Research Article
BibTex RIS Cite

RASAT verisi kullanarak farklı pan-keskinleştirme yöntemlerinin istatistiksel analizi

Year 2017, Issue: 68, 57 - 62, 15.06.2017
https://doi.org/10.17211/tcd.299099

Abstract

Bu araştırmada, Türkiye’nin optik uzaktan algılama uydusu olan RASAT uydusuna ait görüntü kullanılarak farklı pan-keskinleştirme teknikleri değerlendirilmiştir. Kullanılan verinin pankromatik bandı (PAN) 7,5 m ve multispektral (MS) bantları (kırmızı, yeşil ve mavi) 15 m yer örnekleme aralığına sahiptir. Çalışmanın amacı, mekansal/geometrik olarak iyileştirilmiş ve spektrum bilgisi korunmuş yüksek çözünürlüklü RASAT verilerini elde etmek üzere farklı pan-keskinleştirme yöntemleri kullanarak uydu verisinin performansını araştırmaktır. Bu amaçla Ehlers yöntemi, Yüksek Geçirgenli Filtreleme (High Pass Filtering - HPF), Yoğunluk Renk Doygunluk (Intensity Hue Saturation - IHS) ve Ana Bileşenler Dönüşümü (Principal Component Analysis - PCA) yöntemleri uygulanmış ve karşılaştırılmıştır. Çalışma alanı Tüekiye’nin batısında İzmir ili Menemen bölgesinde yer almaktadır. Çalışma alanı ekili alan, çıplak alan, sulak alan, su kütleleri ve mera gibi arazi örtüsü ile kaplıdır. Çalışmada pan-keskinleştirilmiş görüntülerin performansını değerlendirmek için kalitatif ve kantitatif analizler uygulanmıştır. Daha düşük çözünürlüklü çok spektral bantlı veri Pan-keskinleştirilmiş görüntülerle görsel olarak karşılaştırılmış ve renk bozulmaları araştırılmıştır. Kantitatif analiz için farklı istatistiksel metrikler kullanılmıştır. Bu amaçla, Korrelasyon Katsayısı (CC), Evrensel Görüntü Kalitesi İndeksi (UIQI), Karesel Ortalama Hata (RMSE) ve ERGAS metrikleri uygulanmış ve iyileştirilmiş sonuç verilerin kalite değerlendirmeleri karşılaştırılmıştır. Pan-keskinleştirilmiş görüntü sonuçlarına göre Ehlers renk bilgisini en iyi korurken, HPF sonucu istatistiksel açıdan en iyi sonucu sağlamıştır.

References

  • Alparone, L., Aiazzi, B., Baronti, S., Garzelli, A., Nencini, F. ve Selva, M. (2008). “Multispectral and Panchromatic Data Fusion Assessment without Reference”, Photogrammetric Enginnering and Remote Sensing 74:193–200.
  • Cetin, M. ve Musaoglu, N. (2009). “Merging hyperspectral and panchromatic image data: qualitative and quantitative analysis”, International Journal of Remote Sensing, 30:1779–1804.
  • Çağırankaya, S. S. ve Meric¸, B. T. (2013). “Turkey’s important wetlands: RAMSAR Sites”, Ankara, Turkey: Ministry of Forestry and Water Affairs, General Directorate of Nature Conservation and National Parks.
  • Erdoğan M., Yılmaz A., Eker O., 2016. “The georeferencing of RASAT satellite imagery and some practical approaches to increase the georeferencing accuracy”, Geocarto International, 31:6, 647-660.
  • Ehlers, M. 2004. ‘‘Spectral Characteristics Preserving Image Fusion Based on Fourier Domain Filtering.’’ In Proceedings of SPIE, Conference on Remote Sensing for Environmental Monitoring, GIS Applications, and Geology, IV. Remote Sensing Europe 2004, Maspalomas, Gran Canaria, Spain, 5574: 1-13.
  • Ghassemian H., 2016. “A review of remote sensing image fusion methods”, Information Fusion 32 (2016) 75–89.
  • Hong, G., Zhang, A., Zhou, F. ve Brisco, B. (2014). “Integration of optical and synthetic aperture radar (SAR) images to differentiate grassland and alfalfa in Prairie area”, International Journal of Applied Earth Observation and Geoinformation 28:12–19.
  • Lu, D., Li, G., Moran, E., Dutra, L. ve Batistella, M. (2011). “A comparison of multisensor integration methods for land cover classification in the Brazilian Amazon”, GIScience & Remote Sensing 48: 345–370.
  • Ozendi, M., Topan, H., Oruc, M. ve Cam, A. (2015). “Pan-sharpening quality investigation of PLÉIADES-1A images”, Geocarto International, DOI: 10.1080/10106049.2015.1094520.
  • Ozendi, M., Topan, H., Cam, A. ve Bayık, Ç. (2016). “Pan Sharpening Quality Investigation Of Turkish In-Operation Remote Sensing Satellites: Applications with RASAT And GÖKTÜRK-2 Images”, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W1, 131-135, Prag.
  • Pohl, C., ve Van Genderen J., (1998). “Review Article Multisensor Image Fusion in Remote Sensing: Concepts, Methods and Applications.” International Journal of Remote Sensing 19: 823–854.
  • Pohl C. ve van Genderen J. (2014). “Remote sensing image fusion: an update in the context of Digital Earth”, International Journal of Digital Earth, 7: 158–172.
  • Sanli, F.B., Abdikan, S., Esetlili, M.T. ve Sunar F. (2016). “Evaluation of image fusion methods using PALSAR, RADARSAT-1 and SPOT images for land use/ land cover classification”, Journal of the Indian Society of Remote Sensing, doi:10.1007/s12524-016-0625-y
  • Teke, M., Seyfioğlu, M.S., Ağçal, A. ve Gürbüz, Z. (2014). “RASAT Uydu Görüntülerinin Optimal Pankeskinleştirilmesi”, IEEE 22nd Signal Processing and Communications Applications Conference (SIU 2014), 1967-1970, Trabzon.
  • Teke, M., Tevrizoğlu, İ., Öztoprak, A.F., Demirkesen, C., Açıkgöz, İ.S., Gürbüz, S.Z., Küpcü R. ve Avenoğlu B. (2015). “GEOPORTAL: TÜBİTAK UZAY Satellite Data Processing and Sharing System”, 7th International Conference on Recent Advances in Space Technologies (RAST), İstanbul.
  • Vaiopoulos, A. D. (2011). “Developing Matlab scripts for image analysis and quality assessment”, Proceedings of SPIE Earth Resources and Environmental Remote Sensing/GIS Applications II 8181, 81810B, Prag.
  • Wang, Z. ve Bovik, A. C. (2002). “A universal image quality index.” Signal Processing Letters, IEEE, 9: 81–84.
  • Witharana, C, Civco, D.L. ve Meyer, TH. (2013). “Evaluation of pansharpening algorithms in support of earth observation based rapid-mapping workflows”, Applied Geography 37: 63–87.
  • Zoleikani, R., Zoej, M.J.V. ve Mokhtarzadeh, M. (2017). “Comparison of Pixel and Object Oriented Based Classification of Hyperspectral Pansharpened Images”, Journal of the Indian Society of Remote Sensing 45: 25-33.

Statistical analysis of different pan-sharpening methods using RASAT data

Year 2017, Issue: 68, 57 - 62, 15.06.2017
https://doi.org/10.17211/tcd.299099

Abstract

The research evaluates the image fusion techniques using RASAT image which is one of the optical remote sensing satellites launched by the Republic of Turkey. The data has 7.5 m ground resolution panchromatic and 15 m multispectral bands (red, green and blue). The aim of the study is to compare the images fusion methods to achieve spatially improved and spectrally preserved higher resolution RASAT data. The performance of the data was investigated by different image fusion methods. For this purpose, Ehlers fusion, High Pass Filtering (HPF), Intensity Hue Saturation (IHS) and Principal Component Analysis (PCA) data fusion methods were applied and investigated. The study area is located in Menemen Izmir province, west of Turkey. The area has different land use classes such as cultivated fields, bareland, wetland, water body and pasture. Qualitative and quantitative analyses were applied to assess the performance of the fused images. Lower resolution multispectral data was compared to fused images visually and color distortions were investigated. For the quantitative analysis different statistical metrics were utilized. In this frame, Correlation Coefficient (CC), Universal Image Quality Index (UIQI), Root Mean Square Deviation (RMSE) and Relative Dimensionless Global Error in Synthesis-Erreur Relative Globale Adimensionnelle de Synthese (ERGAS) were performed for quality assessments of spatially improved data. Regarding to the results of the pan-sharpening methods it is concluded that Ehlers preserved the best color information while the result of HPF provided higher statistical results. 

References

  • Alparone, L., Aiazzi, B., Baronti, S., Garzelli, A., Nencini, F. ve Selva, M. (2008). “Multispectral and Panchromatic Data Fusion Assessment without Reference”, Photogrammetric Enginnering and Remote Sensing 74:193–200.
  • Cetin, M. ve Musaoglu, N. (2009). “Merging hyperspectral and panchromatic image data: qualitative and quantitative analysis”, International Journal of Remote Sensing, 30:1779–1804.
  • Çağırankaya, S. S. ve Meric¸, B. T. (2013). “Turkey’s important wetlands: RAMSAR Sites”, Ankara, Turkey: Ministry of Forestry and Water Affairs, General Directorate of Nature Conservation and National Parks.
  • Erdoğan M., Yılmaz A., Eker O., 2016. “The georeferencing of RASAT satellite imagery and some practical approaches to increase the georeferencing accuracy”, Geocarto International, 31:6, 647-660.
  • Ehlers, M. 2004. ‘‘Spectral Characteristics Preserving Image Fusion Based on Fourier Domain Filtering.’’ In Proceedings of SPIE, Conference on Remote Sensing for Environmental Monitoring, GIS Applications, and Geology, IV. Remote Sensing Europe 2004, Maspalomas, Gran Canaria, Spain, 5574: 1-13.
  • Ghassemian H., 2016. “A review of remote sensing image fusion methods”, Information Fusion 32 (2016) 75–89.
  • Hong, G., Zhang, A., Zhou, F. ve Brisco, B. (2014). “Integration of optical and synthetic aperture radar (SAR) images to differentiate grassland and alfalfa in Prairie area”, International Journal of Applied Earth Observation and Geoinformation 28:12–19.
  • Lu, D., Li, G., Moran, E., Dutra, L. ve Batistella, M. (2011). “A comparison of multisensor integration methods for land cover classification in the Brazilian Amazon”, GIScience & Remote Sensing 48: 345–370.
  • Ozendi, M., Topan, H., Oruc, M. ve Cam, A. (2015). “Pan-sharpening quality investigation of PLÉIADES-1A images”, Geocarto International, DOI: 10.1080/10106049.2015.1094520.
  • Ozendi, M., Topan, H., Cam, A. ve Bayık, Ç. (2016). “Pan Sharpening Quality Investigation Of Turkish In-Operation Remote Sensing Satellites: Applications with RASAT And GÖKTÜRK-2 Images”, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W1, 131-135, Prag.
  • Pohl, C., ve Van Genderen J., (1998). “Review Article Multisensor Image Fusion in Remote Sensing: Concepts, Methods and Applications.” International Journal of Remote Sensing 19: 823–854.
  • Pohl C. ve van Genderen J. (2014). “Remote sensing image fusion: an update in the context of Digital Earth”, International Journal of Digital Earth, 7: 158–172.
  • Sanli, F.B., Abdikan, S., Esetlili, M.T. ve Sunar F. (2016). “Evaluation of image fusion methods using PALSAR, RADARSAT-1 and SPOT images for land use/ land cover classification”, Journal of the Indian Society of Remote Sensing, doi:10.1007/s12524-016-0625-y
  • Teke, M., Seyfioğlu, M.S., Ağçal, A. ve Gürbüz, Z. (2014). “RASAT Uydu Görüntülerinin Optimal Pankeskinleştirilmesi”, IEEE 22nd Signal Processing and Communications Applications Conference (SIU 2014), 1967-1970, Trabzon.
  • Teke, M., Tevrizoğlu, İ., Öztoprak, A.F., Demirkesen, C., Açıkgöz, İ.S., Gürbüz, S.Z., Küpcü R. ve Avenoğlu B. (2015). “GEOPORTAL: TÜBİTAK UZAY Satellite Data Processing and Sharing System”, 7th International Conference on Recent Advances in Space Technologies (RAST), İstanbul.
  • Vaiopoulos, A. D. (2011). “Developing Matlab scripts for image analysis and quality assessment”, Proceedings of SPIE Earth Resources and Environmental Remote Sensing/GIS Applications II 8181, 81810B, Prag.
  • Wang, Z. ve Bovik, A. C. (2002). “A universal image quality index.” Signal Processing Letters, IEEE, 9: 81–84.
  • Witharana, C, Civco, D.L. ve Meyer, TH. (2013). “Evaluation of pansharpening algorithms in support of earth observation based rapid-mapping workflows”, Applied Geography 37: 63–87.
  • Zoleikani, R., Zoej, M.J.V. ve Mokhtarzadeh, M. (2017). “Comparison of Pixel and Object Oriented Based Classification of Hyperspectral Pansharpened Images”, Journal of the Indian Society of Remote Sensing 45: 25-33.
There are 19 citations in total.

Details

Journal Section Research Articles
Authors

Saygın Abdikan

Publication Date June 15, 2017
Acceptance Date June 8, 2017
Published in Issue Year 2017 Issue: 68

Cite

APA Abdikan, S. (2017). RASAT verisi kullanarak farklı pan-keskinleştirme yöntemlerinin istatistiksel analizi. Türk Coğrafya Dergisi(68), 57-62. https://doi.org/10.17211/tcd.299099

Publisher: Turkish Geographical Society