Effect of Energy Ratio Correction Factor in Analyzing Soil Liquefaction Potential Based on TEC-2018
Year 2025,
Volume: 7 Issue: 3, 490 - 499
Muhammet Dingil
,
Betül Keseroğlu
,
Yakup Türedi
,
Murat Örnek
Abstract
Liquefaction potential is determined using simplified liquefaction assessment in TEC-2018. The energy ratio correction factor (CE) is a coefficient depending SPT hammer type. In this study, the effect of CE on the factor of safety (FS) against liquefaction was investigated. The smallest (0.90), average (1.25), and largest (1.60) CE for the automatic trip hammer in TEC-2018 were considered. For this study, a console application was developed, and analyses varying CE were limited until two and three times TEC-2018 safety condition. The safe solutions percentages were calculated as 11.28%, 18.81%, and 30.88% in FS=[0,2.2]; 20.28%, 27.55% and 38.32% in FS=[0,3.3] for CE=0.90, 1.25 and 1.60, respectively. Consequently, the change in safe solutions was 18-20% from CE=0.90 to 1.60.
References
-
Akbaş M., Subaşi O., Kaygusuz Z., İyisan R., 2023. Sıvılaşma Kaynaklı Oturmaların Azaltılmasında Üst Dolgu Tabakasının Etkisi: Bir Vaka Analizi, Mühendislik Bilimleri ve Tasarım Dergisi, 11(1), 126-144.
-
Anbazhagan P., Yadhunandan M.E., Kumar A., 2022. Effects of hammer energy on borehole termination and SBC calculation through site-specific Hammer energy measurement using SPT HEMA, Indian Geotechnical Journal, 52(2), 381-399.
-
Andrus R.D., Stokoe II K.H., 2000. Liquefaction resistance of soils from shear-wave velocity, Journal of Geotechnical and Geoenvironmental Engineering, 126(11), 1015-1025.
-
ASTM D4633-16, 2016. Standard Test Method for Energy Measurement for Dynamic Penetrometers, ASTM International, West Conshohocken, USA.
-
Bayrakcı E., Balaban E., Onur M.İ., Özmen H.B., Pekkan E., 2021. Geoteknik Mühendisliğinde 2016-2021 Yılları Arası Sıvılaşma Çalışmaları, Disaster Science and Engineering, 7, 11-19.
-
Biringen E., Davie J., 2008. Assessment of energy transfer ratio in SPT using automatic hammers, In GeoCongress 2008: Characterization, Monitoring, and Modeling of GeoSystems (pp. 356-363).
-
Boulanger R.W., Idriss I.M., 2016. CPT-based liquefaction triggering procedure, Journal of Geotechnical and Geoenvironmental Engineering, 142(2), 04015065.
-
Cetin K.O., Ayhan B.U., Moss R., Kayen R., 2022. Reliability-Based Liquefaction Triggering Assessment Framework: A Unified Approach for SPT-CPT-Vs, In European Conference on Earthquake Engineering and Seismology (pp. 109-123), Cham: Springer International Publishing.
-
Cetin K.O., Cevik M.E., Al-Suhaily A., Yunatci A.A., 2023. Probabilistic Assessment of Standard Penetration Test Hammer Energy Efficiency and Rod Length Corrections, Journal of Geotechnical and Geoenvironmental Engineering, 149(8), 04023055.
-
Cetin K.O., Seed R.B., Der Kiureghian A., Tokimatsu K., Harder Jr L.F., Kayen R.E., Moss R.E., 2004. Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential, Journal of Geotechnical and Geoenvironmental Engineering, 130(12), 1314-1340.
-
Chen Z., Li H., Goh A.T.C., Wu C., Zhang W., 2020. Soil liquefaction assessment using soft computing approaches based on capacity energy concept, Geosciences, 10(9), 330.
-
Clayton C.R.I., 1990. SPT energy transmission: theory, measurement and significance, Ground Engineering, 35-43.
-
Dingil M., 2020. Zemin Mekaniğinde Endeks Deneyleri için İnternet Tabanlı Bir Uygulamanın Geliştirilmesi, İskenderun Teknik Üniversitesi, Mühendislik ve Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, 2020.
-
El-Sherbiny R.M., Salem M.A., 2013. Evaluation of SPT energy for Donut and Safety hammers using CPT measurements in Egypt, Ain Shams Engineering Journal, 4(4), 701-708.
-
EN ISO 22476-3:2005 +A1:2011, 2011. Geotechnical investigation and testing - Field testing - Part 3: Standard penetration test - Amendment 1, European Committee for Standardization (CEN) Technical Committee CEN/TC 341, 2011.
-
Honeycutt J.N., Kiser S.E., Anderson J.B., 2014. Database evaluation of energy transfer for central mine equipment automatic hammer standard penetration tests, Journal of Geotechnical and Geoenvironmental Engineering, 140(1), 194-200.
-
Iwasaki T., Arakawa T., Tokida K.I., 1984. Simplified procedures for assessing soil liquefaction during earthquakes, International Journal of Soil Dynamics and Earthquake Engineering, 3(1), 49-58.
-
Juang C.H., Chen C.H., Mayne P.W., 2008. CPTU simplified stress-based model for evaluating soil liquefaction potential, Soils and Foundations, 48(6), 755-770.
-
Kayen R., Moss R.E.S., Thompson E.M., Seed R.B., Cetin K.O., Der Kiureghian A., Tanaka Y., Tokimatsu K., 2013. Shear-wave velocity–based probabilistic and deterministic assessment of seismic soil liquefaction potential, Journal of Geotechnical and Geoenvironmental Engineering, 139(3), 407-419.
-
Kim D.S., Bang E.S., Seo W.S., 2004. Energy ratio measurement of SPT equipment, In international site characterization (ISC-2) (pp. 339-344).
-
Kumar D.R., Samui P., Burman A., 2023. Suitability assessment of the best liquefaction analysis procedure based on SPT data, Multiscale and Multidisciplinary Modeling, Experiments and Design, 6(2), 319-329.
-
Lai S.Y., Chang W.J., Lin P.S., 2006. Logistic regression model for evaluating soil liquefaction probability using CPT data, Journal of Geotechnical and Geoenvironmental Engineering, 132(6), 694-704.
-
Lukiantchuki J.A., Bernardes G.P., Esquivel E.R., 2017. Energy ratio (ER) for the standard penetration test based on measured field tests, Soils Rocks, 40(2), 77-91.
-
Manna M., Case A., Ali-Gombe A., Richard III G.G., 2022. Memory analysis of. NET and .Net core applications, Forensic Science International: Digital Investigation, 42, 301404.
-
MATLAB, 2025. MATLAB version: 9.10.0 (R2021a), The MathWorks Inc., Natick, Massachusetts.
-
NET Core, 2025. Open-source .NET Framework, Microsoft Corporation, GitHub: dotnet/core.
-
Rahimi S., Wood C.M., Wotherspoon L.M., 2020. Influence of soil aging on SPT-Vs correlation and seismic site classification, Engineering Geology, 272, 105653.
-
Robertson P.K., Fear C.E., 1997. Cyclic liquefaction and its evaluation based on the SPT and CPT, In Proceeding of the NCEER workshop on evaluation of liquefaction resistance of soils (pp. 41-87).
-
Robertson P.K., Wride C.E., 1998. Evaluating cyclic liquefaction potential using the cone penetration test, Canadian Geotechnical Journal, 35(3), 442-459.
-
Sahin G., Toygar O., Kahyaoglu T., 2022. A Numerical Study on the Efficiency of Jet Grout Columns in Liquefaction Mitigation, Turk Deprem Arastirma Dergisi, 4(2), 210-229, https://doi.org/10.46464/tdad.1170304.
-
Seed H.B., Idriss I.M., 1971. Simplified procedure for evaluating soil liquefaction potential, Journal of the Soil Mechanics and Foundations Division, 97(9), 1249-1273.
-
Seed H.B., Tokimatsu K., Harder L.F., Chung R.M., 1985. Influence of SPT procedures in soil liquefaction resistance evaluations, Journal of Geotechnical Engineering, 111(12), 1425-1445.
-
Seed R.B., Cetin K.O., Moss R.E., Kammerer A.M., Wu J., Pestana J.M., Riemer M.F., Sancio R., Bray J., Kayen R.E., Faris A., 2003. Recent advances in soil liquefaction engineering: a unified and consistent framework. In Proceedings of the 26th Annual ASCE Los Angeles Geotechnical Spring Seminar: Long Beach, CA.
-
Skempton A.W., 1986. Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation, Geotechnique, 36(3), 425-447.
-
TBDY, 2018. Türkiye Bina Deprem Yönetmeliği (TBDY) 2018, Afet ve Acil Durum Yönetimi Başkanlığı (AFAD), Ankara.
-
TDTH, 2018. Türkiye Deprem Tehlike Haritaları (TDTH) İnteraktif Web Uygulaması, Afet ve Acil Durum Yönetimi Başkanlığı (AFAD), Ankara.
-
Visual Studio, 2025. Code Editor Redefined with AI, Microsoft Corporation, GitHub: microsoft/vscode.
-
Yang X.T., Zhou Y.G., Cao Y., Ishikawa A., Chen Y.M., 2023. On the determination of cyclic shear stress for soil liquefaction triggering in centrifuge model test, Soil Dynamics and Earthquake Engineering, 173, 108137.
-
Yimsiri S., 2013. Energy ratio of SPT practice performed in Thailand, Geotechnical and Geophysical Site Characterization 4 - Proceedings of the 4th International Conference on Site Characterization 4, ISC-4.
-
Youd T.L., Idriss I.M., Andrus R.D., Arango I., Castro G., Christian J.T., Dobry R., Finn W.D.L, Harder Jr L.F., Hynes M.E., Ishihara K., Koester J.P., Liao S.S.C., Marcuson III W.F., Martin G.R., Mitchell J.K., Moriwaki Y., Power M.S., Robertson P.K., Seed R.B., Stokoe II K.H., 2001. Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils, Journal of Geotechnical and Geoenvironmental Engineering, 127(10), 817-833.
-
ZTEUE, 2019. Zemin ve Temel Etüdü Uygulama Esasları ve Rapor Formatı, Çevre Şehircilik ve İklim Değişikliği Bakanlığı, Ankara.
TBDY-2018 Esaslı Zemin Sıvılaşma Potansiyelinin Çözümlenmesinde Enerji Oranı Düzeltme Katsayısının Etkisi
Year 2025,
Volume: 7 Issue: 3, 490 - 499
Muhammet Dingil
,
Betül Keseroğlu
,
Yakup Türedi
,
Murat Örnek
Abstract
TBDY-2018’e göre sıvılaşma potansiyeli; basitleştirilmiş zemin sıvılaşma değerlendirmesiyle belirlenebilmektedir. Enerji oranı düzeltme katsayısı (CE), SPT deneyindeki tokmak (şahmerdan) tipine göre belirlenen bir düzeltme katsayısıdır. Bu çalışmada, CE katsayısının, sıvılaşmaya karşı güvenlik sayısı (GS) üzerindeki etkisi araştırılmıştır. TBDY-2018’de otomatik darbeli tokmak için verilen en küçük (0.90), ortalama (1.25) ve en büyük (1.60) CE değerleri ele alınmıştır. Bu makaleye özgü, TBDY-2018 esaslı sıvılaşma çözümlemesi yapabilen bir konsol uygulaması geliştirilerek değişen CE katsayıları için çözümlemeler, güvenlik koşulunun iki ve üç katıyla sınırlandırılmıştır. Sıvılaşmaya karşı güvenli çözümlerin oranı; CE =0.90, 1.25 ve 1.60 için sırasıyla, GS=[0,2.2] aralığında %11.28, %18.81 ve %30.88; GS=[0,3.3] aralığında %20.28, %27.55 ve %38.32 olarak hesaplanmıştır. Sonuçta, güvenli çözüm sayısının değişimi, CE=0.90’dan CE=1.60’a geçişte yaklaşık %18-20 arası olmuştur.
Thanks
Bu çalışmada yer alan birinci yazar, TÜBİTAK 2211-A Genel Yurt İçi Doktora Programı ve YÖK 100/2000 Doktora Projesi kapsamında desteklenmektedir.
References
-
Akbaş M., Subaşi O., Kaygusuz Z., İyisan R., 2023. Sıvılaşma Kaynaklı Oturmaların Azaltılmasında Üst Dolgu Tabakasının Etkisi: Bir Vaka Analizi, Mühendislik Bilimleri ve Tasarım Dergisi, 11(1), 126-144.
-
Anbazhagan P., Yadhunandan M.E., Kumar A., 2022. Effects of hammer energy on borehole termination and SBC calculation through site-specific Hammer energy measurement using SPT HEMA, Indian Geotechnical Journal, 52(2), 381-399.
-
Andrus R.D., Stokoe II K.H., 2000. Liquefaction resistance of soils from shear-wave velocity, Journal of Geotechnical and Geoenvironmental Engineering, 126(11), 1015-1025.
-
ASTM D4633-16, 2016. Standard Test Method for Energy Measurement for Dynamic Penetrometers, ASTM International, West Conshohocken, USA.
-
Bayrakcı E., Balaban E., Onur M.İ., Özmen H.B., Pekkan E., 2021. Geoteknik Mühendisliğinde 2016-2021 Yılları Arası Sıvılaşma Çalışmaları, Disaster Science and Engineering, 7, 11-19.
-
Biringen E., Davie J., 2008. Assessment of energy transfer ratio in SPT using automatic hammers, In GeoCongress 2008: Characterization, Monitoring, and Modeling of GeoSystems (pp. 356-363).
-
Boulanger R.W., Idriss I.M., 2016. CPT-based liquefaction triggering procedure, Journal of Geotechnical and Geoenvironmental Engineering, 142(2), 04015065.
-
Cetin K.O., Ayhan B.U., Moss R., Kayen R., 2022. Reliability-Based Liquefaction Triggering Assessment Framework: A Unified Approach for SPT-CPT-Vs, In European Conference on Earthquake Engineering and Seismology (pp. 109-123), Cham: Springer International Publishing.
-
Cetin K.O., Cevik M.E., Al-Suhaily A., Yunatci A.A., 2023. Probabilistic Assessment of Standard Penetration Test Hammer Energy Efficiency and Rod Length Corrections, Journal of Geotechnical and Geoenvironmental Engineering, 149(8), 04023055.
-
Cetin K.O., Seed R.B., Der Kiureghian A., Tokimatsu K., Harder Jr L.F., Kayen R.E., Moss R.E., 2004. Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential, Journal of Geotechnical and Geoenvironmental Engineering, 130(12), 1314-1340.
-
Chen Z., Li H., Goh A.T.C., Wu C., Zhang W., 2020. Soil liquefaction assessment using soft computing approaches based on capacity energy concept, Geosciences, 10(9), 330.
-
Clayton C.R.I., 1990. SPT energy transmission: theory, measurement and significance, Ground Engineering, 35-43.
-
Dingil M., 2020. Zemin Mekaniğinde Endeks Deneyleri için İnternet Tabanlı Bir Uygulamanın Geliştirilmesi, İskenderun Teknik Üniversitesi, Mühendislik ve Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, 2020.
-
El-Sherbiny R.M., Salem M.A., 2013. Evaluation of SPT energy for Donut and Safety hammers using CPT measurements in Egypt, Ain Shams Engineering Journal, 4(4), 701-708.
-
EN ISO 22476-3:2005 +A1:2011, 2011. Geotechnical investigation and testing - Field testing - Part 3: Standard penetration test - Amendment 1, European Committee for Standardization (CEN) Technical Committee CEN/TC 341, 2011.
-
Honeycutt J.N., Kiser S.E., Anderson J.B., 2014. Database evaluation of energy transfer for central mine equipment automatic hammer standard penetration tests, Journal of Geotechnical and Geoenvironmental Engineering, 140(1), 194-200.
-
Iwasaki T., Arakawa T., Tokida K.I., 1984. Simplified procedures for assessing soil liquefaction during earthquakes, International Journal of Soil Dynamics and Earthquake Engineering, 3(1), 49-58.
-
Juang C.H., Chen C.H., Mayne P.W., 2008. CPTU simplified stress-based model for evaluating soil liquefaction potential, Soils and Foundations, 48(6), 755-770.
-
Kayen R., Moss R.E.S., Thompson E.M., Seed R.B., Cetin K.O., Der Kiureghian A., Tanaka Y., Tokimatsu K., 2013. Shear-wave velocity–based probabilistic and deterministic assessment of seismic soil liquefaction potential, Journal of Geotechnical and Geoenvironmental Engineering, 139(3), 407-419.
-
Kim D.S., Bang E.S., Seo W.S., 2004. Energy ratio measurement of SPT equipment, In international site characterization (ISC-2) (pp. 339-344).
-
Kumar D.R., Samui P., Burman A., 2023. Suitability assessment of the best liquefaction analysis procedure based on SPT data, Multiscale and Multidisciplinary Modeling, Experiments and Design, 6(2), 319-329.
-
Lai S.Y., Chang W.J., Lin P.S., 2006. Logistic regression model for evaluating soil liquefaction probability using CPT data, Journal of Geotechnical and Geoenvironmental Engineering, 132(6), 694-704.
-
Lukiantchuki J.A., Bernardes G.P., Esquivel E.R., 2017. Energy ratio (ER) for the standard penetration test based on measured field tests, Soils Rocks, 40(2), 77-91.
-
Manna M., Case A., Ali-Gombe A., Richard III G.G., 2022. Memory analysis of. NET and .Net core applications, Forensic Science International: Digital Investigation, 42, 301404.
-
MATLAB, 2025. MATLAB version: 9.10.0 (R2021a), The MathWorks Inc., Natick, Massachusetts.
-
NET Core, 2025. Open-source .NET Framework, Microsoft Corporation, GitHub: dotnet/core.
-
Rahimi S., Wood C.M., Wotherspoon L.M., 2020. Influence of soil aging on SPT-Vs correlation and seismic site classification, Engineering Geology, 272, 105653.
-
Robertson P.K., Fear C.E., 1997. Cyclic liquefaction and its evaluation based on the SPT and CPT, In Proceeding of the NCEER workshop on evaluation of liquefaction resistance of soils (pp. 41-87).
-
Robertson P.K., Wride C.E., 1998. Evaluating cyclic liquefaction potential using the cone penetration test, Canadian Geotechnical Journal, 35(3), 442-459.
-
Sahin G., Toygar O., Kahyaoglu T., 2022. A Numerical Study on the Efficiency of Jet Grout Columns in Liquefaction Mitigation, Turk Deprem Arastirma Dergisi, 4(2), 210-229, https://doi.org/10.46464/tdad.1170304.
-
Seed H.B., Idriss I.M., 1971. Simplified procedure for evaluating soil liquefaction potential, Journal of the Soil Mechanics and Foundations Division, 97(9), 1249-1273.
-
Seed H.B., Tokimatsu K., Harder L.F., Chung R.M., 1985. Influence of SPT procedures in soil liquefaction resistance evaluations, Journal of Geotechnical Engineering, 111(12), 1425-1445.
-
Seed R.B., Cetin K.O., Moss R.E., Kammerer A.M., Wu J., Pestana J.M., Riemer M.F., Sancio R., Bray J., Kayen R.E., Faris A., 2003. Recent advances in soil liquefaction engineering: a unified and consistent framework. In Proceedings of the 26th Annual ASCE Los Angeles Geotechnical Spring Seminar: Long Beach, CA.
-
Skempton A.W., 1986. Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation, Geotechnique, 36(3), 425-447.
-
TBDY, 2018. Türkiye Bina Deprem Yönetmeliği (TBDY) 2018, Afet ve Acil Durum Yönetimi Başkanlığı (AFAD), Ankara.
-
TDTH, 2018. Türkiye Deprem Tehlike Haritaları (TDTH) İnteraktif Web Uygulaması, Afet ve Acil Durum Yönetimi Başkanlığı (AFAD), Ankara.
-
Visual Studio, 2025. Code Editor Redefined with AI, Microsoft Corporation, GitHub: microsoft/vscode.
-
Yang X.T., Zhou Y.G., Cao Y., Ishikawa A., Chen Y.M., 2023. On the determination of cyclic shear stress for soil liquefaction triggering in centrifuge model test, Soil Dynamics and Earthquake Engineering, 173, 108137.
-
Yimsiri S., 2013. Energy ratio of SPT practice performed in Thailand, Geotechnical and Geophysical Site Characterization 4 - Proceedings of the 4th International Conference on Site Characterization 4, ISC-4.
-
Youd T.L., Idriss I.M., Andrus R.D., Arango I., Castro G., Christian J.T., Dobry R., Finn W.D.L, Harder Jr L.F., Hynes M.E., Ishihara K., Koester J.P., Liao S.S.C., Marcuson III W.F., Martin G.R., Mitchell J.K., Moriwaki Y., Power M.S., Robertson P.K., Seed R.B., Stokoe II K.H., 2001. Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils, Journal of Geotechnical and Geoenvironmental Engineering, 127(10), 817-833.
-
ZTEUE, 2019. Zemin ve Temel Etüdü Uygulama Esasları ve Rapor Formatı, Çevre Şehircilik ve İklim Değişikliği Bakanlığı, Ankara.