Research Article
BibTex RIS Cite

Tek Boyutlu Zemin Büyütme Analizlerinde Transfer Fonksiyonunun Değiştirilmiş Sonlu Elemanlar Taşıma Matrisi Yöntemi ile Elde Edilmesi

Year 2021, , 53 - 74, 30.06.2021
https://doi.org/10.46464/tdad.929449

Abstract

Bu çalışmada tek boyutlu zemin büyütme analizlerinde kullanılan Transfer fonksiyonlarının elde edilmesi için bir yöntem önerilmiştir. Çalışma kapsamında daha önce literatürde zemin hâkim periyodunun bulunması için kullanılan Değiştirilmiş Sonlu Elemanlar Taşıma Matrisi (DSETM) yöntemi zemin büyütme analizlerinde kullanılan transfer fonksiyonlarının bulunması problemine uyarlanmıştır. Klasik sonlu elamanlar yönteminde eleman sayısına bağlı olarak artan sistem matrisi DSETM yönteminde eleman sayısından bağımsızdır. Çalışmanın sonunda önerilen yöntemin uygunluğu iki örnek üzerinde gösterilmiştir. Ele alınan örnekler hem bu çalışmada sunulan DSETM yöntemiyle hem de literatürde yer alan yöntemle çözülerek sonuçlar karşılaştırılmıştır. Sunulan yöntemin uygulanması için Scilab ortamında bir program yazılmıştır.

References

  • Alcik H., 2018. Investigation of local site responses at the Bodrum peninsula (southwest of Turkey) using the mainshock and aftershocks of the 20 July 2017 Mw6.6 Bodrum-Kos earthquake, Ann. Geophys 61(3), SE339.
  • Alvarado P., Christiansen R., Gregori S. D., Saez M., 2020. Evidence of site amplifcation from ground motion of the last two large crustal earthquakes in central western Argentina, Nat. Hazards 102, 1011-1031, https://doi.org/10.1007/s11069-020-03943-8
  • Ansal A., Tönük G., Kurtuluş A., 2011. Zemin Büyütme Analizleri ve Sahaya Özel Tasarım Depremi Özelliklerinin Belirlenmesi, 1. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı 11-14 Ekim 2011 - ODTÜ - ANKARA, s:1.
  • Arslan H., Siyahi B., 2006. A comparative study on linear and nonlinear site response analysis, Environ. Geol. 50, 1193-1200, doi 10.1007/s00254-006-0291-4
  • Ates E., 2020. Comparison of Horizontal / Vertical Spectral Ratios Obtained Using Earthquake and Microtremor Records: The Example of Amasya, Turk. J. Earthq. Res. 2 (2), 160-175, doi 10.46464/tdad.746926.
  • Bardet J.P., Ichii K., Lin C.H., 2000. EERA A Computer Program for Equivalent-linear Earthquake Site Response Analyses of Layered Soil Deposits. In University of Southern California, Department of Civil Engineering.
  • Bonilla L.F., Steidl J.H., Lindley G.T., Tumarkin A.G., Archuleta R.J., 1997. Site Amplification in the San Fernando Valley, California: Variability of Site-Effect Estimation Using the S-Wave, Coda and H/V Methods, Bull. Seism. Soc. Am. 87, 710-730.
  • Borcherdt R.D., 1970. Effects Of Local On Ground Motion Near San Francisco Bay, Bull. Seism. Soc. Am. 60, 29-61.
  • Ceren K., Karakan E., 2020. Zemin Analizleriyle Dinamik Davranış Özelliklerinin Belirlenmesine Yönelik Pilot Bir Çalışma: Kahramanmaraş İli Üngüt Mahallesi Örneği, Doğ. Afet Çev. Derg. 6 (1), 146-156, doi: 10.21324/dacd.582328.
  • Civelekler E., Okur D. V., Afacan K. B., 2018. Eşdeğer Analiz Yöntemi İle Belirlenen Zeminin Büyütme Değerlerinin Coğrafi Bilgi Sistemleri Kullanılarak Haritalanması: Eskişehir Örneği, VII. Uzaktan Algılama-CBS Sempozyumu (UZAL-CBS 2018), 18-21 Eylül 2018, Eskişehir
  • Choi M.S., 2003. Free Vibration Analysis of Plate Structures Using Finite Element-Transfer Stiffness Coefficient Method, J. Mech. Sci. Technol 17 (6), 805-815.
  • Choudhury D., Savoikar P., 2009. Equivalent-linear seismic analyses of MSW landfills using DEEPSOIL, Eng. Geo. 107, 98-108.
  • Dikmen Ü., Arısoy M. Ö., Akkaya İ., Demirci İ., Hasançebi N., 2013. Yer Tepkisinin Belirlenmesinde Kullanılan Yöntemlerin İvme Kaydı Üzerinde Değerlendirilmesi, 2. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı 25-27 Eylül 2013 - MKÜ - HATAY, s:1.
  • Field E.H., Jacob K.H., 1995. A Comparison and Test of Various Site-Response Estimation Techniques, Including Three That Are Not Reference-Site Dependent, Bull. Seism. Soc. Am. 85, 1127-1143.
  • Gok E., Garcia F.J., Polat O., 2014. Effect of soil conditions on predicted ground motion: Case study from Western Anatolia, Turkey, Physics of the Earth and Planetary Interiors 229, 88-97
  • Güzel M., Bozdağ Ş., Özçep F., 2009. Mikrobölgeleme Çalışmalarında Zemin Büyütmesi ölçütü (Kuzey Adana Örneği), Ç.Ü. Müh. Mim. Fak. Dergisi 24 (1-2), 229-236.
  • Hashash Y.M.A., Musgrove M.I., Harmon J.A., Ilhan O., Xing G., Numanoglu O., Groholski D.R., Phillips C.A., Park D., 2020. DEEPSOIL 7.0, User Manual, Board of Trustees of University of Illinois at Urbana-Champaign, Urbana, IL.
  • Huang D., Sun P., Jin F., Du C., 2021. Topographic amplification of ground motions incorporating uncertainty in subsurface soils with extensive geological borehole data, Soil Dyn. Earth. Eng. 141, 106441
  • Jeong S., Bradley B.A., 2017. Amplification of strong ground motions at Heathcote Valley during the 2010-2011 Canterbury earthquakes: Observation and 1D site response analysis, Soil Dyn. Earth. Eng. 100, 345-356.
  • Kagami H., Okada S., Shiono K., Oner M., Dravinski M., Mal A.K., 1989. Observation of 1- to 5-second microtremors and their application to earthquake engineering. Part III. A two-dimensional study of site effects in the San Fernando Valley, Bull. Seism. Soc. Am. 76 (6), 1801-1812.
  • Kaklamanos J., Baise L.G., Thompson E.M., Dorfmann L., 2015. Comparison of 1D linear, equivalent-linear, and nonlinear site response models at six KiK-net validation sites, Soil Dyn. Earthq. Eng. 69, 207-219.
  • Katz L. J., Bellon R.S., 1978. Microtremor site analysis study at Beatty, Nevada, Bull. Seism. Soc. Am. 68 (3), 757-765.
  • Khanbabazadeh H., Iyisan R., Ansal A., Zulfikar C., 2018. Nonlinear dynamic behavior of the basins with 2D bedrock, Soil Dyn. Earthq. Eng. 107, 108-115.
  • Kim B., 2019. Mapping of ground motion amplifications for the Fraser River delta in Greater Vancouver, Canada, Earth. Eng. Eng. Vib. 18, 703-717, doi: 10.1007/s11803-019-0531-8
  • Kramer S. L., 1996. Geotechnical Earthquake Engineering, Prentice-Hall, Upper Saddle River, New Jersey, 653 pp.
  • Kuruoglu M., 2004. Geographic Information System (GIS) based Database Development and Evaluation Study for Soils of Northern Coast of Izmir Bay, Doktora Tezi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, İzmir, 151 s.
  • Ma N., Wang G., Kamai T., Doi I., Chigira M., 2019. Amplification of seismic response of a large deep-seated landslide in Tokushima, Japan, Eng. Geo. 249, 218-234.
  • Matassoni L., Fiaschi A., 2020. Assessment of seismic ground motion amplification and liquefaction at a volcanic area characterized by residual soils, Journal of Mountain Science 17(3),doi:10.1007/s11629-019-5753-8
  • Midorikawa S., 1987. Prediction of isoseismal map in Kanto Plain due to hypothetical earthquake, J. Struct. Dyn. 33, 43-48.
  • Nakamura Y., 1989. A Method for Dynamic Characteristics Estimation of Subsurface Using Microtremor on the Ground Surface, Quarterly Report of the Railway Technical Research Institute 30(1), 25-33.
  • Nogoshi M., Igarashi T., 1971. On the Amplitude Characteristic of Microtremor, Journal of Seismic Society of Japan 24, 26-40, doi: 10.4294/zisin1948.24.1_26
  • Ozer C., 2017. Analysis of Soil Transfer Function in Izmir Metropolitan Area, Turkey, IOSR Journal of Applied Geology and Geophysics 63-70, doi: 10.9790/0990-0501026370.
  • Özer C., 2019. Erzurum ve Çevresi Yerel Zemin Etkilerinin SSR ve HVSR Yöntemleri Kullanılarak Araştırılması, DEUFMD 21 (61), 247-257.
  • Özkan M.Y., 2017. Zemin Dinamiğine Giriş, Nobel, Ankara, Türkiye.
  • Ozturk D., Bozdogan K.B., 2017. A Method for Determination of the Fundamental Period of Layered Soil Profiles, J. Appl. Comp. Mech. 3(4), 267-273.
  • Özyazıcıoğlu M., Dönmezçelik K., Orhan S.N., Özkan M.Y., 2019. Erzincan İli Zemin Büyütme Etkilerine Dayalı Mikrobölgeleme Çalışması, Doğ. Afet Çev. Derg. 5 (2), 247-256, doi: 10.21324/dacd.457438.
  • Pamuk E., Ozdag O.C., Tuncel A., Ozyalın S., Akgun M., 2018. Local site effects evaluation for Aliaga/Izmir using HVSR (Nakamura technique) and MASW methods, Nat. Hazards 90, 887-899
  • Pamuk E., 2019. Investigation of the local site effects in the northern part of the eastern Anatolian region, Turkey, Boll. Geof. Teor. Appl. 60, 549-568, doi 10.4430/bgta0291.
  • Perk S., Ozer C., 2019. Investigation of Soil Properties based on Accelerometer Stations using Earthquake Recording: The Case Study of Hatay, Turkey, Turk. J. Earthq. Res. 1 (2), 167-179.
  • Puri N., Jain A., Mohanty P., Bhattacharya S., 2018. Earthquake Response Analysis of Sites in State of Haryana Using DeepSoil Software, Procedia Computer Science 125, 357-366.
  • Rathje E.M., Kottke A. R., Trent W.L., 2010. Influence of Input Motion and Site Property Variabilities on Seismic Site Response Analysis,J. Geotech. Geoenviron. Eng. 136(4), 607-619, doi: 10.1061/_ASCE_GT.1943-5606.0000255
  • Rong B., Rui X., Wang G., 2011. Modified finite element transfer matrix method for eigenvalue problem of flexible structures, J. Appl. Mech. 78(2), 021016.
  • Selcuk L., Aydin H., 2012. Kuvaterner Yaşlı Alüvyal Zeminlerin Kuvvetli Yer Hareketine Etkisi: 2011 Van Depremleri, Jeoloji Mühendisliği Dergisi 36 (2), 75-97
  • Sedaghati F., Pezeshk S., Nazemi N., 2018. Site amplification within the Mississippi embayment of the central United States: Investigation of possible differences among various phases of seismic waves and presence of basin waves, Soil Dyn. Earthq. Eng. 113, 534-544
  • Scilab, 2021. version 6.1.0: INRIA, ESI Group, Erişim adresi: https://www.scilab.org
  • Subasi O., Hasal M.E., Ozaslan B., İyisan R., Yamanaka H., Chimoto K., 2019. Bir boyutlu dinamik analiz ve mikrotremor ölçüm sonuçlarının karşılaştırılması, Teknik Dergi 9459-9481, yazı: 552 Tsai N.C., 1970. A Note On The Steady-State Response Of An Elastic Half-Space, Bull. Seism. Soc. Am. 60, 795-808.
  • Tuncel A., Ozdag O.C., Pamuk E., Akgun M., 2019. Calculation of the soil dynamic amplification factor values by using microtremor data: A case study in Izmir (North), J. Fac. Eng. Archit.Gaz. 34(1), 43-52.
  • Turkoz M., 2019. The Effect of Soil Type and Different In-situ Test Results on Soil Amplification Analysis, DUJE 10 (3), 1187-1196.
  • Yalçınkaya E., Alptekin Ö., 2003. Dinar’ da zemin büyütmesi ve 1 Ekim 1995 depreminde gözlenen hasarla ilişkisi, Yerbilimleri 27, 1-13
  • Yalçınkaya E., 2010. Zemin neden bu kadar önemli, Jeofizik Bülteni 63, 77-80.
  • Zhang Z., Fleurisson J.A., Pellet F.L., 2018. A case study of topographic site effects on seismic ground motions at Xishan Park ridge in Zigong, Sichuan, China Eng. Geol. 243,308-319 doi :10.1016/j.enggeo.2018.07.004
  • Wang L., Wu Z., Xia K., Liu K., Wang P., Pu X., Li L., 2018. Amplification of thickness and topography of loess deposit on seismic ground motion and its seismic design methods, Soil Dyn. Earthq. Eng., doi 10.1016/j.soildyn.2018.02.021

Obtaining the Transfer Function in One Dimensional Soil Amplification Analysis with Modified Finite Element Transfer Matrix Method

Year 2021, , 53 - 74, 30.06.2021
https://doi.org/10.46464/tdad.929449

Abstract

In this study, a method is proposed to obtain Transfer functions used in one-dimensional soil amplification analysis. Within the scope of the study, the Modified Finite Element Transfer Matrix (MFETM) method, which was used to find the soil fundamental period in the literature, was adapted to the problem of finding transfer functions used in soil amplification analysis. In the classical finite element method, the system matrix size that increases depending on the number of elements is independent of the number of elements in the MFETM method. At the end of the study, the suitability of the proposed method was shown on two examples. The examples discussed were solved using both the MFETM method presented in this study and the method in the literature, and the results were compared. A program was written in Scilab for the application of the presented method.

References

  • Alcik H., 2018. Investigation of local site responses at the Bodrum peninsula (southwest of Turkey) using the mainshock and aftershocks of the 20 July 2017 Mw6.6 Bodrum-Kos earthquake, Ann. Geophys 61(3), SE339.
  • Alvarado P., Christiansen R., Gregori S. D., Saez M., 2020. Evidence of site amplifcation from ground motion of the last two large crustal earthquakes in central western Argentina, Nat. Hazards 102, 1011-1031, https://doi.org/10.1007/s11069-020-03943-8
  • Ansal A., Tönük G., Kurtuluş A., 2011. Zemin Büyütme Analizleri ve Sahaya Özel Tasarım Depremi Özelliklerinin Belirlenmesi, 1. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı 11-14 Ekim 2011 - ODTÜ - ANKARA, s:1.
  • Arslan H., Siyahi B., 2006. A comparative study on linear and nonlinear site response analysis, Environ. Geol. 50, 1193-1200, doi 10.1007/s00254-006-0291-4
  • Ates E., 2020. Comparison of Horizontal / Vertical Spectral Ratios Obtained Using Earthquake and Microtremor Records: The Example of Amasya, Turk. J. Earthq. Res. 2 (2), 160-175, doi 10.46464/tdad.746926.
  • Bardet J.P., Ichii K., Lin C.H., 2000. EERA A Computer Program for Equivalent-linear Earthquake Site Response Analyses of Layered Soil Deposits. In University of Southern California, Department of Civil Engineering.
  • Bonilla L.F., Steidl J.H., Lindley G.T., Tumarkin A.G., Archuleta R.J., 1997. Site Amplification in the San Fernando Valley, California: Variability of Site-Effect Estimation Using the S-Wave, Coda and H/V Methods, Bull. Seism. Soc. Am. 87, 710-730.
  • Borcherdt R.D., 1970. Effects Of Local On Ground Motion Near San Francisco Bay, Bull. Seism. Soc. Am. 60, 29-61.
  • Ceren K., Karakan E., 2020. Zemin Analizleriyle Dinamik Davranış Özelliklerinin Belirlenmesine Yönelik Pilot Bir Çalışma: Kahramanmaraş İli Üngüt Mahallesi Örneği, Doğ. Afet Çev. Derg. 6 (1), 146-156, doi: 10.21324/dacd.582328.
  • Civelekler E., Okur D. V., Afacan K. B., 2018. Eşdeğer Analiz Yöntemi İle Belirlenen Zeminin Büyütme Değerlerinin Coğrafi Bilgi Sistemleri Kullanılarak Haritalanması: Eskişehir Örneği, VII. Uzaktan Algılama-CBS Sempozyumu (UZAL-CBS 2018), 18-21 Eylül 2018, Eskişehir
  • Choi M.S., 2003. Free Vibration Analysis of Plate Structures Using Finite Element-Transfer Stiffness Coefficient Method, J. Mech. Sci. Technol 17 (6), 805-815.
  • Choudhury D., Savoikar P., 2009. Equivalent-linear seismic analyses of MSW landfills using DEEPSOIL, Eng. Geo. 107, 98-108.
  • Dikmen Ü., Arısoy M. Ö., Akkaya İ., Demirci İ., Hasançebi N., 2013. Yer Tepkisinin Belirlenmesinde Kullanılan Yöntemlerin İvme Kaydı Üzerinde Değerlendirilmesi, 2. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı 25-27 Eylül 2013 - MKÜ - HATAY, s:1.
  • Field E.H., Jacob K.H., 1995. A Comparison and Test of Various Site-Response Estimation Techniques, Including Three That Are Not Reference-Site Dependent, Bull. Seism. Soc. Am. 85, 1127-1143.
  • Gok E., Garcia F.J., Polat O., 2014. Effect of soil conditions on predicted ground motion: Case study from Western Anatolia, Turkey, Physics of the Earth and Planetary Interiors 229, 88-97
  • Güzel M., Bozdağ Ş., Özçep F., 2009. Mikrobölgeleme Çalışmalarında Zemin Büyütmesi ölçütü (Kuzey Adana Örneği), Ç.Ü. Müh. Mim. Fak. Dergisi 24 (1-2), 229-236.
  • Hashash Y.M.A., Musgrove M.I., Harmon J.A., Ilhan O., Xing G., Numanoglu O., Groholski D.R., Phillips C.A., Park D., 2020. DEEPSOIL 7.0, User Manual, Board of Trustees of University of Illinois at Urbana-Champaign, Urbana, IL.
  • Huang D., Sun P., Jin F., Du C., 2021. Topographic amplification of ground motions incorporating uncertainty in subsurface soils with extensive geological borehole data, Soil Dyn. Earth. Eng. 141, 106441
  • Jeong S., Bradley B.A., 2017. Amplification of strong ground motions at Heathcote Valley during the 2010-2011 Canterbury earthquakes: Observation and 1D site response analysis, Soil Dyn. Earth. Eng. 100, 345-356.
  • Kagami H., Okada S., Shiono K., Oner M., Dravinski M., Mal A.K., 1989. Observation of 1- to 5-second microtremors and their application to earthquake engineering. Part III. A two-dimensional study of site effects in the San Fernando Valley, Bull. Seism. Soc. Am. 76 (6), 1801-1812.
  • Kaklamanos J., Baise L.G., Thompson E.M., Dorfmann L., 2015. Comparison of 1D linear, equivalent-linear, and nonlinear site response models at six KiK-net validation sites, Soil Dyn. Earthq. Eng. 69, 207-219.
  • Katz L. J., Bellon R.S., 1978. Microtremor site analysis study at Beatty, Nevada, Bull. Seism. Soc. Am. 68 (3), 757-765.
  • Khanbabazadeh H., Iyisan R., Ansal A., Zulfikar C., 2018. Nonlinear dynamic behavior of the basins with 2D bedrock, Soil Dyn. Earthq. Eng. 107, 108-115.
  • Kim B., 2019. Mapping of ground motion amplifications for the Fraser River delta in Greater Vancouver, Canada, Earth. Eng. Eng. Vib. 18, 703-717, doi: 10.1007/s11803-019-0531-8
  • Kramer S. L., 1996. Geotechnical Earthquake Engineering, Prentice-Hall, Upper Saddle River, New Jersey, 653 pp.
  • Kuruoglu M., 2004. Geographic Information System (GIS) based Database Development and Evaluation Study for Soils of Northern Coast of Izmir Bay, Doktora Tezi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, İzmir, 151 s.
  • Ma N., Wang G., Kamai T., Doi I., Chigira M., 2019. Amplification of seismic response of a large deep-seated landslide in Tokushima, Japan, Eng. Geo. 249, 218-234.
  • Matassoni L., Fiaschi A., 2020. Assessment of seismic ground motion amplification and liquefaction at a volcanic area characterized by residual soils, Journal of Mountain Science 17(3),doi:10.1007/s11629-019-5753-8
  • Midorikawa S., 1987. Prediction of isoseismal map in Kanto Plain due to hypothetical earthquake, J. Struct. Dyn. 33, 43-48.
  • Nakamura Y., 1989. A Method for Dynamic Characteristics Estimation of Subsurface Using Microtremor on the Ground Surface, Quarterly Report of the Railway Technical Research Institute 30(1), 25-33.
  • Nogoshi M., Igarashi T., 1971. On the Amplitude Characteristic of Microtremor, Journal of Seismic Society of Japan 24, 26-40, doi: 10.4294/zisin1948.24.1_26
  • Ozer C., 2017. Analysis of Soil Transfer Function in Izmir Metropolitan Area, Turkey, IOSR Journal of Applied Geology and Geophysics 63-70, doi: 10.9790/0990-0501026370.
  • Özer C., 2019. Erzurum ve Çevresi Yerel Zemin Etkilerinin SSR ve HVSR Yöntemleri Kullanılarak Araştırılması, DEUFMD 21 (61), 247-257.
  • Özkan M.Y., 2017. Zemin Dinamiğine Giriş, Nobel, Ankara, Türkiye.
  • Ozturk D., Bozdogan K.B., 2017. A Method for Determination of the Fundamental Period of Layered Soil Profiles, J. Appl. Comp. Mech. 3(4), 267-273.
  • Özyazıcıoğlu M., Dönmezçelik K., Orhan S.N., Özkan M.Y., 2019. Erzincan İli Zemin Büyütme Etkilerine Dayalı Mikrobölgeleme Çalışması, Doğ. Afet Çev. Derg. 5 (2), 247-256, doi: 10.21324/dacd.457438.
  • Pamuk E., Ozdag O.C., Tuncel A., Ozyalın S., Akgun M., 2018. Local site effects evaluation for Aliaga/Izmir using HVSR (Nakamura technique) and MASW methods, Nat. Hazards 90, 887-899
  • Pamuk E., 2019. Investigation of the local site effects in the northern part of the eastern Anatolian region, Turkey, Boll. Geof. Teor. Appl. 60, 549-568, doi 10.4430/bgta0291.
  • Perk S., Ozer C., 2019. Investigation of Soil Properties based on Accelerometer Stations using Earthquake Recording: The Case Study of Hatay, Turkey, Turk. J. Earthq. Res. 1 (2), 167-179.
  • Puri N., Jain A., Mohanty P., Bhattacharya S., 2018. Earthquake Response Analysis of Sites in State of Haryana Using DeepSoil Software, Procedia Computer Science 125, 357-366.
  • Rathje E.M., Kottke A. R., Trent W.L., 2010. Influence of Input Motion and Site Property Variabilities on Seismic Site Response Analysis,J. Geotech. Geoenviron. Eng. 136(4), 607-619, doi: 10.1061/_ASCE_GT.1943-5606.0000255
  • Rong B., Rui X., Wang G., 2011. Modified finite element transfer matrix method for eigenvalue problem of flexible structures, J. Appl. Mech. 78(2), 021016.
  • Selcuk L., Aydin H., 2012. Kuvaterner Yaşlı Alüvyal Zeminlerin Kuvvetli Yer Hareketine Etkisi: 2011 Van Depremleri, Jeoloji Mühendisliği Dergisi 36 (2), 75-97
  • Sedaghati F., Pezeshk S., Nazemi N., 2018. Site amplification within the Mississippi embayment of the central United States: Investigation of possible differences among various phases of seismic waves and presence of basin waves, Soil Dyn. Earthq. Eng. 113, 534-544
  • Scilab, 2021. version 6.1.0: INRIA, ESI Group, Erişim adresi: https://www.scilab.org
  • Subasi O., Hasal M.E., Ozaslan B., İyisan R., Yamanaka H., Chimoto K., 2019. Bir boyutlu dinamik analiz ve mikrotremor ölçüm sonuçlarının karşılaştırılması, Teknik Dergi 9459-9481, yazı: 552 Tsai N.C., 1970. A Note On The Steady-State Response Of An Elastic Half-Space, Bull. Seism. Soc. Am. 60, 795-808.
  • Tuncel A., Ozdag O.C., Pamuk E., Akgun M., 2019. Calculation of the soil dynamic amplification factor values by using microtremor data: A case study in Izmir (North), J. Fac. Eng. Archit.Gaz. 34(1), 43-52.
  • Turkoz M., 2019. The Effect of Soil Type and Different In-situ Test Results on Soil Amplification Analysis, DUJE 10 (3), 1187-1196.
  • Yalçınkaya E., Alptekin Ö., 2003. Dinar’ da zemin büyütmesi ve 1 Ekim 1995 depreminde gözlenen hasarla ilişkisi, Yerbilimleri 27, 1-13
  • Yalçınkaya E., 2010. Zemin neden bu kadar önemli, Jeofizik Bülteni 63, 77-80.
  • Zhang Z., Fleurisson J.A., Pellet F.L., 2018. A case study of topographic site effects on seismic ground motions at Xishan Park ridge in Zigong, Sichuan, China Eng. Geol. 243,308-319 doi :10.1016/j.enggeo.2018.07.004
  • Wang L., Wu Z., Xia K., Liu K., Wang P., Pu X., Li L., 2018. Amplification of thickness and topography of loess deposit on seismic ground motion and its seismic design methods, Soil Dyn. Earthq. Eng., doi 10.1016/j.soildyn.2018.02.021
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Articles
Authors

Öznur Bilican 0000-0003-3574-8521

Kanat Burak Bozdoğan 0000-0001-7528-2418

Erdinç Keskin 0000-0002-8728-2906

Publication Date June 30, 2021
Submission Date April 28, 2021
Published in Issue Year 2021

Cite

APA Bilican, Ö., Bozdoğan, K. B., & Keskin, E. (2021). Tek Boyutlu Zemin Büyütme Analizlerinde Transfer Fonksiyonunun Değiştirilmiş Sonlu Elemanlar Taşıma Matrisi Yöntemi ile Elde Edilmesi. Türk Deprem Araştırma Dergisi, 3(1), 53-74. https://doi.org/10.46464/tdad.929449
AMA Bilican Ö, Bozdoğan KB, Keskin E. Tek Boyutlu Zemin Büyütme Analizlerinde Transfer Fonksiyonunun Değiştirilmiş Sonlu Elemanlar Taşıma Matrisi Yöntemi ile Elde Edilmesi. TDAD. June 2021;3(1):53-74. doi:10.46464/tdad.929449
Chicago Bilican, Öznur, Kanat Burak Bozdoğan, and Erdinç Keskin. “Tek Boyutlu Zemin Büyütme Analizlerinde Transfer Fonksiyonunun Değiştirilmiş Sonlu Elemanlar Taşıma Matrisi Yöntemi Ile Elde Edilmesi”. Türk Deprem Araştırma Dergisi 3, no. 1 (June 2021): 53-74. https://doi.org/10.46464/tdad.929449.
EndNote Bilican Ö, Bozdoğan KB, Keskin E (June 1, 2021) Tek Boyutlu Zemin Büyütme Analizlerinde Transfer Fonksiyonunun Değiştirilmiş Sonlu Elemanlar Taşıma Matrisi Yöntemi ile Elde Edilmesi. Türk Deprem Araştırma Dergisi 3 1 53–74.
IEEE Ö. Bilican, K. B. Bozdoğan, and E. Keskin, “Tek Boyutlu Zemin Büyütme Analizlerinde Transfer Fonksiyonunun Değiştirilmiş Sonlu Elemanlar Taşıma Matrisi Yöntemi ile Elde Edilmesi”, TDAD, vol. 3, no. 1, pp. 53–74, 2021, doi: 10.46464/tdad.929449.
ISNAD Bilican, Öznur et al. “Tek Boyutlu Zemin Büyütme Analizlerinde Transfer Fonksiyonunun Değiştirilmiş Sonlu Elemanlar Taşıma Matrisi Yöntemi Ile Elde Edilmesi”. Türk Deprem Araştırma Dergisi 3/1 (June 2021), 53-74. https://doi.org/10.46464/tdad.929449.
JAMA Bilican Ö, Bozdoğan KB, Keskin E. Tek Boyutlu Zemin Büyütme Analizlerinde Transfer Fonksiyonunun Değiştirilmiş Sonlu Elemanlar Taşıma Matrisi Yöntemi ile Elde Edilmesi. TDAD. 2021;3:53–74.
MLA Bilican, Öznur et al. “Tek Boyutlu Zemin Büyütme Analizlerinde Transfer Fonksiyonunun Değiştirilmiş Sonlu Elemanlar Taşıma Matrisi Yöntemi Ile Elde Edilmesi”. Türk Deprem Araştırma Dergisi, vol. 3, no. 1, 2021, pp. 53-74, doi:10.46464/tdad.929449.
Vancouver Bilican Ö, Bozdoğan KB, Keskin E. Tek Boyutlu Zemin Büyütme Analizlerinde Transfer Fonksiyonunun Değiştirilmiş Sonlu Elemanlar Taşıma Matrisi Yöntemi ile Elde Edilmesi. TDAD. 2021;3(1):53-74.

AÇIK ERİŞİM ve LİSANS


Bu derginin içeriği Creative Commons Attribution 4.0 International Non-Commercial License'a tabidir.




Flag Counter