10.1186/1471-2377-9-S1-S3.
  • [75] F.A. Ugbe,· G.A. Shallangwa, A. Uzairu, I. Abdulkadir, Activity modeling, molecular docking and pharmacokinetic studies of some boron-pleuromutilins as anti-wolbachia agents with potential for treatment of filarial diseases. Chemical Data Collections 36 (2021) 100783. https://doi.org/10.1016/j.cdc.2021.100783.
  • [76] F.X. Domínguez-Villa, N.A. Duran-Iturbide, J.G. Avila-Zarraga, Synthesis, molecular docking, and in silico ADME/Tox profiling studies of new 1-aryl-5-(3-azidopropyl) indol-4-ones: potential inhibitors of SARS CoV-2 main protease, Bioorg. Chem. 106 (2021) 104497. DOI: 10.1016/j.bioorg.2020.104497.
  • [77] M.J. De Groot, Designing better drugs: predicting cytochrome P450 metabolism. Drug Discov Today 11(13) (2006) 601–606. DOI:10.1016/j.drudis.2006.05.001.
  • [78] A. Poustforoosh, S. Faramarz, M. Negahdaripour, B. Tüzün, H. Hashemipour, Investigation on the mechanisms by which the herbal remedies induce anti-prostate cancer activity: uncovering the most practical natural compound. Journal of Biomolecular Structure and Dynamics, (2023) 1-14.
  • [79] U.M. Zanger, M. Schwab, Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 138(1) (2013) 103–141. DOI: 10.1016/j.pharmthera.2012.12.007.
  • [80] O. Daoui, S. Elkhattabi, S. Chtita, R. Elkhalabi, H. Zgou, A.T. Benjelloun, QSAR, molecular docking and ADMET properties in silico studies of novel 4,5,6,7-tetrahydrobenzo[D]-thiazol-2-Yl derivatives derived from dimedone as potent anti-tumor agents through inhibition of C-Met receptor tyrosine kinase. Heliyon 7 (2021) e07463. DOI: 10.1016/j.heliyon.2021.e07463.
  • [81] S. Bouamrane, A. Khaldan, H. Hajji, R. El-mernissi, H. Maghat, M.A. Ajana, A. Sbai, M. Bouachrine, T. Lakhlifi, 3D-QSAR, molecular docking, molecular dynamic simulation, and ADMET study of bioactive compounds against candida albicans. Mor. J. Chem. 10 (2022) 523-541. DOI: 10.48317/IMIST.PRSM/MORJCHEM-V10I3.33141.
  • [82] Z. Yan, G.W. Caldwell, Metabolism profiling, and cytochrome P450 inhibition & induction in drug discovery. Curr. Top. Med. Chem. 1 (2001) 403-425. DOI: 10.2174/1568026013395001.
  • [83] I. Shahzadi, A.F. Zahoor, B. Tüzün, A. Mansha, M.N. Anjum, A. Rasul, A. Irfan, K. Kotwica-Mojzych, M. Mojzych, Repositioning of acefylline as anti-cancer drug: Synthesis, anticancer and computational studies of azomethines derived from acefylline tethered 4-amino-3-mercapto-1, 2, 4-triazole. Plos one 17(12) (2022) p.e0278027.
  • [84] G. Sarkı, B. Tüzün, D. Ünlüer, H. Kantekin, Synthesis, characterization, chemical and biological activities of 4-(4-methoxyphenethyl)-5-benzyl-2-hydroxy-2H-1, 2, 4-triazole-3 (4H)-one phthalocyanine derivatives. Inorganica Chimica Acta 545 (2023) 121113.
  • [85] E. Choong, M. Dobrinas, P.A. Carrupt, C.B. Eap, The permeability P- glycoprotein: a focus on enantioselectivity and brain distribution. Expert Opin. Drug Metab. Toxicol. 6 (2010) 953–965. DOI: 10.1517/17425251003789394.
  • [86] B.R. 3rd.Miller, T.D. Jr. McGee, J.M. Swails, N. Homeyer, H. Gohlke, A.E. Roitberg, MMPBSA.Py: An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput. 8(9) (2012) 3314−3321. DOI: 10.1021/ct300418h.
  • [87] P.A. Kollman, I. Massova, C. Reyes, B. Kuhn, S. Huo, L. Chong, M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D.A. Case, T.E. 3rd. Cheatham, Calculating Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and Continuum Models. Acc. Chem. Res. 33 (2000) 889−897. DOI: 10.1021/ar000033j.
There are 87 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Article
Authors

Emmanuel Edache 0000-0002-5485-0583

Adamu Uzairu This is me 0000-0002-6973-6361

Paul Andrew Mamza This is me

Gideon Adamu Shallangwa 0000-0002-0700-9898

Early Pub Date May 26, 2023
Publication Date January 15, 2024
Submission Date October 28, 2022
Published in Issue Year 2024 Volume: 8 Issue: 1

Cite

APA Edache, E., Uzairu, A., Mamza, P. A., Shallangwa, G. A. (2024). Molecular phylogeny, Sequence-based drug design, Docking built virtual screening, dynamics simulations, and ADMET properties of thiazolino 2-pyridone amide derivatives as an inhibitor of Chlamydia trachomatis and SARS-CoV-2 protein. Turkish Computational and Theoretical Chemistry, 8(1), 10-39. https://doi.org/10.33435/tcandtc.1196019
AMA Edache E, Uzairu A, Mamza PA, Shallangwa GA. Molecular phylogeny, Sequence-based drug design, Docking built virtual screening, dynamics simulations, and ADMET properties of thiazolino 2-pyridone amide derivatives as an inhibitor of Chlamydia trachomatis and SARS-CoV-2 protein. Turkish Comp Theo Chem (TC&TC). January 2024;8(1):10-39. doi:10.33435/tcandtc.1196019
Chicago Edache, Emmanuel, Adamu Uzairu, Paul Andrew Mamza, and Gideon Adamu Shallangwa. “Molecular Phylogeny, Sequence-Based Drug Design, Docking Built Virtual Screening, Dynamics Simulations, and ADMET Properties of Thiazolino 2-Pyridone Amide Derivatives As an Inhibitor of Chlamydia Trachomatis and SARS-CoV-2 Protein”. Turkish Computational and Theoretical Chemistry 8, no. 1 (January 2024): 10-39. https://doi.org/10.33435/tcandtc.1196019.
EndNote Edache E, Uzairu A, Mamza PA, Shallangwa GA (January 1, 2024) Molecular phylogeny, Sequence-based drug design, Docking built virtual screening, dynamics simulations, and ADMET properties of thiazolino 2-pyridone amide derivatives as an inhibitor of Chlamydia trachomatis and SARS-CoV-2 protein. Turkish Computational and Theoretical Chemistry 8 1 10–39.
IEEE E. Edache, A. Uzairu, P. A. Mamza, and G. A. Shallangwa, “Molecular phylogeny, Sequence-based drug design, Docking built virtual screening, dynamics simulations, and ADMET properties of thiazolino 2-pyridone amide derivatives as an inhibitor of Chlamydia trachomatis and SARS-CoV-2 protein”, Turkish Comp Theo Chem (TC&TC), vol. 8, no. 1, pp. 10–39, 2024, doi: 10.33435/tcandtc.1196019.
ISNAD Edache, Emmanuel et al. “Molecular Phylogeny, Sequence-Based Drug Design, Docking Built Virtual Screening, Dynamics Simulations, and ADMET Properties of Thiazolino 2-Pyridone Amide Derivatives As an Inhibitor of Chlamydia Trachomatis and SARS-CoV-2 Protein”. Turkish Computational and Theoretical Chemistry 8/1 (January 2024), 10-39. https://doi.org/10.33435/tcandtc.1196019.
JAMA Edache E, Uzairu A, Mamza PA, Shallangwa GA. Molecular phylogeny, Sequence-based drug design, Docking built virtual screening, dynamics simulations, and ADMET properties of thiazolino 2-pyridone amide derivatives as an inhibitor of Chlamydia trachomatis and SARS-CoV-2 protein. Turkish Comp Theo Chem (TC&TC). 2024;8:10–39.
MLA Edache, Emmanuel et al. “Molecular Phylogeny, Sequence-Based Drug Design, Docking Built Virtual Screening, Dynamics Simulations, and ADMET Properties of Thiazolino 2-Pyridone Amide Derivatives As an Inhibitor of Chlamydia Trachomatis and SARS-CoV-2 Protein”. Turkish Computational and Theoretical Chemistry, vol. 8, no. 1, 2024, pp. 10-39, doi:10.33435/tcandtc.1196019.
Vancouver Edache E, Uzairu A, Mamza PA, Shallangwa GA. Molecular phylogeny, Sequence-based drug design, Docking built virtual screening, dynamics simulations, and ADMET properties of thiazolino 2-pyridone amide derivatives as an inhibitor of Chlamydia trachomatis and SARS-CoV-2 protein. Turkish Comp Theo Chem (TC&TC). 2024;8(1):10-39.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)