Research Article
BibTex RIS Cite

Structural Health Monitoring of a Tall Building Before, During and After Earthquake

Year 2020, , 61 - 75, 29.06.2020
https://doi.org/10.46464/tdad.735239

Abstract

In seismically prone areas, such as Istanbul, it is important to assess the condition of tall buildings after an earthquake. In the current state-of-the-practice, condition assessment is conducted by visual inspection; however, inspecting buildings in a rapid, remote and objective fashion is vital due to economic and public safety reasons. On the other hand, Structural Health Monitoring (SHM) systems can help us to assess current condition of buildings in rapid, remote and objective fashion by tracking changes in dynamic properties of structure, interstory drift ratios and wave propagation speed/time. SHM systems are mandatory to be installed on tall buildings per current Turkish Earthquake Code because of motivations mentioned above. Within the framework of the UDAP project supervised by the second author, SHM guideline was prepared for tall buildings, SHM system was installed on a tall building and a new software was developed. This software is able to gather data remotely and analyse data automatically. Furthermore, the software was used during the 5.7 magnitude earthquake on September 26, 2019 on three high-rise buildings in Istanbul.

Project Number

UDAP-G-17-01

References

  • Astorga A., Guegen P., Kashima T., 2017. Nonlinear elasticity in buildings: a prospective way to monitor structural health, X International Conference on Structural Dynamics, EURODYN 2017, p:10-13 September, Rome, Italy.
  • Brincker R., Zhang L., Andersen P., 2001. Modal identification of output – only systems using frequency domain decomposition, Smart Materials and Structures 10, 441-445.
  • Brownjohn J.M.W., Pan TC., Deng X.Y., 2000. Correlating dynamic characteristics from field measurements and numerical analysis of a high-rise building, Earthquake Engineering and Structural Dynamics 29, 523-543.
  • Celebi M., 2008. Real-time monitoring of drift for occupancy resumption, 14th World Conference on Earthquake Engineering, p:12-17 October, Beijing, China.
  • Celebi M., Sanli A., Sinclair M., 2004. Real-time seismic monitoring needs of a building owner-and the solution: a cooperative effort, Earthquake Spectra 20 (2), 333-346.
  • Celebi M., Sereci M., Boroschek R., 2013. Identifying the dynamic characteristics of a dual core-wall and frame building in Chile using aftershocks of the 27 February 2010 (Mw=8.8) Maule, Chile, Earthquake. Earthquake Spectra 29 (4), 1233-1254.
  • Celebi M., Toksoz N., Buyukozturk O., 2014. Rocking behavior of an instrumented unique building on the MIT Campus identified from ambient shaking data, Earthquake Spectra 30 (2), 705-720.
  • Celebi M., Kashima T., Ghahari S.F., Farid S., 2016. Responses of a tall building with US Code-type instrumentation in Tokyo, Japan, to events before, during, and after the Tohoku Earthquake of 11 March 2011, Earthquake Spectra 32 (1), 497-522.
  • He Y.C., Li Q., 2014. Dynamic responses of a 492-m-high tall building with active tuned mass damping system during a typhoon, Structural Control and Health Monitoring 21, 705-720.
  • Kashima T., 2017. Study on changes in dynamic characteristics of high-rise steel-framed buildings based on strong motion data. X International Conference on Structural Dynamics, EURODYN 2017, p:10-13 September, Rome, Italy.
  • Kaya Y., Kocakaplan S., Safak E., 2015. System identification and model calibration of multi-story buildings through estimation of vibration time histories at non-instrumented floors, Bulletin of Earthquake Engineering 13, 3301-3323.
  • Kohler M.D., Davis P.M., Safak E., 2005. Earthquake and ambient vibration monitoring of the steel-frame UCLA Factor Building, Earthquake Spectra 21, 715-736.
  • Moaveni B., Conte J.P., Hemez F.M., 2009. Uncertainty and sensitivity analysis of damage identification results obtained using finite element model updating, Computer-Aided Civil and Infrastructure Engineering 24, 320-334.
  • Mordret A., Sun H., Prieto G. A., Toksoz M. N., Buyukozturk O., 2017. Continuous Monitoring of High-Rise Buildings Using Seismic Interferometry, Bull. Soc. Am. 107, 2759-2773.
  • Naeim F., Lee H., Hagie S., Bhatia H., Alimoradi A., Miranda E., 2006. Three-dimensional analysis, real-time visualization and automated post-earthquake damage assessment of buildings, Structural Design of Tall and Special Buildings 15, 105-138.
  • Safak E., Cakti E., Kaya Y., 2010. Recent developments in structural health monitoring and data analysis. Earthquake Engineering In Europe, Springer, London, pp 331–355
  • Saito T., Morita K., Kashima T., Hasegawa T., 2012. Performance of high-rise buildings during the 2011 Great East Japan Earthquake, 15th World Conference on Earthquake Engineering, p:24-28 September, Lisbon, Portugal.
  • Satake N., Suda K., Arakawa T., Sasaki A., Tamura Y., 2003. Damping evaluation using full-scale data of buildings in Japan, Journal of Structural Engineering ASCE 129 (4), 470-477.
  • Snieder R., Safak E., 2006. Extracting the building response using seismic interferometry: Theory and application to the Millikan Library in Pasadena, California, Bull. Seismol. Soc. Am. 96, 586-598.
  • Uebayashi H., Nagano M., Hida T., Tanuma T., Yasui M., Saka S., 2015. Evaluation of the structural damage of high-rise reinforced concrete buildings using ambient vibrations recorded before and after damage, Earthquake Engineering and Structural Dynamics 45, 213-228
  • Yuen K.V., Kuok S.C., 2010. Ambient interference in long-term monitoring of buildings, Engineering Structures 32, 2379-2386.
  • Zhang F.L., Xiong H.B., Shi W.X., Ou X., 2016. Structural health monitoring of Shanghai Tower during different stages using a Bayesian approach, Structural Control and Health Monitoring 23, 1366-1384.

Deprem Öncesi, Sırası ve Sonrasında Bir Yüksek Binanın Yapı Sağlığının İzlenmesi

Year 2020, , 61 - 75, 29.06.2020
https://doi.org/10.46464/tdad.735239

Abstract

İstanbul gibi depremselliğin yüksek olduğu bölgelerde yüksek binaların deprem sonrasında durumunun belirlenmesi gereklidir. Günümüzde deprem sonrası hasar tespiti genellikle görsel değerlendirmeler ile yapılır. Ancak yapıların durumunun hızlı, uzaktan ve güvenilir şekilde belirlenmesi hem ekonomik hem de toplum güvenliği açısından önemlidir. Yapı Sağlığı İzleme (YSİ) sayesinde binaların mevcut durumları, dinamik özelliklerindeki değişimler, göreli kat ötelemeleri ve dalga yayılım hızı kontrol edilerek hızlı, uzaktan ve objektif bir şekilde yapılabilir. Bu sebeplerden dolayı YSİ’nin, Türkiye Bina Deprem Yönetmeliği uyarınca yüksek binalarda uygulanması zorunlu hale getirilmiştir. UDAP kapsamında ikinci yazarın yürütücülüğünde gerçekleştirilen proje kapsamında yüksek binalarda YSİ yönergesi hazırlanmış, örnek bina kurulumu gerçekleştirilmiş ve yazılım geliştirilmiştir. Bu yazılım veriyi düzenli olarak alıp otomatik olarak analiz edebilme yeteneğindedir. Geliştirilen yazılım İstanbul’daki üç yüksek binada 26 Eylül 2019 tarihinde gerçekleşen 5.7 büyüklüğündeki deprem sırasında kullanılmıştır.

Supporting Institution

Afet ve Acil Durum Yönetimi Başkanlığı (AFAD)

Project Number

UDAP-G-17-01

Thanks

Bu çalışma, “Yüksek Binalarda Kurulacak Yapı Sağlığı İzleme Sistemi Standardının Belirlenmesi ve İstanbul Örnek Uygulaması (UDAP-G-17-01)” başlıklı proje altında Ulusal Deprem Araştırma Programı (UDAP) kapsamında Afet ve Acil Durum Yönetimi Başkanlığı (AFAD) tarafından finanse edilmiştir. Çalışmada bahsedilen üç binanın yönetimine, YSİ kurulumu sırasında gösterdikleri anlayış için teşekkür ederiz.

References

  • Astorga A., Guegen P., Kashima T., 2017. Nonlinear elasticity in buildings: a prospective way to monitor structural health, X International Conference on Structural Dynamics, EURODYN 2017, p:10-13 September, Rome, Italy.
  • Brincker R., Zhang L., Andersen P., 2001. Modal identification of output – only systems using frequency domain decomposition, Smart Materials and Structures 10, 441-445.
  • Brownjohn J.M.W., Pan TC., Deng X.Y., 2000. Correlating dynamic characteristics from field measurements and numerical analysis of a high-rise building, Earthquake Engineering and Structural Dynamics 29, 523-543.
  • Celebi M., 2008. Real-time monitoring of drift for occupancy resumption, 14th World Conference on Earthquake Engineering, p:12-17 October, Beijing, China.
  • Celebi M., Sanli A., Sinclair M., 2004. Real-time seismic monitoring needs of a building owner-and the solution: a cooperative effort, Earthquake Spectra 20 (2), 333-346.
  • Celebi M., Sereci M., Boroschek R., 2013. Identifying the dynamic characteristics of a dual core-wall and frame building in Chile using aftershocks of the 27 February 2010 (Mw=8.8) Maule, Chile, Earthquake. Earthquake Spectra 29 (4), 1233-1254.
  • Celebi M., Toksoz N., Buyukozturk O., 2014. Rocking behavior of an instrumented unique building on the MIT Campus identified from ambient shaking data, Earthquake Spectra 30 (2), 705-720.
  • Celebi M., Kashima T., Ghahari S.F., Farid S., 2016. Responses of a tall building with US Code-type instrumentation in Tokyo, Japan, to events before, during, and after the Tohoku Earthquake of 11 March 2011, Earthquake Spectra 32 (1), 497-522.
  • He Y.C., Li Q., 2014. Dynamic responses of a 492-m-high tall building with active tuned mass damping system during a typhoon, Structural Control and Health Monitoring 21, 705-720.
  • Kashima T., 2017. Study on changes in dynamic characteristics of high-rise steel-framed buildings based on strong motion data. X International Conference on Structural Dynamics, EURODYN 2017, p:10-13 September, Rome, Italy.
  • Kaya Y., Kocakaplan S., Safak E., 2015. System identification and model calibration of multi-story buildings through estimation of vibration time histories at non-instrumented floors, Bulletin of Earthquake Engineering 13, 3301-3323.
  • Kohler M.D., Davis P.M., Safak E., 2005. Earthquake and ambient vibration monitoring of the steel-frame UCLA Factor Building, Earthquake Spectra 21, 715-736.
  • Moaveni B., Conte J.P., Hemez F.M., 2009. Uncertainty and sensitivity analysis of damage identification results obtained using finite element model updating, Computer-Aided Civil and Infrastructure Engineering 24, 320-334.
  • Mordret A., Sun H., Prieto G. A., Toksoz M. N., Buyukozturk O., 2017. Continuous Monitoring of High-Rise Buildings Using Seismic Interferometry, Bull. Soc. Am. 107, 2759-2773.
  • Naeim F., Lee H., Hagie S., Bhatia H., Alimoradi A., Miranda E., 2006. Three-dimensional analysis, real-time visualization and automated post-earthquake damage assessment of buildings, Structural Design of Tall and Special Buildings 15, 105-138.
  • Safak E., Cakti E., Kaya Y., 2010. Recent developments in structural health monitoring and data analysis. Earthquake Engineering In Europe, Springer, London, pp 331–355
  • Saito T., Morita K., Kashima T., Hasegawa T., 2012. Performance of high-rise buildings during the 2011 Great East Japan Earthquake, 15th World Conference on Earthquake Engineering, p:24-28 September, Lisbon, Portugal.
  • Satake N., Suda K., Arakawa T., Sasaki A., Tamura Y., 2003. Damping evaluation using full-scale data of buildings in Japan, Journal of Structural Engineering ASCE 129 (4), 470-477.
  • Snieder R., Safak E., 2006. Extracting the building response using seismic interferometry: Theory and application to the Millikan Library in Pasadena, California, Bull. Seismol. Soc. Am. 96, 586-598.
  • Uebayashi H., Nagano M., Hida T., Tanuma T., Yasui M., Saka S., 2015. Evaluation of the structural damage of high-rise reinforced concrete buildings using ambient vibrations recorded before and after damage, Earthquake Engineering and Structural Dynamics 45, 213-228
  • Yuen K.V., Kuok S.C., 2010. Ambient interference in long-term monitoring of buildings, Engineering Structures 32, 2379-2386.
  • Zhang F.L., Xiong H.B., Shi W.X., Ou X., 2016. Structural health monitoring of Shanghai Tower during different stages using a Bayesian approach, Structural Control and Health Monitoring 23, 1366-1384.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Articles
Authors

Emre Aytulun 0000-0001-6444-8267

Serdar Soyöz 0000-0002-5502-6545

Project Number UDAP-G-17-01
Publication Date June 29, 2020
Submission Date May 10, 2020
Published in Issue Year 2020

Cite

APA Aytulun, E., & Soyöz, S. (2020). Deprem Öncesi, Sırası ve Sonrasında Bir Yüksek Binanın Yapı Sağlığının İzlenmesi. Türk Deprem Araştırma Dergisi, 2(1), 61-75. https://doi.org/10.46464/tdad.735239
AMA Aytulun E, Soyöz S. Deprem Öncesi, Sırası ve Sonrasında Bir Yüksek Binanın Yapı Sağlığının İzlenmesi. TDAD. June 2020;2(1):61-75. doi:10.46464/tdad.735239
Chicago Aytulun, Emre, and Serdar Soyöz. “Deprem Öncesi, Sırası Ve Sonrasında Bir Yüksek Binanın Yapı Sağlığının İzlenmesi”. Türk Deprem Araştırma Dergisi 2, no. 1 (June 2020): 61-75. https://doi.org/10.46464/tdad.735239.
EndNote Aytulun E, Soyöz S (June 1, 2020) Deprem Öncesi, Sırası ve Sonrasında Bir Yüksek Binanın Yapı Sağlığının İzlenmesi. Türk Deprem Araştırma Dergisi 2 1 61–75.
IEEE E. Aytulun and S. Soyöz, “Deprem Öncesi, Sırası ve Sonrasında Bir Yüksek Binanın Yapı Sağlığının İzlenmesi”, TDAD, vol. 2, no. 1, pp. 61–75, 2020, doi: 10.46464/tdad.735239.
ISNAD Aytulun, Emre - Soyöz, Serdar. “Deprem Öncesi, Sırası Ve Sonrasında Bir Yüksek Binanın Yapı Sağlığının İzlenmesi”. Türk Deprem Araştırma Dergisi 2/1 (June 2020), 61-75. https://doi.org/10.46464/tdad.735239.
JAMA Aytulun E, Soyöz S. Deprem Öncesi, Sırası ve Sonrasında Bir Yüksek Binanın Yapı Sağlığının İzlenmesi. TDAD. 2020;2:61–75.
MLA Aytulun, Emre and Serdar Soyöz. “Deprem Öncesi, Sırası Ve Sonrasında Bir Yüksek Binanın Yapı Sağlığının İzlenmesi”. Türk Deprem Araştırma Dergisi, vol. 2, no. 1, 2020, pp. 61-75, doi:10.46464/tdad.735239.
Vancouver Aytulun E, Soyöz S. Deprem Öncesi, Sırası ve Sonrasında Bir Yüksek Binanın Yapı Sağlığının İzlenmesi. TDAD. 2020;2(1):61-75.

AÇIK ERİŞİM ve LİSANS


Bu derginin içeriği Creative Commons Attribution 4.0 International Non-Commercial License'a tabidir.




Flag Counter