Research Article
BibTex RIS Cite

Düşey ve Deprem Yükleri Altında Tünel Kalıp Sistemli Bir Binanın Farklı Temel-Zemin Modellerine Göre Analizi

Year 2024, , 569 - 586, 30.12.2024
https://doi.org/10.46464/tdad.1493634

Abstract

Bu çalışmada 8 katlı tünel kalıp taşıyıcı sisteme sahip bina sonlu elemanlar metodu ile analiz edilmiştir. Yapı-temel sistemi için üç farklı zemin profili (ZC, ZD, ZE), üç farklı yükleme koşulu (1.4G+1.6Q; G+Q+EX, G+Q+EY) ve iki farklı temel modellemesi (ankastre çözüm, Winkler metodu) dikkate alınmıştır. Analiz sonucuna deprem kuvvetleri, tasarım ivme değerleri, periyodlar, zemin gerilmeleri, temeldeki oturmalar, kat deplasmanları ve perde tasarım kuvvetlerindeki değişim karşılaştırılmıştır. ZC’den ZE zemin sınıfına doğru gidildikçe TA ve TB arasındaki fark büyüdüğü için, ZE sınıfı zemin üzerine yapılacak yapıların maksimum ivmeye maruz kalma ihtimali diğer zemin sınıflarına göre daha fazladır. Ayrıca, ZE zemin sınıfı üzerine inşa edilen yapının periyodu Winkler yönteminde %75 daha fazla bulunmuştur. Bu artış deprem kuvvetlerinin artmasına neden olmaktadır. Yapıya etkiyen en büyük ivme sırasıyla ZE, ZD ve ZC zemin sınıfında olmuştur. Ankastre çözümde azaltılmış tasarım ivme değerleri Winkler yöntemine göre çözümden daha fazla olmuştur. Bu sebeple yapı-temel etkileşimini dikkate alan çözüm deprem kuvvetleri açısından daha ekonomik çözüm sunmakta fakat deplasmanlar daha fazla olmaktadır. Perde duvarların yalnız Eğik Çatlama Dayanımı (Vcr) bile deprem kuvvetinin üzerinde kalmaktadır. Bu durum tünel kalıp sistemlerin deprem etkisinde iyi performans göstermesini açıklamaktadır. ZC zemin sınıfında, düşey yükler altında oluşan gerilmeler ZE zemin sınıfına göre %25 daha fazladır. Deprem durumunda ise bu artış %50'ye kadar çıkmaktadır. Buna karşılık oturma değerleri artmaktadır.

References

  • Aval S.B.B., Asayesh M.J., 2017. Seismic performance evaluation of asymmetric reinforced concrete tunnel form buildings, Structures, 10, 157–169, https://doi.org/10.1016/j.istruc.2017.03.005.
  • Balkaya C., Kalkan E., 2002. Tünel Kalıp ile İnşa Edilen Yapıların Deprem Yükleri Altındaki Davranışları, ECAS2002 Uluslararası Yapı ve Deprem Mühendisliği Sempozyumu, Orta Doğu Teknik Üniversitesi, Ankara.
  • Balkaya C., Kalkan E., 2003a. Estimation of fundamental periods of shear‐wall dominant building structures, Earthq Eng Struct Dyn., 32(7),985-998.
  • Balkaya C., Kalkan E., 2003b. Nonlinear seismic response evaluation of tunnel form building structures, Comput Struct., 81(3),153-165.
  • Balkaya C., Kalkan E., 2004. Seismic vulnerability, behavior and design of tunnel form building structures, Eng Struct., 26(14), 2081-2099.
  • Chaudhary A.D., 2017. Study of tunnel formwork system & comparative analysis with conventional formwork, Int. J. Sci. Eng. Res, 8(5), 1281-1286.
  • El-saad M.N.A., Salama M.I., 2017. Estimation of period of vibration for concrete shear wall buildings, HBRC journal, 13(3):286–290.
  • EN 1998-1, 2004. Eurocode 8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings, European Standard, rue de Stassart, Brussels.
  • ETABS, 2003. Computers and Structures Inc. Berkeley, CA.
  • Goel R.K., Chopra A.K., 1998. Period formulas for concrete shear wall buildings, Journal of Structural Engineering, 124(4), 426-433.
  • Guzel Y., Güzel F., 2024. Considerations of Design Response Spectrum Involving Site Effect: Application to the Kocaeli Region, Türkiye, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 6(1), 40-57.
  • Hadzima-Nyarko M., Ademović N., Koković V., Lozančić S., 2022. Structural dynamic properties of reinforced concrete tunnel form system buildings, Structures, 41, 657-667.
  • Hokmabadi A.S., Fatahi B., Samali B., 2013. Seismic response of superstructure on soft soil considering soil-pile-structure interaction. In 18th International Conference on Soil Mechanics and Geotechnical Engineering: Challenges and Innovations in Geotechnics, ICSMGE 2013.
  • Kalkan E., Yüksel S.B., 2008. Pros and cons of multistory RC tunnel‐form (box‐type) buildings, The Structural Design of Tall and Special Buildings, 17(3),601-617.
  • Korkmaz H., 2006. Antakya’da zemin özellikleri ve deprem etkisi arasindaki ilişki, Coğrafi Bilimler Dergisi, 4(2),49-66.
  • Lee L., Chang K., Chun Y., 2000. Experimental formula for the fundamental period of RC buildings with shear‐wall dominant systems, The Structural Design of Tall Buildings, 9(4),295-307.
  • Mohsenian V., Di-Sarno L., 2024. Numerical analysis of potential failure modes in shear walls of the tunnel form concrete system: Performance-based approach, Eng Struct., 303,117494.
  • Mohsenian V., Gharaei-Moghaddam N., Moghadam A.S., 2024. Evaluation of slab–wall connections in tunnel form concrete structures: A multi-level approach based on seismic demand and capacity, Eng Fail Anal., 156,107833.
  • Mohsenian V., Nikkhoo A., Hejazi F., 2019. An investigation into the effect of soil-foundation interaction on the seismic performance of tunnel-form buildings. Soil Dynamics and Earthquake Engineering. 125:105747.
  • Mohsenian V., Nikkhoo A., Rostamkalaee S., Moghadam A.S., Hejazi F., 2021. The seismic performance of tunnel-form buildings with a non-uniform in-plan mass distribution, Structures, 29, 993-1004.
  • Mylonakis G., Nikolaou S., Gazetas G., 2006. Footings under seismic loading: Analysis and design issues with emphasis on bridge foundations, Soil Dynamics and Earthquake Engineering, 26(9),824-853.
  • Olgun M., Fidan B., Yenginar Y., 2019. Model Studies of Lateral Soil Pressure on Drilling Piles in Dry and Saturated Sands, Soil Mechanics and Foundation Engineering, 56(4),280-286. https://doi.org/10.1007/s11204-019-09603-9.
  • Özer Ö., Yüksel B., 2021. Comparison of the effect of foundation analysis methods on structural analysis results of tall buildings, International Advanced Researches and Engineering Journal, 5(1),106-112, https://doi.org/10.35860/iarej.799055.
  • Özkan İ., Yenginar Y., Ecemiş A.S., 2023. Analysis of raft foundation on sandy soils by Winkler and Pseudo-coupled methods, Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 31(2),675-688, https://doi.org/10.31796/ogummf.1224081.
  • Scott R.F., 1984. Foundation analysis, Prentice Hall International., London: Prentice Hall International.
  • Soğancı A.S., Orman A., 2024. The Influence of Polypropylene Fiber on High and Low Plasticity Clay, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 6(1), 178-187, https://doi.org/10.47112/neufmbd.2024.41.
  • Soğancı A.S., Yenginar Y., Orman A., 2023. Geotechnical Properties of Clayey Soils Stabilized with Marble Dust and Granulated Blast Furnace Slag, KSCE Journal of Civil Engineering, 27(11), 4622-4634, https://doi.org/10.1007/s12205-023-0384-6.
  • Soğancı A.S., Yenginar Y., Özkan İ., Güzel Y., Özdemir A., 2024. Waste Management of Red Mud and Fly Ash to Utilize in Road Subgrade Material, Sustainability, 16(7),2987, https://doi.org/10.3390/su16072987.
  • Stewart J.P., Seed R.B., Fenves G.L., 1999. Seismic soil-structure interaction in buildings. II: Empirical findings, Journal of geotechnical and geoenvironmental engineering, 125(1), 38-48.
  • TBDY, 2018. Türkiye Bina Deprem Yönetmeliği, Afet ve Acil Durum Yönetim Başkanlığı, Erişim adresi: https://www.resmigazete.gov.tr/eskiler/2018/03/20180318M1-2.htm.
  • Yenginar Y., Fidan B., Olgun M., 2024. Effect of pile geometry and soil saturation degree on point bearing capacity for bored piles in sands, Konya Journal of Engineering Sciences, 12 (2), 307–325, https://doi.org/10.36306/konjes.1398634.
  • Yenginar Y., Mobark A.A.A.M., Olgun M., 2021. Investigating the construction parameters of deep mixing columns in silty soils, International Advanced Researches and Engineering Journal, 5(3), 464-474, https://doi.org/10.35860/iarej.978978.
  • Yenginar Y., Olgun M., 2023. Optimizing installation parameters of DM columns in clay using Taguchi method, Bulletin of Engineering Geology and the Environment, 82(4),145, https://doi.org/10.1007/s10064-023-03168-6.
  • Yenginar Y., Olgun M., 2024. Uçucu Kül Katkısının Derin Karıştırma Kolonlarının Sıkışabilirliğine Etkisi, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 6(1), 139-152, https://doi.org/10.47112/neufmbd.2024.38.
  • Yenginar Y., Özkan İ., 2023. Local site conditions and hydromechanical effects in service life of cantilever retaining walls, Eng Fail Anal., 153, 107536. https://doi.org/10.1016/j.engfailanal.2023.107536.
  • Yuksel S.B., Kalkan E., 2007. Behavior of tunnel form buildings under quasi-static cyclic lateral loading, Structural Engineering and Mechanics, 27(1), 99.
  • Zienkiewicz O.C., Taylor R.L., Zhu J.Z., 2005. The finite element method set, Its Basis and Fundamentals, Sixth Edition, Elsevier, 2005.

Analysis of a Building with Tunnel Formwork System under Vertical and Earthquake Loads According to Different Foundation-Soil Models

Year 2024, , 569 - 586, 30.12.2024
https://doi.org/10.46464/tdad.1493634

Abstract

In this study, an 8-storey building with tunnel formwork structural system is analyzed by finite element method. Three different soil profiles (ZC, ZD, ZE), three different loading conditions (1.4G+1.6Q; G+Q+EX, G+Q+EY) and two different foundation models (fixed-end solution, Winkler method) are considered for the building-foundation system. As a result of the analysis, earthquake forces, design acceleration values, periods, soil stresses, settlements in the foundation, story displacements and the change in shear design forces were compared. As the difference between TA and TB increases from ZC to ZE soil class, the structures to be built on ZE class soil are more likely to be exposed to maximum acceleration than other soil classes. Additionally, the period of the structure built on ZE soil class was found to be 75% higher using the Winkler method. This increase leads to a rise in earthquake forces. The largest acceleration acting on the structure was in ZE, ZD and ZC soil classes, respectively. The reduced design acceleration values in the fixed-end solution were higher than the solution according to the Winkler method. For this reason, the solution considering structure-foundation interaction provides a more economical solution in terms of earthquake forces, but the displacements are higher. The oblique cracking strength (Vcr) of shear walls alone exceeds the earthquake force. This explains the good performance of tunnel formwork systems under earthquake effects. In the ZC soil class, stresses under vertical loads are 25% higher compared to the ZE soil class. In the event of an earthquake, this increase can reach up to 50%. On the contrary, settlement values increase.

References

  • Aval S.B.B., Asayesh M.J., 2017. Seismic performance evaluation of asymmetric reinforced concrete tunnel form buildings, Structures, 10, 157–169, https://doi.org/10.1016/j.istruc.2017.03.005.
  • Balkaya C., Kalkan E., 2002. Tünel Kalıp ile İnşa Edilen Yapıların Deprem Yükleri Altındaki Davranışları, ECAS2002 Uluslararası Yapı ve Deprem Mühendisliği Sempozyumu, Orta Doğu Teknik Üniversitesi, Ankara.
  • Balkaya C., Kalkan E., 2003a. Estimation of fundamental periods of shear‐wall dominant building structures, Earthq Eng Struct Dyn., 32(7),985-998.
  • Balkaya C., Kalkan E., 2003b. Nonlinear seismic response evaluation of tunnel form building structures, Comput Struct., 81(3),153-165.
  • Balkaya C., Kalkan E., 2004. Seismic vulnerability, behavior and design of tunnel form building structures, Eng Struct., 26(14), 2081-2099.
  • Chaudhary A.D., 2017. Study of tunnel formwork system & comparative analysis with conventional formwork, Int. J. Sci. Eng. Res, 8(5), 1281-1286.
  • El-saad M.N.A., Salama M.I., 2017. Estimation of period of vibration for concrete shear wall buildings, HBRC journal, 13(3):286–290.
  • EN 1998-1, 2004. Eurocode 8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings, European Standard, rue de Stassart, Brussels.
  • ETABS, 2003. Computers and Structures Inc. Berkeley, CA.
  • Goel R.K., Chopra A.K., 1998. Period formulas for concrete shear wall buildings, Journal of Structural Engineering, 124(4), 426-433.
  • Guzel Y., Güzel F., 2024. Considerations of Design Response Spectrum Involving Site Effect: Application to the Kocaeli Region, Türkiye, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 6(1), 40-57.
  • Hadzima-Nyarko M., Ademović N., Koković V., Lozančić S., 2022. Structural dynamic properties of reinforced concrete tunnel form system buildings, Structures, 41, 657-667.
  • Hokmabadi A.S., Fatahi B., Samali B., 2013. Seismic response of superstructure on soft soil considering soil-pile-structure interaction. In 18th International Conference on Soil Mechanics and Geotechnical Engineering: Challenges and Innovations in Geotechnics, ICSMGE 2013.
  • Kalkan E., Yüksel S.B., 2008. Pros and cons of multistory RC tunnel‐form (box‐type) buildings, The Structural Design of Tall and Special Buildings, 17(3),601-617.
  • Korkmaz H., 2006. Antakya’da zemin özellikleri ve deprem etkisi arasindaki ilişki, Coğrafi Bilimler Dergisi, 4(2),49-66.
  • Lee L., Chang K., Chun Y., 2000. Experimental formula for the fundamental period of RC buildings with shear‐wall dominant systems, The Structural Design of Tall Buildings, 9(4),295-307.
  • Mohsenian V., Di-Sarno L., 2024. Numerical analysis of potential failure modes in shear walls of the tunnel form concrete system: Performance-based approach, Eng Struct., 303,117494.
  • Mohsenian V., Gharaei-Moghaddam N., Moghadam A.S., 2024. Evaluation of slab–wall connections in tunnel form concrete structures: A multi-level approach based on seismic demand and capacity, Eng Fail Anal., 156,107833.
  • Mohsenian V., Nikkhoo A., Hejazi F., 2019. An investigation into the effect of soil-foundation interaction on the seismic performance of tunnel-form buildings. Soil Dynamics and Earthquake Engineering. 125:105747.
  • Mohsenian V., Nikkhoo A., Rostamkalaee S., Moghadam A.S., Hejazi F., 2021. The seismic performance of tunnel-form buildings with a non-uniform in-plan mass distribution, Structures, 29, 993-1004.
  • Mylonakis G., Nikolaou S., Gazetas G., 2006. Footings under seismic loading: Analysis and design issues with emphasis on bridge foundations, Soil Dynamics and Earthquake Engineering, 26(9),824-853.
  • Olgun M., Fidan B., Yenginar Y., 2019. Model Studies of Lateral Soil Pressure on Drilling Piles in Dry and Saturated Sands, Soil Mechanics and Foundation Engineering, 56(4),280-286. https://doi.org/10.1007/s11204-019-09603-9.
  • Özer Ö., Yüksel B., 2021. Comparison of the effect of foundation analysis methods on structural analysis results of tall buildings, International Advanced Researches and Engineering Journal, 5(1),106-112, https://doi.org/10.35860/iarej.799055.
  • Özkan İ., Yenginar Y., Ecemiş A.S., 2023. Analysis of raft foundation on sandy soils by Winkler and Pseudo-coupled methods, Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 31(2),675-688, https://doi.org/10.31796/ogummf.1224081.
  • Scott R.F., 1984. Foundation analysis, Prentice Hall International., London: Prentice Hall International.
  • Soğancı A.S., Orman A., 2024. The Influence of Polypropylene Fiber on High and Low Plasticity Clay, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 6(1), 178-187, https://doi.org/10.47112/neufmbd.2024.41.
  • Soğancı A.S., Yenginar Y., Orman A., 2023. Geotechnical Properties of Clayey Soils Stabilized with Marble Dust and Granulated Blast Furnace Slag, KSCE Journal of Civil Engineering, 27(11), 4622-4634, https://doi.org/10.1007/s12205-023-0384-6.
  • Soğancı A.S., Yenginar Y., Özkan İ., Güzel Y., Özdemir A., 2024. Waste Management of Red Mud and Fly Ash to Utilize in Road Subgrade Material, Sustainability, 16(7),2987, https://doi.org/10.3390/su16072987.
  • Stewart J.P., Seed R.B., Fenves G.L., 1999. Seismic soil-structure interaction in buildings. II: Empirical findings, Journal of geotechnical and geoenvironmental engineering, 125(1), 38-48.
  • TBDY, 2018. Türkiye Bina Deprem Yönetmeliği, Afet ve Acil Durum Yönetim Başkanlığı, Erişim adresi: https://www.resmigazete.gov.tr/eskiler/2018/03/20180318M1-2.htm.
  • Yenginar Y., Fidan B., Olgun M., 2024. Effect of pile geometry and soil saturation degree on point bearing capacity for bored piles in sands, Konya Journal of Engineering Sciences, 12 (2), 307–325, https://doi.org/10.36306/konjes.1398634.
  • Yenginar Y., Mobark A.A.A.M., Olgun M., 2021. Investigating the construction parameters of deep mixing columns in silty soils, International Advanced Researches and Engineering Journal, 5(3), 464-474, https://doi.org/10.35860/iarej.978978.
  • Yenginar Y., Olgun M., 2023. Optimizing installation parameters of DM columns in clay using Taguchi method, Bulletin of Engineering Geology and the Environment, 82(4),145, https://doi.org/10.1007/s10064-023-03168-6.
  • Yenginar Y., Olgun M., 2024. Uçucu Kül Katkısının Derin Karıştırma Kolonlarının Sıkışabilirliğine Etkisi, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 6(1), 139-152, https://doi.org/10.47112/neufmbd.2024.38.
  • Yenginar Y., Özkan İ., 2023. Local site conditions and hydromechanical effects in service life of cantilever retaining walls, Eng Fail Anal., 153, 107536. https://doi.org/10.1016/j.engfailanal.2023.107536.
  • Yuksel S.B., Kalkan E., 2007. Behavior of tunnel form buildings under quasi-static cyclic lateral loading, Structural Engineering and Mechanics, 27(1), 99.
  • Zienkiewicz O.C., Taylor R.L., Zhu J.Z., 2005. The finite element method set, Its Basis and Fundamentals, Sixth Edition, Elsevier, 2005.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Reinforced Concrete Buildings, Civil Geotechnical Engineering
Journal Section Articles
Authors

Ali Serdar Ecemiş 0000-0002-7332-3738

Yavuz Yenginar 0000-0002-6916-4068

İlyas Özkan 0000-0001-9660-8229

Early Pub Date December 5, 2024
Publication Date December 30, 2024
Submission Date May 31, 2024
Acceptance Date September 26, 2024
Published in Issue Year 2024

Cite

APA Ecemiş, A. S., Yenginar, Y., & Özkan, İ. (2024). Düşey ve Deprem Yükleri Altında Tünel Kalıp Sistemli Bir Binanın Farklı Temel-Zemin Modellerine Göre Analizi. Türk Deprem Araştırma Dergisi, 6(2), 569-586. https://doi.org/10.46464/tdad.1493634
AMA Ecemiş AS, Yenginar Y, Özkan İ. Düşey ve Deprem Yükleri Altında Tünel Kalıp Sistemli Bir Binanın Farklı Temel-Zemin Modellerine Göre Analizi. TDAD. December 2024;6(2):569-586. doi:10.46464/tdad.1493634
Chicago Ecemiş, Ali Serdar, Yavuz Yenginar, and İlyas Özkan. “Düşey Ve Deprem Yükleri Altında Tünel Kalıp Sistemli Bir Binanın Farklı Temel-Zemin Modellerine Göre Analizi”. Türk Deprem Araştırma Dergisi 6, no. 2 (December 2024): 569-86. https://doi.org/10.46464/tdad.1493634.
EndNote Ecemiş AS, Yenginar Y, Özkan İ (December 1, 2024) Düşey ve Deprem Yükleri Altında Tünel Kalıp Sistemli Bir Binanın Farklı Temel-Zemin Modellerine Göre Analizi. Türk Deprem Araştırma Dergisi 6 2 569–586.
IEEE A. S. Ecemiş, Y. Yenginar, and İ. Özkan, “Düşey ve Deprem Yükleri Altında Tünel Kalıp Sistemli Bir Binanın Farklı Temel-Zemin Modellerine Göre Analizi”, TDAD, vol. 6, no. 2, pp. 569–586, 2024, doi: 10.46464/tdad.1493634.
ISNAD Ecemiş, Ali Serdar et al. “Düşey Ve Deprem Yükleri Altında Tünel Kalıp Sistemli Bir Binanın Farklı Temel-Zemin Modellerine Göre Analizi”. Türk Deprem Araştırma Dergisi 6/2 (December 2024), 569-586. https://doi.org/10.46464/tdad.1493634.
JAMA Ecemiş AS, Yenginar Y, Özkan İ. Düşey ve Deprem Yükleri Altında Tünel Kalıp Sistemli Bir Binanın Farklı Temel-Zemin Modellerine Göre Analizi. TDAD. 2024;6:569–586.
MLA Ecemiş, Ali Serdar et al. “Düşey Ve Deprem Yükleri Altında Tünel Kalıp Sistemli Bir Binanın Farklı Temel-Zemin Modellerine Göre Analizi”. Türk Deprem Araştırma Dergisi, vol. 6, no. 2, 2024, pp. 569-86, doi:10.46464/tdad.1493634.
Vancouver Ecemiş AS, Yenginar Y, Özkan İ. Düşey ve Deprem Yükleri Altında Tünel Kalıp Sistemli Bir Binanın Farklı Temel-Zemin Modellerine Göre Analizi. TDAD. 2024;6(2):569-86.

AÇIK ERİŞİM ve LİSANS


Bu derginin içeriği Creative Commons Attribution 4.0 International Non-Commercial License'a tabidir.




Flag Counter