Review
BibTex RIS Cite

Cilia structure and function defects in cystic fibrosis and related respiratory diseases

Year 2021, , 545 - 552, 26.11.2021
https://doi.org/10.12956/tchd.857645

Abstract

The defects in cilia structure contributes to disease pathogenesis in cystic fibrosis, primary ciliary dyskinesia, and chronic obstructive pulmonary diseases. As a result of mutations in the genes responsible from mobile cilia structure, the microtubule structure is disrupted and protrusions and shrinkage occur in the cilium. These deformations cause loss of cilia function and decrease in ciliary beat frequency. This decrease disrupts the mucociliary clearance mechanism, which is called as the clearance mechanism of mucus from foreign microorganisms and bacteria in the airways. The macrophages and neutrophils migrating to the environment cause cytokine storm due to the inability of mucus to be cleared from the epithelial surface and the disease course exacerbates with the activation of inflammatory pathways. In this review, genes that have a function in mobile cilia formation and that show direct or indirect expression changes in cystic fibrosis, primary ciliary dyskinesia, and chronic obstructive pulmonary diseases are summarized. As a result of change in the expression of these genes, cell differentiation on the lung epithelial surface and lung pathophysiology are affected.

References

  • Beales P, Jackson P. Cilia - the prodigal organelle. Cilia 2012;1:1. Tsang K, Tipoe G, Mak J, Sun J, Wong M, Leung R, et al. Ciliary central microtubular orientation is of no clinical significance in bronchiectasis. Respir Med 2005;99:290-7. Ishikawa H, Marshall W. Ciliogenesis: building the cell’s antenna. Nat Rev Mol Cell Biol 2011;12:222-34. Bustamante-Marin X, Ostrowski L. Cilia and Mucociliary Clearance. Cold Spring Harb Perspect Biol 2017;9:a028241. Choksi S, Lauter G, Swoboda P, Roy S. Switching on cilia: transcriptional networks regulating ciliogenesis. Development 2014;141:1427-41. Brown J, Witman G. Cilia and Diseases. Bioscience 2014;64:1126-37. Tilley A, Walters M, Shaykhiev R, Crystal R. Cilia Dysfunction in Lung Disease. Annu Rev Physiol 2015;77:379-406. Goodenough U, Heuser J. Outer and inner dynein arms of cilia and flagella. Cell 1985;41:341-2. Gueron S, Liron N. Ciliary motion modeling, and dynamic multicilia interactions. Biophys J 1992;63:1045-58. Pazour G, Rosenbaum J. Intraflagellar transport and cilia-dependent diseases. Trends Cell Biol 2002;12:551-5. Martin-Hurtado A, Lastres-Becker I, Cuadrado A, Garcia-Gonzalo F. NRF2 and Primary Cilia: An Emerging Partnership. Antioxidants (Basel) 2020;9:475. Rosenbaum J. Intraflagellar transport. Nat Rev Mol Cell Biol 2002;3: 813-25. Whitsett J. Airway Epithelial Differentiation and Mucociliary Clearance. Ann Am Thorac Soc 2018;15(Suppl3):S143-8. Tadokoro T, Wang Y, Barak L, Bai Y, Randell S, Hogan B. IL-6/STAT3 promotes regeneration of airway ciliated cells from basal stem cells. Proc Natl Acad Sci U S A 2014;111: E3641-9. Turner J, Roger J, Fitau J, Combe D, Giddings J, Heeke G, et al. Goblet Cells Are Derived from aFOXJ1-Expressing Progenitor in a Human Airway Epithelium. Am J Respir Cell Mol Biol 2011;44:276-84. Look D, Walter M, Williamson M, Pang L, You Y, Sreshta J, et al. Effects of Paramyxoviral Infection on Airway Epithelial Cell FOXJ1 Expression, Ciliogenesis, and Mucociliary Function. Am J Pathol 2001;159:2055-69. Wanner A, Salathé M, O’Riordan T. Mucociliary clearance in the airways. Am J Respir Crit Care Med 1996;154:1868-902. Houtmeyers E, Gosselink R, Gayan-Ramirez G, Decramer M. Regulation of mucociliary clearance in health and disease. Eur Respir J 1999;13:1177-88. Rubin B. Mucus and Mucins. Otolaryngol Clin North Am 2010;43:27-34. Bonser L, Erle D. Airway Mucus and Asthma: The Role of MUC5AC and MUC5B. J Clin Med 2017;6:112. Thai P, Loukoianov A, Wachi S, Wu R. Regulation of Airway Mucin Gene Expression. Annu Rev Physiol 2008;70:405-29. Chilvers M, O’Callaghan C. Local mucociliary defence mechanisms. Paediatr Respir Rev 2000;1:27-34. Cantin L, Bankier A, Eisenberg R. Bronchiectasis. AJR Am J Roentgenol 2009;193:W158-W171. Lewis B, Patial S, Saini Y. Immunopathology of Airway Surface Liquid Dehydration Disease. J Immunol Res 2019;2019:2180409. Courtney J, Ennis M, Elborn J. Cytokines and inflammatory mediators in cystic fibrosis. J Cyst Fibros 2004;3:223-31. Guan W, Peng Y, Zi X, Tan K, He T, Zhong N, et al. Motile Ciliary Disorders in Chronic Airway Inflammatory Diseases: Critical Target for Interventions. Curr Allergy Asthma Rep 2018;18:48. Mukherjee I, Roy S, Chakrabarti S. Identification of Important Effector Proteins in the FOXJ1 Transcriptional Network Associated With Ciliogenesis and Ciliary Function. Front Genet 2019;10:23. Rafeeq M, Murad H. Cystic fibrosis: current therapeutic targets and future approaches. J Transl Med 2017;15:84. Clinical and Functional translation of CFTR. Erişim tarihi: 12 Mart 2021. Available from: https://www.CFTR2.org. Cystic Fibrosis Mutation Database. Erişim tarihi: 12 Mart 2021. Available from: http://www.genet.sickkids.on.ca/ Richards C, Bradley L, Amos J, Allitto B, Grody W, Maddalena A, et al. Standards and Guidelines for CFTR Mutation Testing. Genet Med 2002;4:379-91.
  • Dayangaç-Erden D, Atalay M, Emiralioğlu N, Hızal M, Polat S, Özçelik U, et al. Mutations of the CFTR gene and novel variants in Turkish patients with cystic fibrosis: 24-years experience. Clin Chim Acta 2020;510:252-9.
  • Cutting G. Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet 2015;16:45-56.
  • Ratjen F, Bell S, Rowe S, Goss C, Quittner A, Bush A. Cystic fibrosis. Nat Rev Dis Primers 2015;1:15010.
  • Tsui L, Dorfman R. The Cystic Fibrosis Gene: A Molecular Genetic Perspective. Cold Spring Harb Perspect Med 2013;3:a009472.
  • Steinkamp G, Wiedemann B, Rietschel E, Krahl A, Gielen J, Barmeier H, et al. Prospective evaluation of emerging bacteria in cystic fibrosis. J Cyst Fibros 2005;4:41-8.
  • McShane D, Davies J, Wodehouse T, Bush A, Geddes D, Alton E. Normal nasal mucociliary clearance in CF children: evidence against a CFTR-related defect. Eur Respir J 2004;24:95-100.
  • Verhaeghe C, Remouchamps C, Hennuy B, Vanderplasschen A, Chariot A, Tabruyn S, et al. Role of IKK and ERK pathways in intrinsic inflammation of cystic fibrosis airways. Biochem Pharmacol 2007;73:1982-94.
  • Ross A, Dailey L, Brighton L, Devlin R. Transcriptional Profiling of Mucociliary Differentiation in Human Airway Epithelial Cells. Am J Respir Cell Mol Biol 2007;37:169-85.
  • Ostrowski L, Yin W, Diggs P, Rogers T, O’Neal W, Grubb B. Expression of CFTR from a ciliated cell-specific promoter is ineffective at correcting nasal potential difference in CF mice. Gene Ther 2007;14:1492-501.
  • Clarke L, Sousa L, Amaral M. WS20.3 Changes in transcriptomics of native nasal epithelium expressing F508del-CFTR and intersecting data from comparable studies. J Cyst Fibros 2013;14:38.
  • Clarke L, Botelho H, Sousa L, Falcao A, Amaral M. Transcriptome meta-analysis reveals common differential and global gene expression profiles in cystic fibrosis and other respiratory disorders and identifies CFTR regulators. Genomics 2015;106:268-77.
  • Maiti A, Mattéi M, Jorissen M, Volz A, Zeigler A, Bouvagnet P. Identification, tissue specific expression, and chromosomal localisation of several human dynein heavy chain genes. Eur J Hum Genet 2000;8:923-32.
  • Loges N, Olbrich H, Fenske L, Mussaffi H, Horvath J, Fliegauf M, et al. DNAI2 Mutations Cause Primary Ciliary Dyskinesia with Defects in the Outer Dynein Arm. Am J Hum Genet 2008;83:547-58.
  • Horani A, Ferkol T. Advances in the Genetics of Primary Ciliary Dyskinesia. Chest 2018;154:645-52.
  • Baz-Redón N, Rovira-Amigo S, Camats-Tarruella N, Fernández-Cancio M, Garrido-Pontnou M, Antolín M, et al. Role of Immunofluorescence and Molecular Diagnosis in the Characterization of Primary Ciliary Dyskinesia. Arch Bronconeumol 2019;55:439-41.
  • Meeks M, Bush A. Primary ciliary dyskinesia (PCD). Pediatr Pulmonol 2000;29:307-16.
  • Emiralioğlu N, Taşkıran E, Koşukcu C, Bilgiç E, Atilla P, Kaya B, et al. Genotype and phenotype evaluation of patients with primary ciliary dyskinesia: First results from Turkey. Pediatr Pulmonol 2020;55:383-93.
  • Baz-Redón N, Rovira-Amigo S, Paramonov I, Castillo-Corullón S, Roig M, Antolín M, et al. Implementation of a gene panel for genetic diagnosis of primary ciliary dyskinesia. Arch Bronconeumol 2020;S0300-2896:30073-9.
  • Milla C. The evolving spectrum of ciliopathies and respiratory disease. Curr Opin Pediatr 2016;28:339-47.
  • Maiti A, Bartoloni L, Mitchison H, Meeks M, Chung E, Spiden S, et al. No deleterious mutations in the FOXJ1 (alias HFH-4) gene in patients with Primary Ciliary Dyskinesia (PCD). Cytogenet Genome Res 2000;90:119-22.
  • Han M, Agusti A, Calverley P, Celli B, Criner G, Curtis J, et al. Chronic obstructive pulmonary disease phenotypes: the future of COPD. Am J Respir Crit Care Med 2010;182:598-604.
  • Tasena H, Faiz A, Timens W, Noordhoek J, Hylkema M, Gosens R, et al. microRNA–mRNA regulatory networks underlying chronic mucus hypersecretion in COPD. Eur Respir J 2018;52:1701556.
  • Gohy S, Carlier F, Fregimilicka C, Detry B, Lecocq M, Ladjemi M, et al. Altered generation of ciliated cells in chronic obstructive pulmonary disease. Sci Rep 2019;9:17963.
  • Yaghi A, Zaman A, Cox G, Dolovich M. Ciliary beating is depressed in nasal cilia from chronic obstructive pulmonary disease subjects. Respir Med 2012;106:1139-47.
  • McShane D, Davies JC, Wodehouse T, Bush A, Geddes D, Alton W. Normal nasal mucociliary clearance in CF children: evidence against a CFTR‐related defect. Eur Respir J 2004;24:95-100.
  • Verhaeghe C, Delbecque K, de Leval L, Oury C, Bours V. Early inflammation in the airways of a cystic fibrosis foetus. J Cyst Fibros 2007; 6:304–8.
  • Davis SD, Rosenfeld M, Lee HS, Ferkol TW, Sagel SD, Dell SD et al. Primary ciliary dyskinesia: longitudinal study of lung disease by ultrastructure defect and genotype. Am J Respir Crit Care Med 2019;199:190-8.
  • Baz-Redón N, Rovira-Amigo S, Camats-Tarruella N, Fernández-Cancio M, Garrido-Pontnou M, Antolín M, et al. Role of Immunofluorescence and Molecular Diagnosis in the Characterization of Primary Ciliary Dyskinesia. Arch Bronconeumol (Engl Ed) 2019; 55:439-41.
  • Yu X, Ng C, Habacher H, Roy S. FOXJ1 transcription factors are master regulators of the motile ciliogenic program. Nat Genet 2008;40:1445-53.
  • Ekinci İ, Hızal M, Emiralioğlu N, Özçelik U, Yalçın E, Doğru D, et al. Differentially expressed genes associated with disease severity in siblings with cystic fibrosis. Pediatr Pulmonol 2021; 56:910-20.

Kistik Fibrozis ve Benzer Solunum Yolu Hastalıklarında Silya yapı ve İşlev Bozuklukları

Year 2021, , 545 - 552, 26.11.2021
https://doi.org/10.12956/tchd.857645

Abstract

Hücre yüzeyinde bulunan siller; kistik fibrozis, primer siliyer diskinezi ve kronik obstrüktif akciğer hastalıklarında yapı ve işlev bozukluğuna uğrayarak hastalık patogenezinde önemli rol oynarlar. Sil oluşumu sırasında özellikle hareketli sil yapısını oluşturan genlerde görülen mutasyonlar sonucu silin mikrotübül yapısı bozulur ve sil yüzeyinde çıkıntılar ile büzülmeler meydana gelir ya da sil yapısı oluşamaz. Silde oluşan bu deformasyonlar sonucunda sil işlevinin kaybı gerçekleşmekte ve siliyer atım frekansında azalma görülmektedir. Bu azalış, mukusun havayollarındaki yabancı mikroorganizmalardan ve bakterilerden temizlenme mekanizması olarak adlandırılan mukosiliyer klirens mekanizmasını bozmaktadır. Mukusun epitel yüzeyden temizlenememesi, fazla üretilmesi ve kalınlaşması sebebiyle ortama göç eden makrofajlar ve nötrofiller sitokin fırtınasına neden olmakta, inflamatuar yolakların aktifleşmesiyle hastalık seyri ağırlaşmaktadır. Bu derlemede kistik fibrozis, primer siliyer diskinezi ve kronik obstrüktif akciğer hastalıklarında hareketli sil oluşumunda görev alan ve doğrudan ya da dolaylı olarak ifade değişimi gösteren genler ve işlevleri özetlenmiştir. İlişkili genlerin ifade değişimleri sonucunda akciğer epitel yüzeyindeki hücreler farklılaşarak akciğer patofizyolojisi etkilenmektedir.

References

  • Beales P, Jackson P. Cilia - the prodigal organelle. Cilia 2012;1:1. Tsang K, Tipoe G, Mak J, Sun J, Wong M, Leung R, et al. Ciliary central microtubular orientation is of no clinical significance in bronchiectasis. Respir Med 2005;99:290-7. Ishikawa H, Marshall W. Ciliogenesis: building the cell’s antenna. Nat Rev Mol Cell Biol 2011;12:222-34. Bustamante-Marin X, Ostrowski L. Cilia and Mucociliary Clearance. Cold Spring Harb Perspect Biol 2017;9:a028241. Choksi S, Lauter G, Swoboda P, Roy S. Switching on cilia: transcriptional networks regulating ciliogenesis. Development 2014;141:1427-41. Brown J, Witman G. Cilia and Diseases. Bioscience 2014;64:1126-37. Tilley A, Walters M, Shaykhiev R, Crystal R. Cilia Dysfunction in Lung Disease. Annu Rev Physiol 2015;77:379-406. Goodenough U, Heuser J. Outer and inner dynein arms of cilia and flagella. Cell 1985;41:341-2. Gueron S, Liron N. Ciliary motion modeling, and dynamic multicilia interactions. Biophys J 1992;63:1045-58. Pazour G, Rosenbaum J. Intraflagellar transport and cilia-dependent diseases. Trends Cell Biol 2002;12:551-5. Martin-Hurtado A, Lastres-Becker I, Cuadrado A, Garcia-Gonzalo F. NRF2 and Primary Cilia: An Emerging Partnership. Antioxidants (Basel) 2020;9:475. Rosenbaum J. Intraflagellar transport. Nat Rev Mol Cell Biol 2002;3: 813-25. Whitsett J. Airway Epithelial Differentiation and Mucociliary Clearance. Ann Am Thorac Soc 2018;15(Suppl3):S143-8. Tadokoro T, Wang Y, Barak L, Bai Y, Randell S, Hogan B. IL-6/STAT3 promotes regeneration of airway ciliated cells from basal stem cells. Proc Natl Acad Sci U S A 2014;111: E3641-9. Turner J, Roger J, Fitau J, Combe D, Giddings J, Heeke G, et al. Goblet Cells Are Derived from aFOXJ1-Expressing Progenitor in a Human Airway Epithelium. Am J Respir Cell Mol Biol 2011;44:276-84. Look D, Walter M, Williamson M, Pang L, You Y, Sreshta J, et al. Effects of Paramyxoviral Infection on Airway Epithelial Cell FOXJ1 Expression, Ciliogenesis, and Mucociliary Function. Am J Pathol 2001;159:2055-69. Wanner A, Salathé M, O’Riordan T. Mucociliary clearance in the airways. Am J Respir Crit Care Med 1996;154:1868-902. Houtmeyers E, Gosselink R, Gayan-Ramirez G, Decramer M. Regulation of mucociliary clearance in health and disease. Eur Respir J 1999;13:1177-88. Rubin B. Mucus and Mucins. Otolaryngol Clin North Am 2010;43:27-34. Bonser L, Erle D. Airway Mucus and Asthma: The Role of MUC5AC and MUC5B. J Clin Med 2017;6:112. Thai P, Loukoianov A, Wachi S, Wu R. Regulation of Airway Mucin Gene Expression. Annu Rev Physiol 2008;70:405-29. Chilvers M, O’Callaghan C. Local mucociliary defence mechanisms. Paediatr Respir Rev 2000;1:27-34. Cantin L, Bankier A, Eisenberg R. Bronchiectasis. AJR Am J Roentgenol 2009;193:W158-W171. Lewis B, Patial S, Saini Y. Immunopathology of Airway Surface Liquid Dehydration Disease. J Immunol Res 2019;2019:2180409. Courtney J, Ennis M, Elborn J. Cytokines and inflammatory mediators in cystic fibrosis. J Cyst Fibros 2004;3:223-31. Guan W, Peng Y, Zi X, Tan K, He T, Zhong N, et al. Motile Ciliary Disorders in Chronic Airway Inflammatory Diseases: Critical Target for Interventions. Curr Allergy Asthma Rep 2018;18:48. Mukherjee I, Roy S, Chakrabarti S. Identification of Important Effector Proteins in the FOXJ1 Transcriptional Network Associated With Ciliogenesis and Ciliary Function. Front Genet 2019;10:23. Rafeeq M, Murad H. Cystic fibrosis: current therapeutic targets and future approaches. J Transl Med 2017;15:84. Clinical and Functional translation of CFTR. Erişim tarihi: 12 Mart 2021. Available from: https://www.CFTR2.org. Cystic Fibrosis Mutation Database. Erişim tarihi: 12 Mart 2021. Available from: http://www.genet.sickkids.on.ca/ Richards C, Bradley L, Amos J, Allitto B, Grody W, Maddalena A, et al. Standards and Guidelines for CFTR Mutation Testing. Genet Med 2002;4:379-91.
  • Dayangaç-Erden D, Atalay M, Emiralioğlu N, Hızal M, Polat S, Özçelik U, et al. Mutations of the CFTR gene and novel variants in Turkish patients with cystic fibrosis: 24-years experience. Clin Chim Acta 2020;510:252-9.
  • Cutting G. Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet 2015;16:45-56.
  • Ratjen F, Bell S, Rowe S, Goss C, Quittner A, Bush A. Cystic fibrosis. Nat Rev Dis Primers 2015;1:15010.
  • Tsui L, Dorfman R. The Cystic Fibrosis Gene: A Molecular Genetic Perspective. Cold Spring Harb Perspect Med 2013;3:a009472.
  • Steinkamp G, Wiedemann B, Rietschel E, Krahl A, Gielen J, Barmeier H, et al. Prospective evaluation of emerging bacteria in cystic fibrosis. J Cyst Fibros 2005;4:41-8.
  • McShane D, Davies J, Wodehouse T, Bush A, Geddes D, Alton E. Normal nasal mucociliary clearance in CF children: evidence against a CFTR-related defect. Eur Respir J 2004;24:95-100.
  • Verhaeghe C, Remouchamps C, Hennuy B, Vanderplasschen A, Chariot A, Tabruyn S, et al. Role of IKK and ERK pathways in intrinsic inflammation of cystic fibrosis airways. Biochem Pharmacol 2007;73:1982-94.
  • Ross A, Dailey L, Brighton L, Devlin R. Transcriptional Profiling of Mucociliary Differentiation in Human Airway Epithelial Cells. Am J Respir Cell Mol Biol 2007;37:169-85.
  • Ostrowski L, Yin W, Diggs P, Rogers T, O’Neal W, Grubb B. Expression of CFTR from a ciliated cell-specific promoter is ineffective at correcting nasal potential difference in CF mice. Gene Ther 2007;14:1492-501.
  • Clarke L, Sousa L, Amaral M. WS20.3 Changes in transcriptomics of native nasal epithelium expressing F508del-CFTR and intersecting data from comparable studies. J Cyst Fibros 2013;14:38.
  • Clarke L, Botelho H, Sousa L, Falcao A, Amaral M. Transcriptome meta-analysis reveals common differential and global gene expression profiles in cystic fibrosis and other respiratory disorders and identifies CFTR regulators. Genomics 2015;106:268-77.
  • Maiti A, Mattéi M, Jorissen M, Volz A, Zeigler A, Bouvagnet P. Identification, tissue specific expression, and chromosomal localisation of several human dynein heavy chain genes. Eur J Hum Genet 2000;8:923-32.
  • Loges N, Olbrich H, Fenske L, Mussaffi H, Horvath J, Fliegauf M, et al. DNAI2 Mutations Cause Primary Ciliary Dyskinesia with Defects in the Outer Dynein Arm. Am J Hum Genet 2008;83:547-58.
  • Horani A, Ferkol T. Advances in the Genetics of Primary Ciliary Dyskinesia. Chest 2018;154:645-52.
  • Baz-Redón N, Rovira-Amigo S, Camats-Tarruella N, Fernández-Cancio M, Garrido-Pontnou M, Antolín M, et al. Role of Immunofluorescence and Molecular Diagnosis in the Characterization of Primary Ciliary Dyskinesia. Arch Bronconeumol 2019;55:439-41.
  • Meeks M, Bush A. Primary ciliary dyskinesia (PCD). Pediatr Pulmonol 2000;29:307-16.
  • Emiralioğlu N, Taşkıran E, Koşukcu C, Bilgiç E, Atilla P, Kaya B, et al. Genotype and phenotype evaluation of patients with primary ciliary dyskinesia: First results from Turkey. Pediatr Pulmonol 2020;55:383-93.
  • Baz-Redón N, Rovira-Amigo S, Paramonov I, Castillo-Corullón S, Roig M, Antolín M, et al. Implementation of a gene panel for genetic diagnosis of primary ciliary dyskinesia. Arch Bronconeumol 2020;S0300-2896:30073-9.
  • Milla C. The evolving spectrum of ciliopathies and respiratory disease. Curr Opin Pediatr 2016;28:339-47.
  • Maiti A, Bartoloni L, Mitchison H, Meeks M, Chung E, Spiden S, et al. No deleterious mutations in the FOXJ1 (alias HFH-4) gene in patients with Primary Ciliary Dyskinesia (PCD). Cytogenet Genome Res 2000;90:119-22.
  • Han M, Agusti A, Calverley P, Celli B, Criner G, Curtis J, et al. Chronic obstructive pulmonary disease phenotypes: the future of COPD. Am J Respir Crit Care Med 2010;182:598-604.
  • Tasena H, Faiz A, Timens W, Noordhoek J, Hylkema M, Gosens R, et al. microRNA–mRNA regulatory networks underlying chronic mucus hypersecretion in COPD. Eur Respir J 2018;52:1701556.
  • Gohy S, Carlier F, Fregimilicka C, Detry B, Lecocq M, Ladjemi M, et al. Altered generation of ciliated cells in chronic obstructive pulmonary disease. Sci Rep 2019;9:17963.
  • Yaghi A, Zaman A, Cox G, Dolovich M. Ciliary beating is depressed in nasal cilia from chronic obstructive pulmonary disease subjects. Respir Med 2012;106:1139-47.
  • McShane D, Davies JC, Wodehouse T, Bush A, Geddes D, Alton W. Normal nasal mucociliary clearance in CF children: evidence against a CFTR‐related defect. Eur Respir J 2004;24:95-100.
  • Verhaeghe C, Delbecque K, de Leval L, Oury C, Bours V. Early inflammation in the airways of a cystic fibrosis foetus. J Cyst Fibros 2007; 6:304–8.
  • Davis SD, Rosenfeld M, Lee HS, Ferkol TW, Sagel SD, Dell SD et al. Primary ciliary dyskinesia: longitudinal study of lung disease by ultrastructure defect and genotype. Am J Respir Crit Care Med 2019;199:190-8.
  • Baz-Redón N, Rovira-Amigo S, Camats-Tarruella N, Fernández-Cancio M, Garrido-Pontnou M, Antolín M, et al. Role of Immunofluorescence and Molecular Diagnosis in the Characterization of Primary Ciliary Dyskinesia. Arch Bronconeumol (Engl Ed) 2019; 55:439-41.
  • Yu X, Ng C, Habacher H, Roy S. FOXJ1 transcription factors are master regulators of the motile ciliogenic program. Nat Genet 2008;40:1445-53.
  • Ekinci İ, Hızal M, Emiralioğlu N, Özçelik U, Yalçın E, Doğru D, et al. Differentially expressed genes associated with disease severity in siblings with cystic fibrosis. Pediatr Pulmonol 2021; 56:910-20.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section REVIEW
Authors

Merve Atalay 0000-0001-6965-422X

Didem Dayangaç-erden 0000-0002-0236-7565

Publication Date November 26, 2021
Submission Date January 10, 2021
Published in Issue Year 2021

Cite

APA Atalay, M., & Dayangaç-erden, D. (2021). Kistik Fibrozis ve Benzer Solunum Yolu Hastalıklarında Silya yapı ve İşlev Bozuklukları. Turkish Journal of Pediatric Disease, 15(6), 545-552. https://doi.org/10.12956/tchd.857645
AMA Atalay M, Dayangaç-erden D. Kistik Fibrozis ve Benzer Solunum Yolu Hastalıklarında Silya yapı ve İşlev Bozuklukları. Turkish J Pediatr Dis. November 2021;15(6):545-552. doi:10.12956/tchd.857645
Chicago Atalay, Merve, and Didem Dayangaç-erden. “Kistik Fibrozis Ve Benzer Solunum Yolu Hastalıklarında Silya Yapı Ve İşlev Bozuklukları”. Turkish Journal of Pediatric Disease 15, no. 6 (November 2021): 545-52. https://doi.org/10.12956/tchd.857645.
EndNote Atalay M, Dayangaç-erden D (November 1, 2021) Kistik Fibrozis ve Benzer Solunum Yolu Hastalıklarında Silya yapı ve İşlev Bozuklukları. Turkish Journal of Pediatric Disease 15 6 545–552.
IEEE M. Atalay and D. Dayangaç-erden, “Kistik Fibrozis ve Benzer Solunum Yolu Hastalıklarında Silya yapı ve İşlev Bozuklukları”, Turkish J Pediatr Dis, vol. 15, no. 6, pp. 545–552, 2021, doi: 10.12956/tchd.857645.
ISNAD Atalay, Merve - Dayangaç-erden, Didem. “Kistik Fibrozis Ve Benzer Solunum Yolu Hastalıklarında Silya Yapı Ve İşlev Bozuklukları”. Turkish Journal of Pediatric Disease 15/6 (November 2021), 545-552. https://doi.org/10.12956/tchd.857645.
JAMA Atalay M, Dayangaç-erden D. Kistik Fibrozis ve Benzer Solunum Yolu Hastalıklarında Silya yapı ve İşlev Bozuklukları. Turkish J Pediatr Dis. 2021;15:545–552.
MLA Atalay, Merve and Didem Dayangaç-erden. “Kistik Fibrozis Ve Benzer Solunum Yolu Hastalıklarında Silya Yapı Ve İşlev Bozuklukları”. Turkish Journal of Pediatric Disease, vol. 15, no. 6, 2021, pp. 545-52, doi:10.12956/tchd.857645.
Vancouver Atalay M, Dayangaç-erden D. Kistik Fibrozis ve Benzer Solunum Yolu Hastalıklarında Silya yapı ve İşlev Bozuklukları. Turkish J Pediatr Dis. 2021;15(6):545-52.


The publication language of Turkish Journal of Pediatric Disease is English.


Manuscripts submitted to the Turkish Journal of Pediatric Disease will go through a double-blind peer-review process. Each submission will be reviewed by at least two external, independent peer reviewers who are experts in the field, in order to ensure an unbiased evaluation process. The editorial board will invite an external and independent editor to manage the evaluation processes of manuscripts submitted by editors or by the editorial board members of the journal. The Editor in Chief is the final authority in the decision-making process for all submissions. Articles accepted for publication in the Turkish Journal of Pediatrics are put in the order of publication taking into account the acceptance dates. If the articles sent to the reviewers for evaluation are assessed as a senior for publication by the reviewers, the section editor and the editor considering all aspects (originality, high scientific quality and citation potential), it receives publication priority in addition to the articles assigned for the next issue.


The aim of the Turkish Journal of Pediatrics is to publish high-quality original research articles that will contribute to the international literature in the field of general pediatric health and diseases and its sub-branches. It also publishes editorial opinions, letters to the editor, reviews, case reports, book reviews, comments on previously published articles, meeting and conference proceedings, announcements, and biography. In addition to the field of child health and diseases, the journal also includes articles prepared in fields such as surgery, dentistry, public health, nutrition and dietetics, social services, human genetics, basic sciences, psychology, psychiatry, educational sciences, sociology and nursing, provided that they are related to this field. can be published.