Research Article
BibTex RIS Cite

On Travelling Wave Solutions of Dullin-Gottwald-Holm Dynamical Equation and Strain Wave Equation

Year 2022, , 134 - 149, 29.09.2022
https://doi.org/10.46810/tdfd.1099472

Abstract

In this study, extended trial equation method (ETEM) is implemented to obtain exact solutions of the Dullin-Gottwald-Holm Dynamical equation (DGHDE) and the strain wave equation. We constitute some exact solutions such as soliton solutions, rational, Jacobi elliptic, periodic wave solutions and hyperbolic function solutions of these equations via ETEM. Then, we present results that we obtained by using this method.

References

  • [1] Wazwaz AM. The Hirota’s direct method and the tanh–coth method for multiplesoliton solutions of the Sawada–Kotera–Ito seventh-order equation, Applied Mathematics and Computation. 2008;199:133–8.
  • [2] Pelap F, Kamga J, Fomethe A, Kenfack A, Faye M. Wave dynamics in a modified quintic complex Ginzburg-Landau system. Phys. Lett. A. 2009;373:1015-8.
  • [3] Pandir Y, Ekin A. Dynamics of combined soliton solutions of unstable nonlinear Schrodinger equation with new version of the trial equation method. Chinese Journal of Physics. 2020;67:534-43.
  • [4] Rizvi STR, Ali K, Sardar A, Younis M, Bekir A. Symbolic computation and abundant travelling wave solutions to KdV-mKdV equation. Pramana. 2017;88(16):1-6.
  • [5] Irshad A, Mohyud-Din ST. Tanh-Coth Method for Nonlinear Differantial Equations. Studies in Nonlinear Sciences, 2012;3(1):24-48.
  • [6] Pandir Y, Gurefe Y, Kadak U, Misirli E. Classification of exact solutions for some nonlinear partial differential equations with generalized evolution. Abstract and Applied Analysis. 2012;2012:1-16.
  • [7] Bulut H, Pandir Y. Tuluce Demiray S. Exact Solutions of Nonlinear Schrodinger's Equation with Dual Power-Law Nonlinearity by Extended Trial Equation Method. Waves in Random and Complex Media. 2014;24(4):439-51.
  • [8] Younas U, Seadawy AR, Younis M, Rizvi STR. Dispersive of propagation wave structures to the dullin-GottwaldHolm dynamical equation in a shallow water waves. Chinese Journal of Physics. 2020;68:348-64.
  • [9] Octavian GM. Global conservative solutions of the Dullin-Gotwald-Holm Equation. Dıscrete and contınuous. 2007;19(3):575-94.
  • [10] Raddadi MH, Younis M, Seadawy AR, Rehman SU, Bilal M, Rizvi STR, Althobaiti A. Dynamical behaviour of shallow water waves and solitary wave solutions of the Dullin-Gottwald-Holm dynamical system. Journal of King Saud University-Science. 2021;33(101627):1-9.
  • [11] Gupta RK, Anupma B. The Dullin-Gottwald-Holm Equation: Classical Lie Approach and Exact Solutions. International Journal of Nonlinear Science. 2010;2(10):146-52.
  • [12] Ayati Z, Hosseini K, Mirzazadeh M. Application of Kudryashov and functional variable methods to the strain wave equation in microstructured solids. Nonlinear Engineering. 2017;6(1):25–9.
  • [13] Kumar S, Kumar A, Wazwaz AM. New exact solitary wave solutions of the strain wave equation in microstructured solids via the generalized exponential rational function method. The European Physical Journal Plus. 2020;135(870):1-17.
  • [14] Hafez MG, Akbar MA. An exponential expansion method and its application to the strain wave equation in microstructured solids. Ain Shams Engineering Journal. 2015;6:683-90.
Year 2022, , 134 - 149, 29.09.2022
https://doi.org/10.46810/tdfd.1099472

Abstract

References

  • [1] Wazwaz AM. The Hirota’s direct method and the tanh–coth method for multiplesoliton solutions of the Sawada–Kotera–Ito seventh-order equation, Applied Mathematics and Computation. 2008;199:133–8.
  • [2] Pelap F, Kamga J, Fomethe A, Kenfack A, Faye M. Wave dynamics in a modified quintic complex Ginzburg-Landau system. Phys. Lett. A. 2009;373:1015-8.
  • [3] Pandir Y, Ekin A. Dynamics of combined soliton solutions of unstable nonlinear Schrodinger equation with new version of the trial equation method. Chinese Journal of Physics. 2020;67:534-43.
  • [4] Rizvi STR, Ali K, Sardar A, Younis M, Bekir A. Symbolic computation and abundant travelling wave solutions to KdV-mKdV equation. Pramana. 2017;88(16):1-6.
  • [5] Irshad A, Mohyud-Din ST. Tanh-Coth Method for Nonlinear Differantial Equations. Studies in Nonlinear Sciences, 2012;3(1):24-48.
  • [6] Pandir Y, Gurefe Y, Kadak U, Misirli E. Classification of exact solutions for some nonlinear partial differential equations with generalized evolution. Abstract and Applied Analysis. 2012;2012:1-16.
  • [7] Bulut H, Pandir Y. Tuluce Demiray S. Exact Solutions of Nonlinear Schrodinger's Equation with Dual Power-Law Nonlinearity by Extended Trial Equation Method. Waves in Random and Complex Media. 2014;24(4):439-51.
  • [8] Younas U, Seadawy AR, Younis M, Rizvi STR. Dispersive of propagation wave structures to the dullin-GottwaldHolm dynamical equation in a shallow water waves. Chinese Journal of Physics. 2020;68:348-64.
  • [9] Octavian GM. Global conservative solutions of the Dullin-Gotwald-Holm Equation. Dıscrete and contınuous. 2007;19(3):575-94.
  • [10] Raddadi MH, Younis M, Seadawy AR, Rehman SU, Bilal M, Rizvi STR, Althobaiti A. Dynamical behaviour of shallow water waves and solitary wave solutions of the Dullin-Gottwald-Holm dynamical system. Journal of King Saud University-Science. 2021;33(101627):1-9.
  • [11] Gupta RK, Anupma B. The Dullin-Gottwald-Holm Equation: Classical Lie Approach and Exact Solutions. International Journal of Nonlinear Science. 2010;2(10):146-52.
  • [12] Ayati Z, Hosseini K, Mirzazadeh M. Application of Kudryashov and functional variable methods to the strain wave equation in microstructured solids. Nonlinear Engineering. 2017;6(1):25–9.
  • [13] Kumar S, Kumar A, Wazwaz AM. New exact solitary wave solutions of the strain wave equation in microstructured solids via the generalized exponential rational function method. The European Physical Journal Plus. 2020;135(870):1-17.
  • [14] Hafez MG, Akbar MA. An exponential expansion method and its application to the strain wave equation in microstructured solids. Ain Shams Engineering Journal. 2015;6:683-90.
There are 14 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Şeyma Tülüce Demiray 0000-0002-8027-7290

Merve Davarcı Yalçın 0000-0002-4862-7836

Publication Date September 29, 2022
Published in Issue Year 2022

Cite

APA Tülüce Demiray, Ş., & Davarcı Yalçın, M. (2022). On Travelling Wave Solutions of Dullin-Gottwald-Holm Dynamical Equation and Strain Wave Equation. Türk Doğa Ve Fen Dergisi, 11(3), 134-149. https://doi.org/10.46810/tdfd.1099472
AMA Tülüce Demiray Ş, Davarcı Yalçın M. On Travelling Wave Solutions of Dullin-Gottwald-Holm Dynamical Equation and Strain Wave Equation. TDFD. September 2022;11(3):134-149. doi:10.46810/tdfd.1099472
Chicago Tülüce Demiray, Şeyma, and Merve Davarcı Yalçın. “On Travelling Wave Solutions of Dullin-Gottwald-Holm Dynamical Equation and Strain Wave Equation”. Türk Doğa Ve Fen Dergisi 11, no. 3 (September 2022): 134-49. https://doi.org/10.46810/tdfd.1099472.
EndNote Tülüce Demiray Ş, Davarcı Yalçın M (September 1, 2022) On Travelling Wave Solutions of Dullin-Gottwald-Holm Dynamical Equation and Strain Wave Equation. Türk Doğa ve Fen Dergisi 11 3 134–149.
IEEE Ş. Tülüce Demiray and M. Davarcı Yalçın, “On Travelling Wave Solutions of Dullin-Gottwald-Holm Dynamical Equation and Strain Wave Equation”, TDFD, vol. 11, no. 3, pp. 134–149, 2022, doi: 10.46810/tdfd.1099472.
ISNAD Tülüce Demiray, Şeyma - Davarcı Yalçın, Merve. “On Travelling Wave Solutions of Dullin-Gottwald-Holm Dynamical Equation and Strain Wave Equation”. Türk Doğa ve Fen Dergisi 11/3 (September 2022), 134-149. https://doi.org/10.46810/tdfd.1099472.
JAMA Tülüce Demiray Ş, Davarcı Yalçın M. On Travelling Wave Solutions of Dullin-Gottwald-Holm Dynamical Equation and Strain Wave Equation. TDFD. 2022;11:134–149.
MLA Tülüce Demiray, Şeyma and Merve Davarcı Yalçın. “On Travelling Wave Solutions of Dullin-Gottwald-Holm Dynamical Equation and Strain Wave Equation”. Türk Doğa Ve Fen Dergisi, vol. 11, no. 3, 2022, pp. 134-49, doi:10.46810/tdfd.1099472.
Vancouver Tülüce Demiray Ş, Davarcı Yalçın M. On Travelling Wave Solutions of Dullin-Gottwald-Holm Dynamical Equation and Strain Wave Equation. TDFD. 2022;11(3):134-49.