Research Article
BibTex RIS Cite

Köprü Yapılarının Eş Zamanlı Sistem ve Girdi Tanılaması

Year 2019, , 98 - 122, 18.12.2019
https://doi.org/10.46464/tdad.593551

Abstract

Bu makale, deprem kayıtlarını kullanarak köprü
yapılarının sistem tanılaması için yeni bir yöntem sunmaktadır. Köprüler,
genellikle yapısal elemanlarının geniş mesafelere yayılmasından ötürü, diğer
yapılara nispeten yer hareketlerinin uzamsal değişkenliğine daha hassastırlar.
Bu nedenle, özellikle temelleri değişik zemin türlerine oturan uzun ve çok
kolonlu köprülerin simülasyonlarında kullanılacak nitelikte yer hareketi
kayıtlarının ölçümü karmaşık bir süreçtir. Bilhassa hem eylemsizlik hem de
kinematik Zemin-Yapı Etkileşimi etkilerinin yaygın olduğu durumlarda, köprü Temel
Girdi Hareketlerinin doğrudan ölçümü mümkün olmayabilir. Bu çalışmada, uzamsal
olarak seyrek bir şekilde ölçülmüş sismik yapı davranış kayıtlarını kullanarak
eş zamanlı sistem ve girdi tanılaması sağlayan yeni bir yöntem önerilmektedir.
Önerilen metodun teyidi ve gerçek ölçekte problemlere uygulanabilirliğini
doğrulamak adına, yöntem Golden Gate Köprüsü'ne uygulanmış ve elde edilen
sonuçlar mevcut veriler ile karşılaştırılmıştır.





Supporting Institution

Kaliforniya Jeolojik Araştırma Kurumu ve Kaliforniya Eyaleti Ulaşım Dairesi Başkanlığı

Project Number

Sözleşme No: 1014-963 ve Destek No: 65A0450

Thanks

Yazarlar, UCLA Dijital Araştırma ve Eğitim Enstitüsü'nden Dr. D'Auria'ya, buradaki analizlerin UCLA Hoffman bilgisayar kümesi üzerinden yapılmasına yardımcı olduğu için teşekkür eder. Bu yazıda sunulan çalışmalar, kısmen Kaliforniya Jeolojik Araştırma Kurumu (Sözleşme No: 1014-963) ve Kaliforniya Eyaleti Ulaşım Dairesi Başkanlığı (Destek No: 65A0450) tarafından finanse edilmiştir. Bu çalışmada ifade edilen görüşler, bulgular, sonuçlar veya tavsiyeler yazarlara aittir ve destekleyen kurumların görüşlerini yansıtmaz.

References

  • Abdel-Ghaffar A.M., 1976. Dynamic analyses of suspension bridge structures, California Institute of Technology Earthquake Engineering Research Laboratory (Unpublished), Pasadena California.
  • Abdel-Ghaffar A.M., Rubin L.I., 1983a. Vertical seismic behaviour of suspension bridges, Earthq. Eng. Struct. Dyn. 11 (1), 1-19.
  • Abdel Ghaffar A.M., Rubin L.I., 1983b. Lateral Earthquake Response of Suspension Bridges, J. Struct. Eng. 109 (3), 664-675.
  • Abdel-Ghaffar A.M., Scanlan R.H., 1985a. Ambient vibration studies of golden gate bridge: I. Suspended structure, J. Eng. Mech. 111 (4), 463-482.
  • Abdel-Ghaffar A.M., Scanlan R.H., 1985b. Ambient Vibration Studies of Golden Gate Bridge: II. Pier-Tower Structure, J. Eng. Mech. 101 (4), 483-499.
  • Abdel-Ghaffar A.M., Scanlan R.H., Diehl J., 1985. Analysis of the dynamic characteristics of the Golden Gate Bridge by ambient vibration measurements. Princeton University.
  • Abdel-Ghaffar A.M., Stringfellow R.G., 1984a. Response of suspension bridges to travelling earthquake excitations: Part I. Vertical response, Int. J. Soil Dyn. Earthq. Eng. 3 (2), 62-72.
  • Abdel-Ghaffar A.M., Stringfellow R.G., 1984b. Stringfellow, Response of suspension bridges to travelling earthquake excitations: Part II-lateral response, Int. J. Soil Dyn. Earthq. Eng. 3 (2), 73-81.
  • Astroza R., Ebrahimian H., Li Y., Conte J.P., 2017. Bayesian nonlinear structural SE model and seismic input identification for damage assessment of civil structures, Mech. Syst. Signal Process 93, 661-687.
  • Bendat J.S., Piersol A.G., 1993. Engineering applications of correlation and spectral analysis, 2nd Ed., Wiley, NY, USA, 458 pp.
  • Baron F., Arikan M., Hamati R.E., 1976. The effects of seismic disturbances on the Golden Gate Bridge. University of California, College of Engineering, Earthquake Engineering Research Center.
  • CESMD, 2017. Center of Engineering Strong Motion Data. Erişim adresi: www.strongmotioncenter.org , (01/01/2017)
  • Chang M., Pakzad S.N., 2013. Modified Natural Excitation Technique for Stochastic Modal Identification, J. Struct. Eng. 139 (10), 1753-1762.
  • CSI, 2002. Integrated Finite Element Analysis and Design of Structures Basic Analysis Reference Manual, Comput. Struct. Inc., Berkeley, California, USA.
  • Çelebi M., 2012. Golden Gate Bridge response: a study with low-amplitude data from three earthquakes, Earthquake Spectra 28 (2), 487-510.
  • Dameron R.A., Dunham R.S., Castro J.C., 1994. Nonlinear analysis and experimental validation of a stiffening truss chord of the golden gate bridge, in Computing in Civil Engineering (New York), (2), 1106-1114.
  • Ebrahimian H., Astroza R., Conte J.P., de Callafon R.A., 2017. Nonlinear finite element model updating for damage identification of civil structures using batch Bayesian estimation, Mech. Syst. Signal Process 84, 194-222.
  • Game T., Vos C., Morshedi R., Gratton R., Alonso-Marroquin F., Tahmasebinia F., Alonso-Marroquin F., 2016. Full dynamic model of Golden Gate Bridge, in AIP Conference Proceedings 1762 (1), p. 20005.
  • Gurelli M.I., Nikias C.L., 1995. EVAM: An Eigenvector-Based Algorithm for Multichannel Blind Deconvolution of Input Colored Signals, IEEE Trans. Signal Process. 43 (1), 134-149.
  • Haykin S., 2001. Kalman Filters (In: Kalman Filtering and Neural Networks, Editor: Haykin S., John Wiley & Sons Inc., USA, 280 p, doi 10.1002/0471221546), 1-21.
  • Hibbitt, Karlsson, Sorensen, 2001. ABAQUS/standard User’s Manual 1., Pennsylvania State University, USA.
  • Huang M., Hipley P., Shakal A., 2013. Seismic Instrumentation of Toll Bridges in California, in Sevnetgh National Seismic Conference on Brdiges and Highways, Oakland, Californa, Paper 2013, p10.
  • Imbsen R., Schamber R., 1999. Seismic retrofit of the north approach viaduct of the Golden Gate Bridge, Transp. Res. Rec. J. Transp. Res. Board (1688), 154-162.
  • Ingham T.J., Rodriguez S., Nader M.N., Taucer F., Seim C., 1995. Seismic retrofit of the golden gate bridge in Proc., National Seismic Conf. on Bridges and Highways: Progress in Research and Practice, 1995.
  • Julier S.J., Uhlmann J.K., 1997. New extension of the Kalman filter to nonlinear systems, Proceeding SPIE 3068, Signal Processing, Sensor Fusion, and Target Recognition VI, doi.org/10.1117/12.280797, 182-193.
  • Ketchum M.A., Seim C., 1990. Golden Gate bridge seismic evaluation, TY Lin International.
  • Kiureghian A.D., 1996. A Coherency Model for Spatially Varying Ground Motions, Earthq. Eng. Struct. Dyn. 25, 99-111.
  • Ljung L., 1987. System Identification - Theory for the User, Prentice-Hall, Englewood Cliffs, N.J., USA.
  • Matarazzo T.J., Pakzad S.N., 2014. Modal identification of golden gate bridge using pseudo mobile sensing data with STRIDE, in Dynamics of Civil Structures, Vol. 4, Springer, 293-298.
  • Matarazzo T.J., Pakzad S.N., 2016. STRIDE for structural identification using expectation maximization: iterative output-only method for modal identification, J. Eng. Mech. 142 (4), p. 4015109.
  • McKenna F., 2011. OpenSees: a framework for earthquake engineering simulation, Comput. Sci. Eng. 13 (4), 58-66.
  • Matlab, 2004. MATLAB The Language of Technical Computing, Components 3 (7), 750.
  • Nader M., Ingham T.J., 1995. Seismic Retrofit of the Towers of the Golden Gate Bridge, in Proceedings of the National Seismic Conference on Bridges and Highways, San Diego, CA, December.
  • Nakamura Y., Kiureghian A.D., Liu D., 1993. Multiple-support response spectrum analysis of the Golden Gate Bridge 93 (5). Earthquake Engineering Research Center, University of California, USA.
  • Nishkian L.H., 1947. Vertical vibration recorders for the Golden Gate Bridge, Bull. Seismol. Soc. Am. 37 (2), 81-88.
  • Pakzad S.N., Fenves G.L., 2009. Statistical Analysis of Vibration Modes of a Suspension Bridge Using Spatially Dense Wireless Sensor Network, J. Struct. Eng. 135 (7), 863-872.
  • Pakzad S.N., Fenves G.L., Kim S., Culler D.E., 2008. Design and Implementation of Scalable Wireless Sensor Network for Structural Monitoring, J. Infrastruct. Syst. 14 (1), 89-101.
  • Pakzad S.N., Rocha G.V., Yu B., 2011. Distributed modal identification using restricted auto regressive models, Int. J. Syst. Sci. 42 (9), 1473-1489.
  • Reid J.G., 1977. Structural Identifiability in Linear Time-Invariant Systems, IEEE Trans. Automat. Contr. 22 (2), 242-246.
  • Rodriguez S., Ingham T.J., 1995. Seismic protective systems for the stiffening trusses of the Golden Gate Bridge, in Proceedings of the National Seismic Conference on Bridges and Highways.
  • Seim C., Ketchum M., 1990. Golden Gate Bridge Mass Transit Feasibility Study, Golden Gate Bridge, Highway and Transportation District, San Francisco, California.
  • Seim C., Rodriguez S., 1993. Seismic performance and retrofit of the Golden Gate bridge, in Structural Engineering in Natural Hazards Mitigation, 133-138.
  • Shakal A.F., Petersen C.D., Cramlet A.B., Darragh R.B., 1995. CSMIP near-real-time strong motion monitoring system: Rapid data recovery and proceZYEng for event response, In Proceedings SMIP95 Seminar on Seismological and Engineering Implications of Recent Strong-Motion Data.
  • Shrikhande M., Gupta V.K., 1999. Dynamic soil-structure interaction effects on the seismic response of suspension bridges, Earthq. Eng. Struct. Dyn. 28 (11), 1383-1403.
  • Strand7, 2007. Finite Element Analysis System. Strand7 Software Sydney, Australia.
  • Strauss J.B., Paine C.E., 1938. The Golden Gate Bridge: report of the chief engineer to the Board of directors of the Golden Gate Bridge and Highway and Transportation District, San Francisco, California, USA, 246 p.
  • Tanaka H., Davenport A.G., 1983. Wind‐Induced Response of Golden Gate Bridge, J. Eng. Mech. 109 (1), 296-312.
  • Vincent G.S., 1962. Golden Gate bridge vibration studies, Trans. Am. Soc. Civ. Eng. 127 (2), 667-701.
  • Vincent G.S., Labse M., 1962. Correlation of predicted and observed suspension bridge behavior, Trans. Am. Soc. Civ. Eng. 127 (2), 646-666.
  • Wolf J.P., Deeks A.J., 2004. Foundation vibration analysis: A strength of materials approach, Butterworth-Heinemann Publ.Comp, U.K., ISBN 978-0750661645, 240 p.
  • Zerva A., Zervas V., 2002. Spatial variation of seismic ground motions: An overview, Appl. Mech. Rev. 55 (3), 271.

Joint System-Input Identification of Bridge Structures

Year 2019, , 98 - 122, 18.12.2019
https://doi.org/10.46464/tdad.593551

Abstract

This paper presents a
novel framework for system identification of bridge structures using recorded
earthquake data. Bridge structures are prone to spatial variability of ground
motions because they extend over relatively long distances. So, input motion
measurement is a challenging task, especially for long bridges with multiple
piers. Moreover, direct measurement of the bridge Foundation Input Motions
(FIMs) may not be possible due to both inertial and kinematic Soil-Structure
Interaction (SSI) effects. In this study, we propose a joint system-input
identification solution using sparsely measured earthquake-induced responses.
We verify this method and its applicability for real scale problems using
simulated data obtained from the Golden Gate Bridge.

Project Number

Sözleşme No: 1014-963 ve Destek No: 65A0450

References

  • Abdel-Ghaffar A.M., 1976. Dynamic analyses of suspension bridge structures, California Institute of Technology Earthquake Engineering Research Laboratory (Unpublished), Pasadena California.
  • Abdel-Ghaffar A.M., Rubin L.I., 1983a. Vertical seismic behaviour of suspension bridges, Earthq. Eng. Struct. Dyn. 11 (1), 1-19.
  • Abdel Ghaffar A.M., Rubin L.I., 1983b. Lateral Earthquake Response of Suspension Bridges, J. Struct. Eng. 109 (3), 664-675.
  • Abdel-Ghaffar A.M., Scanlan R.H., 1985a. Ambient vibration studies of golden gate bridge: I. Suspended structure, J. Eng. Mech. 111 (4), 463-482.
  • Abdel-Ghaffar A.M., Scanlan R.H., 1985b. Ambient Vibration Studies of Golden Gate Bridge: II. Pier-Tower Structure, J. Eng. Mech. 101 (4), 483-499.
  • Abdel-Ghaffar A.M., Scanlan R.H., Diehl J., 1985. Analysis of the dynamic characteristics of the Golden Gate Bridge by ambient vibration measurements. Princeton University.
  • Abdel-Ghaffar A.M., Stringfellow R.G., 1984a. Response of suspension bridges to travelling earthquake excitations: Part I. Vertical response, Int. J. Soil Dyn. Earthq. Eng. 3 (2), 62-72.
  • Abdel-Ghaffar A.M., Stringfellow R.G., 1984b. Stringfellow, Response of suspension bridges to travelling earthquake excitations: Part II-lateral response, Int. J. Soil Dyn. Earthq. Eng. 3 (2), 73-81.
  • Astroza R., Ebrahimian H., Li Y., Conte J.P., 2017. Bayesian nonlinear structural SE model and seismic input identification for damage assessment of civil structures, Mech. Syst. Signal Process 93, 661-687.
  • Bendat J.S., Piersol A.G., 1993. Engineering applications of correlation and spectral analysis, 2nd Ed., Wiley, NY, USA, 458 pp.
  • Baron F., Arikan M., Hamati R.E., 1976. The effects of seismic disturbances on the Golden Gate Bridge. University of California, College of Engineering, Earthquake Engineering Research Center.
  • CESMD, 2017. Center of Engineering Strong Motion Data. Erişim adresi: www.strongmotioncenter.org , (01/01/2017)
  • Chang M., Pakzad S.N., 2013. Modified Natural Excitation Technique for Stochastic Modal Identification, J. Struct. Eng. 139 (10), 1753-1762.
  • CSI, 2002. Integrated Finite Element Analysis and Design of Structures Basic Analysis Reference Manual, Comput. Struct. Inc., Berkeley, California, USA.
  • Çelebi M., 2012. Golden Gate Bridge response: a study with low-amplitude data from three earthquakes, Earthquake Spectra 28 (2), 487-510.
  • Dameron R.A., Dunham R.S., Castro J.C., 1994. Nonlinear analysis and experimental validation of a stiffening truss chord of the golden gate bridge, in Computing in Civil Engineering (New York), (2), 1106-1114.
  • Ebrahimian H., Astroza R., Conte J.P., de Callafon R.A., 2017. Nonlinear finite element model updating for damage identification of civil structures using batch Bayesian estimation, Mech. Syst. Signal Process 84, 194-222.
  • Game T., Vos C., Morshedi R., Gratton R., Alonso-Marroquin F., Tahmasebinia F., Alonso-Marroquin F., 2016. Full dynamic model of Golden Gate Bridge, in AIP Conference Proceedings 1762 (1), p. 20005.
  • Gurelli M.I., Nikias C.L., 1995. EVAM: An Eigenvector-Based Algorithm for Multichannel Blind Deconvolution of Input Colored Signals, IEEE Trans. Signal Process. 43 (1), 134-149.
  • Haykin S., 2001. Kalman Filters (In: Kalman Filtering and Neural Networks, Editor: Haykin S., John Wiley & Sons Inc., USA, 280 p, doi 10.1002/0471221546), 1-21.
  • Hibbitt, Karlsson, Sorensen, 2001. ABAQUS/standard User’s Manual 1., Pennsylvania State University, USA.
  • Huang M., Hipley P., Shakal A., 2013. Seismic Instrumentation of Toll Bridges in California, in Sevnetgh National Seismic Conference on Brdiges and Highways, Oakland, Californa, Paper 2013, p10.
  • Imbsen R., Schamber R., 1999. Seismic retrofit of the north approach viaduct of the Golden Gate Bridge, Transp. Res. Rec. J. Transp. Res. Board (1688), 154-162.
  • Ingham T.J., Rodriguez S., Nader M.N., Taucer F., Seim C., 1995. Seismic retrofit of the golden gate bridge in Proc., National Seismic Conf. on Bridges and Highways: Progress in Research and Practice, 1995.
  • Julier S.J., Uhlmann J.K., 1997. New extension of the Kalman filter to nonlinear systems, Proceeding SPIE 3068, Signal Processing, Sensor Fusion, and Target Recognition VI, doi.org/10.1117/12.280797, 182-193.
  • Ketchum M.A., Seim C., 1990. Golden Gate bridge seismic evaluation, TY Lin International.
  • Kiureghian A.D., 1996. A Coherency Model for Spatially Varying Ground Motions, Earthq. Eng. Struct. Dyn. 25, 99-111.
  • Ljung L., 1987. System Identification - Theory for the User, Prentice-Hall, Englewood Cliffs, N.J., USA.
  • Matarazzo T.J., Pakzad S.N., 2014. Modal identification of golden gate bridge using pseudo mobile sensing data with STRIDE, in Dynamics of Civil Structures, Vol. 4, Springer, 293-298.
  • Matarazzo T.J., Pakzad S.N., 2016. STRIDE for structural identification using expectation maximization: iterative output-only method for modal identification, J. Eng. Mech. 142 (4), p. 4015109.
  • McKenna F., 2011. OpenSees: a framework for earthquake engineering simulation, Comput. Sci. Eng. 13 (4), 58-66.
  • Matlab, 2004. MATLAB The Language of Technical Computing, Components 3 (7), 750.
  • Nader M., Ingham T.J., 1995. Seismic Retrofit of the Towers of the Golden Gate Bridge, in Proceedings of the National Seismic Conference on Bridges and Highways, San Diego, CA, December.
  • Nakamura Y., Kiureghian A.D., Liu D., 1993. Multiple-support response spectrum analysis of the Golden Gate Bridge 93 (5). Earthquake Engineering Research Center, University of California, USA.
  • Nishkian L.H., 1947. Vertical vibration recorders for the Golden Gate Bridge, Bull. Seismol. Soc. Am. 37 (2), 81-88.
  • Pakzad S.N., Fenves G.L., 2009. Statistical Analysis of Vibration Modes of a Suspension Bridge Using Spatially Dense Wireless Sensor Network, J. Struct. Eng. 135 (7), 863-872.
  • Pakzad S.N., Fenves G.L., Kim S., Culler D.E., 2008. Design and Implementation of Scalable Wireless Sensor Network for Structural Monitoring, J. Infrastruct. Syst. 14 (1), 89-101.
  • Pakzad S.N., Rocha G.V., Yu B., 2011. Distributed modal identification using restricted auto regressive models, Int. J. Syst. Sci. 42 (9), 1473-1489.
  • Reid J.G., 1977. Structural Identifiability in Linear Time-Invariant Systems, IEEE Trans. Automat. Contr. 22 (2), 242-246.
  • Rodriguez S., Ingham T.J., 1995. Seismic protective systems for the stiffening trusses of the Golden Gate Bridge, in Proceedings of the National Seismic Conference on Bridges and Highways.
  • Seim C., Ketchum M., 1990. Golden Gate Bridge Mass Transit Feasibility Study, Golden Gate Bridge, Highway and Transportation District, San Francisco, California.
  • Seim C., Rodriguez S., 1993. Seismic performance and retrofit of the Golden Gate bridge, in Structural Engineering in Natural Hazards Mitigation, 133-138.
  • Shakal A.F., Petersen C.D., Cramlet A.B., Darragh R.B., 1995. CSMIP near-real-time strong motion monitoring system: Rapid data recovery and proceZYEng for event response, In Proceedings SMIP95 Seminar on Seismological and Engineering Implications of Recent Strong-Motion Data.
  • Shrikhande M., Gupta V.K., 1999. Dynamic soil-structure interaction effects on the seismic response of suspension bridges, Earthq. Eng. Struct. Dyn. 28 (11), 1383-1403.
  • Strand7, 2007. Finite Element Analysis System. Strand7 Software Sydney, Australia.
  • Strauss J.B., Paine C.E., 1938. The Golden Gate Bridge: report of the chief engineer to the Board of directors of the Golden Gate Bridge and Highway and Transportation District, San Francisco, California, USA, 246 p.
  • Tanaka H., Davenport A.G., 1983. Wind‐Induced Response of Golden Gate Bridge, J. Eng. Mech. 109 (1), 296-312.
  • Vincent G.S., 1962. Golden Gate bridge vibration studies, Trans. Am. Soc. Civ. Eng. 127 (2), 667-701.
  • Vincent G.S., Labse M., 1962. Correlation of predicted and observed suspension bridge behavior, Trans. Am. Soc. Civ. Eng. 127 (2), 646-666.
  • Wolf J.P., Deeks A.J., 2004. Foundation vibration analysis: A strength of materials approach, Butterworth-Heinemann Publ.Comp, U.K., ISBN 978-0750661645, 240 p.
  • Zerva A., Zervas V., 2002. Spatial variation of seismic ground motions: An overview, Appl. Mech. Rev. 55 (3), 271.
There are 51 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Articles
Authors

Seyed Farid Ghahari This is me

Mehmet Çelebi 0000-0002-4769-7357

Hamed Ebrahimian This is me 0000-0003-1992-6033

Barbaros Cetiner This is me 0000-0002-9726-8120

Ertugrul Taciroglu 0000-0001-9618-1210

Project Number Sözleşme No: 1014-963 ve Destek No: 65A0450
Publication Date December 18, 2019
Submission Date July 18, 2019
Published in Issue Year 2019

Cite

APA Ghahari, S. F., Çelebi, M., Ebrahimian, H., Cetiner, B., et al. (2019). Köprü Yapılarının Eş Zamanlı Sistem ve Girdi Tanılaması. Türk Deprem Araştırma Dergisi, 1(2), 98-122. https://doi.org/10.46464/tdad.593551
AMA Ghahari SF, Çelebi M, Ebrahimian H, Cetiner B, Taciroglu E. Köprü Yapılarının Eş Zamanlı Sistem ve Girdi Tanılaması. TDAD. December 2019;1(2):98-122. doi:10.46464/tdad.593551
Chicago Ghahari, Seyed Farid, Mehmet Çelebi, Hamed Ebrahimian, Barbaros Cetiner, and Ertugrul Taciroglu. “Köprü Yapılarının Eş Zamanlı Sistem Ve Girdi Tanılaması”. Türk Deprem Araştırma Dergisi 1, no. 2 (December 2019): 98-122. https://doi.org/10.46464/tdad.593551.
EndNote Ghahari SF, Çelebi M, Ebrahimian H, Cetiner B, Taciroglu E (December 1, 2019) Köprü Yapılarının Eş Zamanlı Sistem ve Girdi Tanılaması. Türk Deprem Araştırma Dergisi 1 2 98–122.
IEEE S. F. Ghahari, M. Çelebi, H. Ebrahimian, B. Cetiner, and E. Taciroglu, “Köprü Yapılarının Eş Zamanlı Sistem ve Girdi Tanılaması”, TDAD, vol. 1, no. 2, pp. 98–122, 2019, doi: 10.46464/tdad.593551.
ISNAD Ghahari, Seyed Farid et al. “Köprü Yapılarının Eş Zamanlı Sistem Ve Girdi Tanılaması”. Türk Deprem Araştırma Dergisi 1/2 (December 2019), 98-122. https://doi.org/10.46464/tdad.593551.
JAMA Ghahari SF, Çelebi M, Ebrahimian H, Cetiner B, Taciroglu E. Köprü Yapılarının Eş Zamanlı Sistem ve Girdi Tanılaması. TDAD. 2019;1:98–122.
MLA Ghahari, Seyed Farid et al. “Köprü Yapılarının Eş Zamanlı Sistem Ve Girdi Tanılaması”. Türk Deprem Araştırma Dergisi, vol. 1, no. 2, 2019, pp. 98-122, doi:10.46464/tdad.593551.
Vancouver Ghahari SF, Çelebi M, Ebrahimian H, Cetiner B, Taciroglu E. Köprü Yapılarının Eş Zamanlı Sistem ve Girdi Tanılaması. TDAD. 2019;1(2):98-122.

AÇIK ERİŞİM ve LİSANS


Bu derginin içeriği Creative Commons Attribution 4.0 International Non-Commercial License'a tabidir.




Flag Counter