Determination of Effective Criteria in Earthquake Damage Using the AHP Method
Year 2025,
Volume: 7 Issue: 2, 244 - 252
Defne Sanlı Sayan
,
Mustafa Nuri Dolmaz
,
Serpil Gerdan
Abstract
Large-scale earthquakes cause damage in residential areas close to active faults and can turn into disasters depending on many criteria. Criteria such as proximity to the fault and ground properties are the elements that turn earthquakes into disasters. This study aims to contribute to risk management by evaluating these criteria with the Analytical Hierarchy Process (AHP) method. These criteria that cause damage are addressed under two main criteria as geostructural and social in the form of 17 sub criteria. These sub criteria are compared among themselves with the AHP method. In the geostructural main criterion, the key sub criteria in the damage of the earthquake are determined as the highest ground acceleration and speed, ground type and proximity to the fault. In the social main criterion, the most important is population density. The most effective criteria obtained are determined as coordinates and risky points.
References
- AFAD, 2018. Türkiye Deprem Tehlike Haritaları İnteraktif Web Uygulaması (TDTH), T.C. İçişleri Bakanlığı Afet ve Acil Durum Yönetimi Başkanlığı (AFAD) Ankara. Erişim adresi: https://tdth.afad.gov.tr/TDTH/main.xhtml .
- Almasi M., Khoshfetrat S., Galankashi M.R., 2019. Sustainable supplier selection and order allocation under risk and inflation condition, IEEE Transactions on Engineering Management, 68(3), 823-837.
- Arslan E.T. 2010. Election Strategy with Analytic Hierarchy Process: A Study at Süleyman Demirel University Faculty of Economics and Administrative Sciences, Süleyman Demirel University, The Journal of Faculty of Economics and Administrative Science,. 15(2), 455-477.
- Aspiotis T., Aquib T.A., Castro-Cruz D., Li B., Li X., Liu J., Matrau R., Palgunadi K.H., Parisi L., Suhendi C., Tang Y., Klinger Y., Jonsson S., Mai P.M., 2023. Strong ground motions due to directivity and site effects inflicted by the February 6 2023 earthquake doublet, along the East Anatolian Fault, EGU General Assembly 2023, Vienna, Austria EGU23-17620, https://doi.org/10.5194/egusphere-egu23-17620.
- Baltzopoulos G., Baraschino R., Chioccarelli E., Cito P., Vitale A., Iervolino I., 2023. Near‐source ground motion in the M7. 8 Gaziantep (Turkey) earthquak,. Earthquake Engineering & Structural Dynamics, 52(12), 3903-3912.
- Bouramdane A.A., 2024a. A rigorous evaluation of earthquake management strategies in Morocco's Al Haouz province: a Multi-Criteria Decision-Making methodology, Emergency Management Science and Technology 4: e012, https://doi.org/10.48130/emst-0024-0012.
- Bouramdane A.A. 2024b. Morocco’s Earthquake Risk Management: A Multi-Criteria Decision-Making Approach and Implications for the Recent Japan Earthquake, EGU General Assembly 14–19 April, Vienna, Austria, EGU24-6158, https://doi.org/10.5194/egusphere-egu24-6158.
- Çetin K.Ö., Elsaid A., Ozacar A., 2025. Intensity Characteristics of Seismograms Recorded During the February 6, 2023, M7.8 Türkiye Kahramanmaraş Pazarcik Earthquake, Turkish Journal of Civil Engineering, 36(2), https://doi.org/10.18400/tjce.1348206.
- Demirtaş R., Erkmen C., 2000. Deprem ve Jeoloji, TMMOB Jeoloji Mühendisleri Odası Yayınları: 52, Ankara.
- Duan Y., Bo J., Peng D., Li Q., Wan W., Qi W., 2023. Analysis of peak ground acceleration and seismogenic fault characteristics of the Mw7.8 earthquake in Turkey, Applied Sciences, 13(19), 10896.
- Erinç S., 2002 Jeomorfoloji-I. DER Yayınları, İstanbul.
- Freire S., Aubrecht C., 2012. Integrating population dynamics into mapping human exposure to seismic hazard, Natural Hazards and Earth System Sciences, 12(11), 3533-3543.
- Karakale V., Özgür E., Ataoğlu Ş., 2023. Site observations on buildings’ performance in Hatay Province after Kahramanmaraş earthquakes, El-Cezeri, 10(3), 506-516.
- Kazaz İ., Bilge İ.H., Gürbüz M., 2024. Near-fault ground motion characteristics and its effects on a collapsed reinforced concrete structure in Hatay during the February 6, 2023 Mw7.8 Kahramanmaraş earthquake, Engineering Structures, 298, 117067.
- Kienzle A., Hannich D., Wirth W., Ehret D., Rohn J., Ciugudean V., Czurda K., 2006. A GIS-Based Study of Earthquake Hazard as a Tool For The Microzonation of Bucharest, Engineering Geology, 87, 13-32.
- Mansourkhaki A., Hosseini M., Shariatmohaymani A., 2003. Evaluationg the performance of urban transportation networks in the aftermath of an earthquake in large populated cities, International journal of engineering science (English), 14(4), 181-199.
- Saaty T.L., 1980. The Analytic Hierarchy Process, McGraw-Hill, New York.
- Saaty T.L., 1986. Axiomatic Foundation of the Analytic Hierarchy Process, Management Science. 32(7), 841-855.
- Sahin S., 2019. The Disaster Management in Turkey and Goals of 2023, Turk. J. Earthq. Res. 1 (2), 180-196.
- Shadkam E., Cheraghchi M., 2022. Prioritization of earthquake relief using a hybrid two-phase approach, Journal of applied research on industrial engineering, 9(4), 493-506.
- Shadman S., Islam A.I., 2021. Estimation of earthquake vulnerability by using analytical hierarchy process, Natural Hazards Research, 1(4), 153-160.
- TBDY, 2018. Türkiye Bina Deprem Yönetmeliği, 2018, T.C. İçişleri Bakanlığı Afet ve Acil Durum Yönetimi Başkanlığı (AFAD), Erişim adresi: https://www.resmigazete.gov.tr/eskiler/2018/03/20180318M1-2.htm.
- Zor E., Cevher M., Mengüç G., Soydabaş M., Bilgiç A., Ayan E., Özalaybey S., 2007. Kocaeli İlinde Zemin Sınıflaması ve Sismik Tehlike Değerlendirme Çalışmaları, Altıncı Ulusal Deprem Mühendisliği Konferansı, 16-20 Ekim, İstanbul, 2007.
Deprem Hasarında Etkili Olan Kriterlerin AHP Yöntemiyle Belirlenmesi
Year 2025,
Volume: 7 Issue: 2, 244 - 252
Defne Sanlı Sayan
,
Mustafa Nuri Dolmaz
,
Serpil Gerdan
Abstract
Büyük ölçekli depremler yerleşim alanlarında hasara neden olurlar. Deprem üreten aktif faylara yakın yerleşim alanları, birçok kritere bağlı olarak hasar görmekte ve depremler afete dönüşmektedir. Faya yakınlık ve zemin özellikleri gibi kriterler, depremleri afete dönüştüren unsurlardır. Bu çalışma, bu kriterleri Analitik Hiyerarşi Proses (AHP) yöntemiyle değerlendirerek risk yönetimine katkı sağlamayı hedeflemektedir. Hasara neden olan bu kriterler, 17 alt kriter şeklinde, joeyapısal ve sosyal olarak iki ana kriter altında ele alınmıştır. Bu alt kriterler kendi içlerinde AHP yöntemi ile karşılaştırılmıştır. Jeoyapısal ana kriterde depremin tahribatında anahtar alt kriterler olarak, en yüksek yer ivmesi ve hızı, zemin cinsi ve faya yakınlık olarak belirlenmiştir. Sosyal ana kriterde ise en önemli nüfus yoğunluğudur. Elde edilen en etkili kriterler koordinatlar ve riskli noktalar şeklinde belirlenmiştir.
References
- AFAD, 2018. Türkiye Deprem Tehlike Haritaları İnteraktif Web Uygulaması (TDTH), T.C. İçişleri Bakanlığı Afet ve Acil Durum Yönetimi Başkanlığı (AFAD) Ankara. Erişim adresi: https://tdth.afad.gov.tr/TDTH/main.xhtml .
- Almasi M., Khoshfetrat S., Galankashi M.R., 2019. Sustainable supplier selection and order allocation under risk and inflation condition, IEEE Transactions on Engineering Management, 68(3), 823-837.
- Arslan E.T. 2010. Election Strategy with Analytic Hierarchy Process: A Study at Süleyman Demirel University Faculty of Economics and Administrative Sciences, Süleyman Demirel University, The Journal of Faculty of Economics and Administrative Science,. 15(2), 455-477.
- Aspiotis T., Aquib T.A., Castro-Cruz D., Li B., Li X., Liu J., Matrau R., Palgunadi K.H., Parisi L., Suhendi C., Tang Y., Klinger Y., Jonsson S., Mai P.M., 2023. Strong ground motions due to directivity and site effects inflicted by the February 6 2023 earthquake doublet, along the East Anatolian Fault, EGU General Assembly 2023, Vienna, Austria EGU23-17620, https://doi.org/10.5194/egusphere-egu23-17620.
- Baltzopoulos G., Baraschino R., Chioccarelli E., Cito P., Vitale A., Iervolino I., 2023. Near‐source ground motion in the M7. 8 Gaziantep (Turkey) earthquak,. Earthquake Engineering & Structural Dynamics, 52(12), 3903-3912.
- Bouramdane A.A., 2024a. A rigorous evaluation of earthquake management strategies in Morocco's Al Haouz province: a Multi-Criteria Decision-Making methodology, Emergency Management Science and Technology 4: e012, https://doi.org/10.48130/emst-0024-0012.
- Bouramdane A.A. 2024b. Morocco’s Earthquake Risk Management: A Multi-Criteria Decision-Making Approach and Implications for the Recent Japan Earthquake, EGU General Assembly 14–19 April, Vienna, Austria, EGU24-6158, https://doi.org/10.5194/egusphere-egu24-6158.
- Çetin K.Ö., Elsaid A., Ozacar A., 2025. Intensity Characteristics of Seismograms Recorded During the February 6, 2023, M7.8 Türkiye Kahramanmaraş Pazarcik Earthquake, Turkish Journal of Civil Engineering, 36(2), https://doi.org/10.18400/tjce.1348206.
- Demirtaş R., Erkmen C., 2000. Deprem ve Jeoloji, TMMOB Jeoloji Mühendisleri Odası Yayınları: 52, Ankara.
- Duan Y., Bo J., Peng D., Li Q., Wan W., Qi W., 2023. Analysis of peak ground acceleration and seismogenic fault characteristics of the Mw7.8 earthquake in Turkey, Applied Sciences, 13(19), 10896.
- Erinç S., 2002 Jeomorfoloji-I. DER Yayınları, İstanbul.
- Freire S., Aubrecht C., 2012. Integrating population dynamics into mapping human exposure to seismic hazard, Natural Hazards and Earth System Sciences, 12(11), 3533-3543.
- Karakale V., Özgür E., Ataoğlu Ş., 2023. Site observations on buildings’ performance in Hatay Province after Kahramanmaraş earthquakes, El-Cezeri, 10(3), 506-516.
- Kazaz İ., Bilge İ.H., Gürbüz M., 2024. Near-fault ground motion characteristics and its effects on a collapsed reinforced concrete structure in Hatay during the February 6, 2023 Mw7.8 Kahramanmaraş earthquake, Engineering Structures, 298, 117067.
- Kienzle A., Hannich D., Wirth W., Ehret D., Rohn J., Ciugudean V., Czurda K., 2006. A GIS-Based Study of Earthquake Hazard as a Tool For The Microzonation of Bucharest, Engineering Geology, 87, 13-32.
- Mansourkhaki A., Hosseini M., Shariatmohaymani A., 2003. Evaluationg the performance of urban transportation networks in the aftermath of an earthquake in large populated cities, International journal of engineering science (English), 14(4), 181-199.
- Saaty T.L., 1980. The Analytic Hierarchy Process, McGraw-Hill, New York.
- Saaty T.L., 1986. Axiomatic Foundation of the Analytic Hierarchy Process, Management Science. 32(7), 841-855.
- Sahin S., 2019. The Disaster Management in Turkey and Goals of 2023, Turk. J. Earthq. Res. 1 (2), 180-196.
- Shadkam E., Cheraghchi M., 2022. Prioritization of earthquake relief using a hybrid two-phase approach, Journal of applied research on industrial engineering, 9(4), 493-506.
- Shadman S., Islam A.I., 2021. Estimation of earthquake vulnerability by using analytical hierarchy process, Natural Hazards Research, 1(4), 153-160.
- TBDY, 2018. Türkiye Bina Deprem Yönetmeliği, 2018, T.C. İçişleri Bakanlığı Afet ve Acil Durum Yönetimi Başkanlığı (AFAD), Erişim adresi: https://www.resmigazete.gov.tr/eskiler/2018/03/20180318M1-2.htm.
- Zor E., Cevher M., Mengüç G., Soydabaş M., Bilgiç A., Ayan E., Özalaybey S., 2007. Kocaeli İlinde Zemin Sınıflaması ve Sismik Tehlike Değerlendirme Çalışmaları, Altıncı Ulusal Deprem Mühendisliği Konferansı, 16-20 Ekim, İstanbul, 2007.