İvme-Ölçer istasyonları altındaki Zemin Özelliklerinin Deprem Kaydı Kullanılarak İncelenmesi: Hatay Örneği, Türkiye
Year 2019,
, 167 - 179, 18.12.2019
Şükran Perk
,
Çağlar Özer
Abstract
Hatay ili ve
yakın çevresinde farklı zemin türleri üzerinde yer alan 27 adet ivme-ölçer
tarafından kaydedilen deprem verisi yardımıyla Yatay/Düşey Spektral Oran (HVSR)
yöntemi kullanılarak çalışma alanının deprem-zemin ortak davranış özellikleri
araştırılmıştır. Hatay ve yakın çevresinin HVSR büyütme değerlerinin 2-8
arasında değiştiği gözlenmektedir. İskenderun ve Dörtyol arasında, Yakacık ve
yakın çevresinde zemin büyütme değerleri 8’e kadar ulaşmaktadır. Hatay ve
çevresinde ise 4 ile 5 arasında değişmektedir. Farklı frekanslarda; 0.5 Hz’de
büyütme değerleri 1.5-3.0 arasında değişmektedir. Bu frekanstaki en büyük etki
yaklaşık 3 HVSR büyütmesi ile İskenderun sahil kesimindedir. 1.0 Hz’de Hatay
merkezde büyütme değerleri 5-6 arasında, Kırıkhan, Aktepe ve İskenderun sahil
kesiminde 3 civarındandır. 2.5 Hz’de Aktepe ve kuzeyinde gözlenen büyütmeler
ise ~6’ya kadar ulaşmaktadır.
Supporting Institution
Atatürk Üniversitesi Deprem Araştırma Merkezine (ATA-DAM)
Thanks
T.C. İçişleri Bakanlığı Afet ve Acil Durum Yönetimi Başkanlığı (AFAD) Deprem Daire Başkanlığına ve bilgisayar altyapısı kullanılan Atatürk Üniversitesi Deprem Araştırma Merkezine (ATA-DAM) teşekkür eder.
References
- Abgarmi B., Delph J.R., Ozacar A.A., Beck S. L., Zandt G., Sandvol E., Turkelli N., Biryol C.B., 2017. Structure of the Crust and African Slab Beneath the Central Anatolian Plateau from Receiver Functions: New Insights on Isostatic Compensation and Slab Dynamics, Geosphere 13 (6), 1774-1787.
- AFAD, 2018. Türkiye Deprem Tehlike Haritası, Afet ve Acil Durum Yönetimi Başkanlığı, Ankara. Erişim adresi: http://tdth.afad.gov.tr/TDTH
- AFAD, 2019. Türkiye Ulusal Kuvvetli Yer Hareketi Veri Tabanı (TR-KYH), Ankara. Erişim adresi: http://kyhdata.deprem.gov.tr/2K/kyhdata_v4.php
- Alp H., Albora A.M., Tur H., 2011. A view of tectonic structure and gravity anomalies of Hatay Region Southern Turkey using wavelet analysis, Journal of Applied Geophysics 75 (3), 498-505.
- Arai H., Tokimatsu K., 2005. S-Wave Velocity Profiling by Joint Inversion of Microtremor Dispersion Curve and Horizontal-to-Vertical (H/V) Spectrum, Bulletin of the Seismological Society of America 95 (5), pp. 1766–1778, doi: 10.1785/0120040243.
- Ateş S., Keçer M., Osmançelebioğlu R., Kahraman S., 2004. Antakya (Hatay) Il Merkezi ve Cevresinin Yerbilim Verileri, Ankara: MTA. Enst. Jeoloji Etutleri Dairesi Derleme Raporu No: 10717.
- Ben-Avraham Z., Ginzburg A., 1990. Displaced terranes and crustal evolution of the Levant and the eastern Mediterranean, Tectonics 9, 613-622.
- Bonilla L.F., Steidl J.H., Lindley G.T., Tumarkin A.G., Archuleta R.J., 1997. Site amplification in the San Ferdinando Valley, California: variability of site effect estimation using S-wave, coda, and H/V methods, Bulletin of the Seismological Society of America 87, 710-730.
- Bonnefoy-Claudet S., Cornou C., Bard P.Y., Cotton F., Mocazo P., Kistek J., Fah D., 2006. H/V Ratio: A Tool for Site Effects Evaluation. Results from 1-D Noise Simulations, Geophysical Journal International 167, 827-837. https://doi.org/10.1111/j.1365-246X.2006.03154.x.
- Boulton S.J., Robertson A.H. F., 2007. The Miocene of the Hatay area, S Turkey: transition from the Arabian passive margin to an underfilled foreland basin related to closure of the Tethys Ocean, Sedimentary Geology Doi:10.1016/j.sedgeo.2006.12.001.
- Buyuksarac A., Over S., Genes M.C., Bikce M., Kacin S., Bektas O., 2014. Estimating shear wave velocity using acceleration data in Antakya (Turkey), Eart Sci. Res. J. 18 (2), 99 – 105.
- Emre O., Duman T. Y., Ozalp S., Elmaci H., Olgun S., Saroglu F., 2013. 1/1.250.000 scaled Turkey active fault map, General Directorate of Mineral Research and Exploration Special Publication. Erişim adresi: http://www.mta.gov.tr/ (last accessed June 2018)
- Emre O., Duman T. Y., Ozalp S., Saroglu F., Olgun S., Elmaci H., Can T., 2018. Active fault database of Turkey, Bulletin of Earthquake Engineering 16, 3229-3275.
- Ergin M., Aktar M., Eyidogan H., 2004. Present-Day Seismicity and Seismotectonics of the Cilician Basin: Eastern Mediterranean Region of Turkey, Bulletin of the Seismological Society of America 94 (3): 930-939. Erişim adresi: https://doi.org/10.1785/0120020153
- Fah D., Kind F., Giardini D., 2003. Inversion of local S-wave velocity structures from average H/V ratios, and their use for the estimation of site-effects, Journal of Seismology, 7 (4), pp 449–467.
- Gok E., Chavez-Garcia F.J., Polat O., 2014. Effect of soil conditions on predicted ground motion: Case study from Western Anatolia, Turkey, Physics of the Earth and Planetary Interiors 229, 88-97.
- Hasselmann K., 1963. A statistical analysis of the generation of micro-seisms, Rev. Geophys. 1, 177–209.
- Jackson J., McKenzie D., 1984. Active Tectonics of the Alpine-Himalayan Belt between Western Turkey and Pakistan, Geophysical Journal International 77, 185- 264.
Erişim adresi: https://doi.org/10.1111/j.1365-246X.1984.tb01931.x
- Lachet C., Hatzfeld D., Bard P.Y., Theodulidis N., Papaioannou C., Savvaidis A., 1996. Site effects and microzonation in the city of Thessaloniki (Greece): comparison of different approaches, Bulletin of the Seismological Society of America 86, 1692-1703.
- Langston C.A., 1977. Corvallis, Oregon, crustal and upper mantle receiver structure from teleseismic P and S waves, Bulletin of the Seismological Society of America 67, 713-724.
- Lermo J., Chavez-Garcia F.J., 1994. Are microtremor useful site response Evolution?, Bulletin of Seismological Society of America 84, 1350-1364.
- Longuet-Higgens M. S., 1950. A theory of the origin of microseisms, Phil. Trans. R. Soc. 243, 1–35.
- Luccio F.D., Pasyanos M.E., 2007. Crustal and upper-mantle structure in the Eastern Mediterranean from the analysis of surface wave dispersion curves, Geophysical Journal International 169 (3), 1139-1152.
- McKenzie D. P., 1972. Active Tectonics of the Mediterranean region, Royal Astronomical
Society Geophysical Journal 30 (2), pp. 109-185.
- Nakamura Y., 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface, Q. Rep. Railway Tech. Res. Inst. 30 (1), 25–33.
- Över S., Ünlügenç U. C., Özden S., 2001. Hatay bolgesinde etkin gerilme durumlari, Hacettepe Universitesi Yerbilimleri Uygulama ve Arastirma Merkezi Bulteni, Yerbilimleri, 23, 1–14.
- Over S., Kavak K. S., Belliers O., Ozden S., 2004. Is the Amik Basin (SE Turkey) a triple-junction area? Analyses of SPOT XS imagery and seismicity, Int. J. Remote Sensing 25 (19), 1–17.
- Ozer C., 2019. Determination of 3-D crustal seismic velocity structure beneath Hatay and surroundings, Journal of the Faculty of Engineering and Architecture of Gazi University 34:4, 2215-2227.
- Pamuk E., 2019. Investigation of the local site effects in the northern part of the eastern Anatolian region, Turkey, Bollettino di Geofisica Teorica ed Applicata 60 (4), pp. 549-568.
- Parolai S., Picozzi M., Richwalski S.M., Milkereit C., 2005. Joint inversion of phase velocity dispersion and H/V ratio curves from seismic noise recordings using a genetic algorithm, considering higher modes, Geophys. Res. Lett. 32, L01303, doi 10.1029/2004GL021115.
- Perincek D., Cemen I., 1990. The structural relationship between the East Anatolian and Dead Sea fault zones in southeastern Turkey; Tectonophysics v.172 (3-4), p. 331-340.
- Piskin O., Delaloye M., Selcuk H., Wagner J.J., 1986. Guide to Hatay geology (SE Turkey), Ofioliti 11, 87–104.
- Rojay B., Heimann A., Toprak V., 2001. Neotectonic and volcanic characteristics of the Karasu fault zone Anatolia, Turkey: The transition zone between the Dead Sea transform and the East Anatolian fault zone, Geodinamica Acta 14, 197–212.
- Salah M. K., 2019. Seismological Evidence for Lithospheric Low-Velocity Anomalies beneath the Eastern Mediterranean: Impact of Tectonics, Geotectonics 53 (5), pp 617-633.
- Salah M. K., Sahin S., 2019. 3D crustal velocity and VP/VS structures beneath Southeast Anatolia and their geodynamic implications, Geofizicheskii Zhurnal (Geophysical Journal) 41 (2). doi:10.24028/gzh.02033100.v41i2.2019.164460.
- Satoh T., Kawase H., Iwata T. Higaski S., Sato T., Irikura K., Huang H.C., 2001. S-wave velocity structure of Taichung basin, Taiwan estimated from array and single-station records of microtremors, Bull. Seism. Soc. Am. 91, 1267–1282.
- SESAME, 2004. Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations: Measurements, Processing and Interpretation.
Erisim adresi: http://sesame-fp5.obs.ujfgrenoble.fr/Delivrables/Del-D23 (13.04.2018).
- Tari U., Tuysuz O., Genc S.C., Imren C., Blackwell B.A.B., Lom N., Tekesin O., Uskuplu S., Erel L., Altiok S., Beyhan M., 2013. The geology and morphology of the Antakya Graben between the Amik Triple Junction and the Cyprus Arc, Geodinamica Acta 26:1-2, 27-55, DOI: 10.1080/09853111.2013.858962.
- Tekeli O., Erendil M., 1986. Geology and petrology of the Kizildag ophiolite (Hatay), Bulletin of the Mineral Research and Exploration Institute of Turkey 107, 21–37.
- Wessel P., Smith W.H.F., Scharroo R., Luis J. F., Wobbe F., 2013. Generic Mapping Tools: Improved version released. EOS, Transactions American Geophysical Union 94, 409-410.
Investigation of Soil Properties based on Accelerometer Stations using Earthquake Recording: The Case Study of Hatay, Turkey
Year 2019,
, 167 - 179, 18.12.2019
Şükran Perk
,
Çağlar Özer
Abstract
The
earthquake-soil behaviour characteristics of the study area were investigated
by using Horizontal/Vertical Spectral Ratio (HVSR) method with earthquake data
recorded by 27 accelerometers in Hatay and near surroundings. It is observed
that soil amplification values of Hatay and its vicinity vary from 2 to 8.
The soil amplification values reach to 8 at between Iskenderun-Dortyol and
Yakacik region. The soil amplification of Hatay and surroundings vary between
4-5. At 0.5 Hz, amplification values range from 1.5 to 3.0. The largest
effect is in the coastal area of Iskenderun with ~3 HVSR amplification at 0.5
Hz. Amplification in city centre at 1.0 Hz is 5-6, at Kirikhan, Aktepe and
Iskenderun coast, it is ~3. At 2.5 Hz, at Aktepe and its North, it reaches ~ 6.
References
- Abgarmi B., Delph J.R., Ozacar A.A., Beck S. L., Zandt G., Sandvol E., Turkelli N., Biryol C.B., 2017. Structure of the Crust and African Slab Beneath the Central Anatolian Plateau from Receiver Functions: New Insights on Isostatic Compensation and Slab Dynamics, Geosphere 13 (6), 1774-1787.
- AFAD, 2018. Türkiye Deprem Tehlike Haritası, Afet ve Acil Durum Yönetimi Başkanlığı, Ankara. Erişim adresi: http://tdth.afad.gov.tr/TDTH
- AFAD, 2019. Türkiye Ulusal Kuvvetli Yer Hareketi Veri Tabanı (TR-KYH), Ankara. Erişim adresi: http://kyhdata.deprem.gov.tr/2K/kyhdata_v4.php
- Alp H., Albora A.M., Tur H., 2011. A view of tectonic structure and gravity anomalies of Hatay Region Southern Turkey using wavelet analysis, Journal of Applied Geophysics 75 (3), 498-505.
- Arai H., Tokimatsu K., 2005. S-Wave Velocity Profiling by Joint Inversion of Microtremor Dispersion Curve and Horizontal-to-Vertical (H/V) Spectrum, Bulletin of the Seismological Society of America 95 (5), pp. 1766–1778, doi: 10.1785/0120040243.
- Ateş S., Keçer M., Osmançelebioğlu R., Kahraman S., 2004. Antakya (Hatay) Il Merkezi ve Cevresinin Yerbilim Verileri, Ankara: MTA. Enst. Jeoloji Etutleri Dairesi Derleme Raporu No: 10717.
- Ben-Avraham Z., Ginzburg A., 1990. Displaced terranes and crustal evolution of the Levant and the eastern Mediterranean, Tectonics 9, 613-622.
- Bonilla L.F., Steidl J.H., Lindley G.T., Tumarkin A.G., Archuleta R.J., 1997. Site amplification in the San Ferdinando Valley, California: variability of site effect estimation using S-wave, coda, and H/V methods, Bulletin of the Seismological Society of America 87, 710-730.
- Bonnefoy-Claudet S., Cornou C., Bard P.Y., Cotton F., Mocazo P., Kistek J., Fah D., 2006. H/V Ratio: A Tool for Site Effects Evaluation. Results from 1-D Noise Simulations, Geophysical Journal International 167, 827-837. https://doi.org/10.1111/j.1365-246X.2006.03154.x.
- Boulton S.J., Robertson A.H. F., 2007. The Miocene of the Hatay area, S Turkey: transition from the Arabian passive margin to an underfilled foreland basin related to closure of the Tethys Ocean, Sedimentary Geology Doi:10.1016/j.sedgeo.2006.12.001.
- Buyuksarac A., Over S., Genes M.C., Bikce M., Kacin S., Bektas O., 2014. Estimating shear wave velocity using acceleration data in Antakya (Turkey), Eart Sci. Res. J. 18 (2), 99 – 105.
- Emre O., Duman T. Y., Ozalp S., Elmaci H., Olgun S., Saroglu F., 2013. 1/1.250.000 scaled Turkey active fault map, General Directorate of Mineral Research and Exploration Special Publication. Erişim adresi: http://www.mta.gov.tr/ (last accessed June 2018)
- Emre O., Duman T. Y., Ozalp S., Saroglu F., Olgun S., Elmaci H., Can T., 2018. Active fault database of Turkey, Bulletin of Earthquake Engineering 16, 3229-3275.
- Ergin M., Aktar M., Eyidogan H., 2004. Present-Day Seismicity and Seismotectonics of the Cilician Basin: Eastern Mediterranean Region of Turkey, Bulletin of the Seismological Society of America 94 (3): 930-939. Erişim adresi: https://doi.org/10.1785/0120020153
- Fah D., Kind F., Giardini D., 2003. Inversion of local S-wave velocity structures from average H/V ratios, and their use for the estimation of site-effects, Journal of Seismology, 7 (4), pp 449–467.
- Gok E., Chavez-Garcia F.J., Polat O., 2014. Effect of soil conditions on predicted ground motion: Case study from Western Anatolia, Turkey, Physics of the Earth and Planetary Interiors 229, 88-97.
- Hasselmann K., 1963. A statistical analysis of the generation of micro-seisms, Rev. Geophys. 1, 177–209.
- Jackson J., McKenzie D., 1984. Active Tectonics of the Alpine-Himalayan Belt between Western Turkey and Pakistan, Geophysical Journal International 77, 185- 264.
Erişim adresi: https://doi.org/10.1111/j.1365-246X.1984.tb01931.x
- Lachet C., Hatzfeld D., Bard P.Y., Theodulidis N., Papaioannou C., Savvaidis A., 1996. Site effects and microzonation in the city of Thessaloniki (Greece): comparison of different approaches, Bulletin of the Seismological Society of America 86, 1692-1703.
- Langston C.A., 1977. Corvallis, Oregon, crustal and upper mantle receiver structure from teleseismic P and S waves, Bulletin of the Seismological Society of America 67, 713-724.
- Lermo J., Chavez-Garcia F.J., 1994. Are microtremor useful site response Evolution?, Bulletin of Seismological Society of America 84, 1350-1364.
- Longuet-Higgens M. S., 1950. A theory of the origin of microseisms, Phil. Trans. R. Soc. 243, 1–35.
- Luccio F.D., Pasyanos M.E., 2007. Crustal and upper-mantle structure in the Eastern Mediterranean from the analysis of surface wave dispersion curves, Geophysical Journal International 169 (3), 1139-1152.
- McKenzie D. P., 1972. Active Tectonics of the Mediterranean region, Royal Astronomical
Society Geophysical Journal 30 (2), pp. 109-185.
- Nakamura Y., 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface, Q. Rep. Railway Tech. Res. Inst. 30 (1), 25–33.
- Över S., Ünlügenç U. C., Özden S., 2001. Hatay bolgesinde etkin gerilme durumlari, Hacettepe Universitesi Yerbilimleri Uygulama ve Arastirma Merkezi Bulteni, Yerbilimleri, 23, 1–14.
- Over S., Kavak K. S., Belliers O., Ozden S., 2004. Is the Amik Basin (SE Turkey) a triple-junction area? Analyses of SPOT XS imagery and seismicity, Int. J. Remote Sensing 25 (19), 1–17.
- Ozer C., 2019. Determination of 3-D crustal seismic velocity structure beneath Hatay and surroundings, Journal of the Faculty of Engineering and Architecture of Gazi University 34:4, 2215-2227.
- Pamuk E., 2019. Investigation of the local site effects in the northern part of the eastern Anatolian region, Turkey, Bollettino di Geofisica Teorica ed Applicata 60 (4), pp. 549-568.
- Parolai S., Picozzi M., Richwalski S.M., Milkereit C., 2005. Joint inversion of phase velocity dispersion and H/V ratio curves from seismic noise recordings using a genetic algorithm, considering higher modes, Geophys. Res. Lett. 32, L01303, doi 10.1029/2004GL021115.
- Perincek D., Cemen I., 1990. The structural relationship between the East Anatolian and Dead Sea fault zones in southeastern Turkey; Tectonophysics v.172 (3-4), p. 331-340.
- Piskin O., Delaloye M., Selcuk H., Wagner J.J., 1986. Guide to Hatay geology (SE Turkey), Ofioliti 11, 87–104.
- Rojay B., Heimann A., Toprak V., 2001. Neotectonic and volcanic characteristics of the Karasu fault zone Anatolia, Turkey: The transition zone between the Dead Sea transform and the East Anatolian fault zone, Geodinamica Acta 14, 197–212.
- Salah M. K., 2019. Seismological Evidence for Lithospheric Low-Velocity Anomalies beneath the Eastern Mediterranean: Impact of Tectonics, Geotectonics 53 (5), pp 617-633.
- Salah M. K., Sahin S., 2019. 3D crustal velocity and VP/VS structures beneath Southeast Anatolia and their geodynamic implications, Geofizicheskii Zhurnal (Geophysical Journal) 41 (2). doi:10.24028/gzh.02033100.v41i2.2019.164460.
- Satoh T., Kawase H., Iwata T. Higaski S., Sato T., Irikura K., Huang H.C., 2001. S-wave velocity structure of Taichung basin, Taiwan estimated from array and single-station records of microtremors, Bull. Seism. Soc. Am. 91, 1267–1282.
- SESAME, 2004. Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations: Measurements, Processing and Interpretation.
Erisim adresi: http://sesame-fp5.obs.ujfgrenoble.fr/Delivrables/Del-D23 (13.04.2018).
- Tari U., Tuysuz O., Genc S.C., Imren C., Blackwell B.A.B., Lom N., Tekesin O., Uskuplu S., Erel L., Altiok S., Beyhan M., 2013. The geology and morphology of the Antakya Graben between the Amik Triple Junction and the Cyprus Arc, Geodinamica Acta 26:1-2, 27-55, DOI: 10.1080/09853111.2013.858962.
- Tekeli O., Erendil M., 1986. Geology and petrology of the Kizildag ophiolite (Hatay), Bulletin of the Mineral Research and Exploration Institute of Turkey 107, 21–37.
- Wessel P., Smith W.H.F., Scharroo R., Luis J. F., Wobbe F., 2013. Generic Mapping Tools: Improved version released. EOS, Transactions American Geophysical Union 94, 409-410.