Research Article
BibTex RIS Cite

Determination of the Effect of Harpin Protein on NaCl Salt Stress in Pistachio (Pistacia vera L.) Seeds

Year 2022, , 141 - 150, 29.06.2022
https://doi.org/10.46810/tdfd.1120976

Abstract

Drought and salinity are among the most important abiotic stress factors. Although there is a growing interest to the sustainability of fruit growing in arid and salty areas, there are not enough studies. Therefore, this study was carried out for the determination of the effects of harpin protein at different salt concentrations in Pistachio (Pistacia vera L.) seeds. At the end of the treatment, there was a 20% decrease in plant height, 43% in root length, and approximately 40% in fresh and dry plant weight. Superoxide dismutase, catalase and ascorbate peroxidase antioxidant enzyme activities increased by 171%, 285% and 390%, respectively. In addition, the amount of chlorophyll a, chlorophyll b, and chlorophyll a+b (respetctively, 47%, 42%, 43%) was decrease. In addition, it was determined that harpin applications protected the chlorophyll content related to photosynthesis, increased the diameter of the stem and root and decreased the stress enzyme activities. Thus, applications of harpin protein may be beneficial to increase tolerance to drought/salinity stresses in pistachio plants, especially in the early stages of seedling development. These findings may pave the way for future research on stress management in sustainable fruit growing in arid and semi-arid areas.

References

  • [1]. Hamed SB, Lefi E. Dynamics of growth and phytomass allocation in seedlings of Pistacia atlantica Desf. versus Pistacia vera L. under salt stress. International Journal of Agronomy and Agricultural Research (IJAAR). 2015;6(1):16-27.
  • [2]. https://topraktema.org/media/1409/07-tuzlanma.pdf erişim tarihi 26.04.2022
  • [3]. Dinç E. The spectrophotometric multicomponent analysis of a ternary mixture of ascorbic acid, acetylsalicylic acid and paracetamol by the double divisor-ratio spectra derivative and ratio spectra-zero crossing methods. Talanta. 1999 May 10;48(5):1145-57.
  • [4]. http://www.botes.com.tr/dokumanlar/013rizakanber.pdferişim tarihi 26.04.2022
  • [5]. Çetinkaya H, Kendal E, Sayar MS. Ekolojik tarım açısından güneydoğu anadolu bölgesi. Türk Bilimsel Derlemeler Dergisi. 2013;6(1):195-8.
  • [6]. Salas-Salvado´ J., Casas-Agustench P., Salas-Huetos A. (2011). Cultural and historical aspects of Mediterranean nuts with emphasis on their attributed healthy and nutritional properties. Nutrition, Metabolism and Cardiovascular Diseases. 21(1): 1-6.
  • [7]. Khalilpour M, Mozafari V, Abbaszadeh-Dahaji P. Tolerance to salinity and drought stresses in pistachio (Pistacia vera L.) seedlings inoculated with indigenous stress-tolerant PGPR isolates. Scientia Horticulturae. 2021 Nov 17;289:110440.
  • [8]. Food and Agriculture Organization (FAO) (2022). https://www.fao.org/faostat/en/#data/QCL. Erişim tarihi: 23.01.2022.
  • [9]. Özçağıran R, Ünal A, Özeker E, İsfendiyaroğlu M. Ilıman İklim Meyve Türleri Sert Çekirdekli Meyveler Cilt-I, Ege Üni. Ziraat Fak. Yayınları. 2004(553).
  • [10]. Zhu Z, Wei G, Li J, Qian Q, Yu J. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science. 2004 Sep 1;167(3):527-33.
  • [11]. Yasar F, Kusvuran S, Ellialtioglu S. Determination of anti-oxidant activities in some melon (Cucumis melo L.) varieties and cultivars under salt stress. The Journal of Horticultural Science and Biotechnology. 2006 Jan 1;81(4):627-30.
  • [12]. Yasar F. Effects of salt stress on ion and lipidperoxidation content in green beans genotypes. Asian Journal of Chemistry. 2007 Feb 15;19(2):1165.
  • [13]. Kusvuran S, Ellialtioglu S, Yasar F, Abak K. Antioxidative enzyme activities in the leaves and callus tissues of salt-tolerant and salt-susceptible melon varieties under salinity. African Journal of Biotechnology. 2012;11(3):635-41.
  • [14]. Dolatabadıan A, Sanavy SA, Chashmı NA. The effects of application of ascorbic acid (Vitamin C) on antioxidant enzymes activites, lipid peroxidant and proline accumulation of Canola (Brassica napus L.) under conditions of salt stress. Journal Agronomy and Crop Science. 2008:931-2250.
  • [15]. Li Y. Physiological responses of tomato seedlings (Lycopersicon esculentum) to salt stress. Modern Appl. Sci. 2009 Mar;3(3):171-6.
  • [16]. Chookhampaeng S. The effect of salt stress on growth, chlorophyll content proline content and antioxidative enzymes of pepper (Capsicum annuum L.) seedling. European Journal of Scientific Research. 2011;49(1):103-9.
  • [17]. Yasar F, Ellialtioglu S, Yildiz K. Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean. Russian journal of plant physiology. 2008 Nov;55(6):782-6.
  • [18]. Amirjani MR. Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. American Journal of Plant Physiology. 2010;5(6):350-60.
  • [19]. Akyüz F, Yıldırım AN, Yıldırım F, Şan B, Karakurt Y, Çelik C, Önder S. Effects of water stress on leaf antioxidant enzymes activities and protein contents in five Prunus rootstocks. InXXX International Horticultural Congress IHC2018: International Symposium on Cultivars, Rootstocks and Management Systems of 1281 2018 Aug 12 (pp. 369-376).
  • [20]. Yıldırım F, Meltem Es, Binici S, Çelik C, Yıldırım A, Karakurt Y. Antioxidant Enzymes Activities of Walnut Nursery Trees to Drought Stress Progression. International Journal of Agriculture Forestry and Life Sciences. 2021;5(2):217-25.
  • [21]. Yıldırım A. N., Şan B., Yıldırım F., Çelik C., Bayar B., Karakurt Y. (2021b). Physiological and biochemical responses of almond rootstocks to drought stress. Turkısh Journal Of Agrıculture And Forestry, 45, 522-532.
  • [22]. Alian A, Altman A, Heuer B. Genotypic difference in salinity and water stress tolerance of fresh market tomato cultivars. Plant science. 2000 Mar 7;152(1):59-65.
  • [23]. Heuer B. Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants. Plant Science. 2003 Oct 1;165(4):693-9.
  • [24]. Faheed FA, Hassanein AM, Azooz MM. Gradual increase in NaCl concentration overcomes inhibition of seed germination due to salinity stress in Sorghum bicolor (L.). Acta Agronomica Hungarica. 2005 Aug 1;53(2):229-39.
  • [25]. Sheteawi SA. Improving growth and yield of salt-stressed soybean by exogenous application of jasmonic acid and ascobin. International Journal of Agriculture and Biology (Pakistan). 2007.
  • [26]. Dhanapackiam S, Ilyas M. Effect of salinity on chlorophyll and carbohydrate contents of Sesbania grandiflora seedlings. Indian Journal of Science and Technology. 2010 Jan 1;3(1):64-6.
  • [27]. Hafez EM, Gharib HS. Effect of exogenous application of ascorbic acid on physiological and biochemical characteristics of wheat under water stress. International Journal of plant production. 2016 Oct 1;10(4):579-96.
  • [28]. Ahmadi FI, Karimi K, Struik PC. Effect of exogenous application of methyl jasmonate on physiological and biochemical characteristics of Brassica napus L. cv. Talaye under salinity stress. South African Journal of Botany. 2018 Mar 1;115:5-11.
  • [29]. Ejaz B, Sajid ZA, Aftab F. Effect of exogenous application of ascorbic acid on antioxidant enzyme activities, proline contents, and growth parameters of Saccharum spp. hybrid cv. HSF-240 under salt stress. Turkish Journal of Biology. 2012 Nov 21;36(6):630-40.
  • [30]. Molaei S, Rabiei V, Soleimani A, Razavi F. Exogenous application of glycine betaine increases the chilling tolerance of pomegranate fruits cv. Malase Saveh during cold storage. Journal of Food Processing and Preservation. 2021 Mar;45(3):e15315.
  • [31]. Wang SY, Shi XC, Liu FQ, Laborda P. Effects of exogenous methyl jasmonate on quality and preservation of postharvest fruits: A review. Food Chemistry. 2021 Aug 15;353:129482.
  • [32]. Choi MS, Kim W, Lee C, Oh CS. Harpins, multifunctional proteins secreted by gram-negative plant-pathogenic bacteria. Molecular plant-microbe interactions. 2013 Oct;26(10):1115-22.
  • [33]. Fontanilla M, Montes M, De Prado R. Effects of the foliar-applied protein" Harpin (Ea)"(messenger) on tomatoes infected with Phytophthora infestans. Communications in agricultural and applied biological sciences. 2005 Jan 1;70(3):41-5.
  • [34]. He SY, Huang HC, Collmer A. Pseudomonas syringae pv. syringae harpinPss: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell. 1993 Jul 2;73(7):1255-66.
  • [35]. Andi S, Taguchi F, Toyoda K, Shiraishi T, Ichinose Y. Effect of methyl jasmonate on harpin-induced hypersensitive cell death, generation of hydrogen peroxide and expression of PAL mRNA in tobacco suspension cultured BY-2 cells. Plant and Cell Physiology. 2001 Apr 15;42(4):446-9.
  • [36]. Ichinose Y, Andi S, Doi R, Tanaka R, Taguchi F, Sasabe M, Toyoda K, Shiraishi T, Yamada T. Generation of hydrogen peroxide is not required for harpin-induced apoptotic cell death in tobacco BY-2 cell suspension culture. Plant Physiology and Biochemistry. 2001 Sep 1;39(9):771-6.
  • [37]. Dong HP, Yu H, Bao Z, Guo X, Peng J, Yao Z, Chen G, Qu S, Dong H. The ABI2-dependent abscisic acid signalling controls HrpN-induced drought tolerance in Arabidopsis. Planta. 2005 Jun;221(3):313-27.
  • [38]. Zhang C, Shi H, Chen L, Wang X, Lü B, Zhang S, Liang Y, Liu R, Qian J, Sun W, You Z. Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1 in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae. BMC plant biology. 2011 Dec;11(1):1-9.
  • [39]. Almas S. The effects of plant activators on drought tolerance of cotton (Gossypium hirsutum L.) genotypes grown in Gap region in Turkey (Doctoral dissertation).
  • [40]. Bednarz CW, Brown SN, Flanders JT, Tankersley TB, Brown SM. Effects of foliar applied harpin protein on cotton lint yield, fiber quality, and crop maturity. Communications in soil science and plant analysis. 2002 Apr 10;33(5-6):933-45.
  • [41]. Tezcan H, Akbudak N, Şeniz V. Effect of harpin protein on yield and fruit quality of pepper grown in greenhouse conditions. InIII Balkan Symposium on Vegetables and Potatoes 729 2004 Sep 6 (pp. 267-270).
  • [42]. Li X, Han B, Xu M, Han L, Zhao Y, Liu Z, Dong H, Zhang C. Plant growth enhancement and associated physiological responses are coregulated by ethylene and gibberellin in response to harpin protein Hpa1. Planta. 2014 Apr;239(4):831-46.
  • [43]. Esen M. Su stresi altında Chandler ve Fernor ceviz çeşitlerinin tüplü fidanlarının göstermiş olduğu tepkiler.
  • [44]. Zhang Z, Huang R. Analysis of malondialdehyde, chlorophyll proline, soluble sugar, and glutathione content in Arabidopsis seedling. Bio-protocol. 2013 Jul 20;3(14):e817-.
  • [45]. Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and cell physiology. 1981 Aug 1;22(5):867-80.
  • [46]. Jiang T, Jahangir MM, Jiang Z, Lu X, Ying T. Influence of UV-C treatment on antioxidant capacity, antioxidant enzyme activity and texture of postharvest shiitake (Lentinus edodes) mushrooms during storage. Postharvest biology and technology. 2010 Jun 1;56(3):209-15.
  • [47]. Beers RF, Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol chem. 1952 Mar 1;195(1):133-40.
  • [48]. Shaheen S, Naseer S, Ashraf M, Akram NA. Salt stress affects water relations, photosynthesis, and oxidative defense mechanisms in Solanum melongena L. Journal of Plant Interactions. 2013 Mar 1;8(1):85-96.
  • [49]. Okkaoğlu H, Sönmez Ç, Şimşek Aö, Bayram E. Effect of salt stress on some agronomical characteristics and essential oil content of coriander (Coriandrum sativum L.) cultivars. Journal of Applied Biological Sciences. 2015;9(3):21-4.
  • [50]. Menezes RV, Azevedo AD, Ribeiro MD, Cova AM. Growth and contents of organic and inorganic solutes in amaranth under salt stress. Pesquisa Agropecuária Tropical. 2017 Jan;47:22-30.
  • [51]. Rahneshan Z, Nasibi F, Moghadam AA. Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. Journal of plant interactions. 2018 Jan 1;13(1):73-82.
  • [52]. Sahin U, Ekinci M, Ors S, Turan M, Yildiz S, Yildirim E. Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Scientia Horticulturae. 2018 Oct 20;240:196-204.
  • [53]. Inal A, Gunes A, Pilbeam DJ, Kadioglu YK, Eraslan F. Concentrations of essential and nonessential elements in shoots and storage roots of carrot grown in NaCl and Na2SO4 salinity. X‐Ray Spectrometry: An International Journal. 2009 Jan;38(1):45-51.
  • [54]. Kapoor N, Pande V. Effect of salt stress on growth parameters, moisture content, relative water content and photosynthetic pigments of fenugreek variety RMt-1. Journal of Plant Sciences. 2015;10(6):210-21.
  • [55]. Aydınlı M. Armut yetiştiriciliğinde kullanılan farklı anaçların tuzluluğa toleranslarının morfolojik, fizyolojik ve biyokimyasal parametreler ile incelenmesi.
  • [56]. Ashraf M, Mukhtar N, Rehman S, Rha ES. Salt-induced changes in photosynthetic activity and growth in a potential medicinal plant Bishop’s weed (Ammi majus L.). Photosynthetica. 2004 Dec;42(4):543-50.
  • [57]. Akbudak N, Tezcan H, Akbudak B, Seniz V. The effect of harpin protein on plant growth parameters, leaf chlorophyll, leaf colour and percentage rotten fruit of pepper plants inoculated with Botrytis cinerea. Scientia Horticulturae. 2006 Jun 29;109(2):107-12.
  • [58]. Abbas MA, Younis ME, Shukry WM. Plant growth, metabolism and adaptation in relation to stress conditions. XIV. Effect of salinity on the internal solute concentrations in Phaseolus vulgaris. Journal of Plant Physiology. 1991 Oct 1;138(6):722-7.
  • [59]. Franco JA, Esteban C, Rodriguez C. Effects of salinity on various growth stages of muskmelon cv. Revigal. Journal of Horticultural Science. 1993 Jan 1;68(6):899-904.
  • [60]. García LV, Marañón T, Moreno A, Clemente L. Above‐ground biomass and species richness in a Mediterranean salt marsh. Journal of Vegetation Science. 1993 Jun;4(3):417-24.
  • [61]. Chartzoulakis KS. Photosynthesis, water relations and leaf growth of cucumber exposed to salt stress. Scientia Horticulturae. 1994 Sep 1;59(1):27-35.
  • [62]. Sivritepe N. Asmalarda tuza dayanıklılık testleri ve tuza dayanımda etkili bazı faktörler üzerinde araştırmalar.
  • [63]. Shannon MC, Grieve CM. Tolerance of vegetable crops to salinity. Scientia horticulturae. 1998 Nov 30;78(1-4):5-38.
  • [64]. Chuang HW, Harnrak A, Chen YC, Hsu CM. A harpin-induced ethylene-responsive factor regulates plant growth and responses to biotic and abiotic stresses. Biochemical and biophysical research communications. 2010 Nov 12;402(2):414-20.
  • [65]. Ashraf M. Some important physiological selection criteria for salt tolerance in plants. Flora-Morphology, Distribution, Functional Ecology of Plants. 2004 Jan 1;199(5):361-76.
  • [66]. Yılmaz E, Tuna Al, Bürün B. Tolerance strategıes developed by plants to the effects of salt stress. Celal Bayar University Journal of Science. 2011;7(1):47-66.
  • [67]. Romero-Aranda R, Soria T, Cuartero J. Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant science. 2001 Jan 5;160(2):265-72.
  • [68]. Chen BH, Huang JH. Degradation and isomerization of chlorophyll a and β-carotene as affected by various heating and illumination treatments. Food Chemistry. 1998 Jul 1;62(3):299-307.
  • [69]. Verma S, Mishra SN. Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. Journal of plant physiology. 2005 Jun 14;162(6):669-77.
  • [70]. Ahmad P, Jaleel CA, Sharma S. Antioxidant defense system, lipid peroxidation, proline-metabolizing enzymes, and biochemical activities in two Morus alba genotypes subjected to NaCl stress. Russian Journal of Plant Physiology. 2010 Jul;57(4):509-17.
  • [71]. Maia JM, Costa de Macedo CE, Voigt EL, Freitas JB, Silveira JA. Antioxidative enzymatic protection in leaves of two contrasting cowpea cultivars under salinity. Biologia Plantarum. 2010 Mar;54(1):159-63.
  • [72]. Zhang M, Fang Y, Ji Y, Jiang Z, Wang L. Effects of salt stress on ion content, antioxidant enzymes and protein profile in different tissues of Broussonetia papyrifera. South African journal of botany. 2013 Mar 1;85:1-9.
  • [73]. García‐Caparrós P, Hasanuzzaman M, Lao MT. Oxidative stress and antioxidant defense in plants under salinity. Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms. 2019 Jul 18:291-309.
  • [74]. Akbudak N, Tezcan H. Bitkisel üretimde ve bitki korumada yeni bir etken madde: Harpin. Uludağ Üniversitesi Ziraat Fakültesi Dergisi. 2006;20(2):39-43.
  • [75]. Kumar S, Li G, Yang J, Huang X, Ji Q, Liu Z, Ke W, Hou H. Effect of salt stress on growth, physiological parameters, and ionic concentration of water dropwort (Oenanthe javanica) cultivars. Frontiers in plant science. 2021;12.
  • [76]. Zhou X, Chen Y, Zhao Y, Gao F, Liu H. The application of exogenous PopW increases the tolerance of Solanum lycopersicum L. to drought stress through multiple mechanisms. Physiology and Molecular Biology of Plants. 2020 Dec;26(12):2521-35.

Antepfıstığı (Pistacia vera L.) Çöğürlerinde Harpin Proteininin NaCl Tuz Stresi Üzerine Etkisinin Belirlenmesi

Year 2022, , 141 - 150, 29.06.2022
https://doi.org/10.46810/tdfd.1120976

Abstract

Tarımsal üretimi ve verimliliği sınırlandıran en önemli abiyotik stres faktörlerin başında kuraklık ve tuzluluk gelmektedir. Kurak ve tuzlu alanlarda meyve yetiştiriciliğinin sürdürülebilirliği konusuna ilgi bulunmakla birlikte yeterli çalışma bulunmamaktadır. Bu nedenle bu çalışma, 2021 yılında, Antepfıstığı (Pistacia vera L.) çöğürlerinde harpin proteinin farklı tuz konsantrasyonlarındaki etkilerinin belirlenmesi amacıyla yürütülmüştür. Uygulama sonunda tuz konsantrasyonun artmasıyla birlikte bitki boyunda %20, kök uzunluğunda %43, yaş ve kuru bitki ağırlığında yaklaşık olarak %40 oranında azalma meydana gelmiştir. Süperoksit dismutaz, katalaz ve askorbat peroksidaz antioksidan enzim aktiviteleri ise sırasıyla, %171, % 285 ve % 390 oranında artmıştır. Ayrıca klorofil a miktarı %47, klorofil b miktarı %42 ve klorofil a+b miktarı %43 oranında azalmıştır. Bununla birlikte harpin uygulamalarının fotosentezle ilişkili olan klorofil içeriğini koruduğu, gövde ve kök çapını artırdığı ve stres enzim aktivitelerini düşürdüğü saptanmıştır. Böylelikle antepfıstığı bitkilerinde özellikle çöğür gelişiminin hassas olduğu ilk zamanlarında kuraklık/tuzluluk streslerine toleransı arttırmak için harpin proteinin uygulamalarının yararlı olabilir. Bu bulgular, kurak ve yarı kurak alanlarda sürdürülebilir meyve yetiştiriciliğinde stres yönetimi konusunda gelecekteki araştırmaların önünü açabilir.

References

  • [1]. Hamed SB, Lefi E. Dynamics of growth and phytomass allocation in seedlings of Pistacia atlantica Desf. versus Pistacia vera L. under salt stress. International Journal of Agronomy and Agricultural Research (IJAAR). 2015;6(1):16-27.
  • [2]. https://topraktema.org/media/1409/07-tuzlanma.pdf erişim tarihi 26.04.2022
  • [3]. Dinç E. The spectrophotometric multicomponent analysis of a ternary mixture of ascorbic acid, acetylsalicylic acid and paracetamol by the double divisor-ratio spectra derivative and ratio spectra-zero crossing methods. Talanta. 1999 May 10;48(5):1145-57.
  • [4]. http://www.botes.com.tr/dokumanlar/013rizakanber.pdferişim tarihi 26.04.2022
  • [5]. Çetinkaya H, Kendal E, Sayar MS. Ekolojik tarım açısından güneydoğu anadolu bölgesi. Türk Bilimsel Derlemeler Dergisi. 2013;6(1):195-8.
  • [6]. Salas-Salvado´ J., Casas-Agustench P., Salas-Huetos A. (2011). Cultural and historical aspects of Mediterranean nuts with emphasis on their attributed healthy and nutritional properties. Nutrition, Metabolism and Cardiovascular Diseases. 21(1): 1-6.
  • [7]. Khalilpour M, Mozafari V, Abbaszadeh-Dahaji P. Tolerance to salinity and drought stresses in pistachio (Pistacia vera L.) seedlings inoculated with indigenous stress-tolerant PGPR isolates. Scientia Horticulturae. 2021 Nov 17;289:110440.
  • [8]. Food and Agriculture Organization (FAO) (2022). https://www.fao.org/faostat/en/#data/QCL. Erişim tarihi: 23.01.2022.
  • [9]. Özçağıran R, Ünal A, Özeker E, İsfendiyaroğlu M. Ilıman İklim Meyve Türleri Sert Çekirdekli Meyveler Cilt-I, Ege Üni. Ziraat Fak. Yayınları. 2004(553).
  • [10]. Zhu Z, Wei G, Li J, Qian Q, Yu J. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science. 2004 Sep 1;167(3):527-33.
  • [11]. Yasar F, Kusvuran S, Ellialtioglu S. Determination of anti-oxidant activities in some melon (Cucumis melo L.) varieties and cultivars under salt stress. The Journal of Horticultural Science and Biotechnology. 2006 Jan 1;81(4):627-30.
  • [12]. Yasar F. Effects of salt stress on ion and lipidperoxidation content in green beans genotypes. Asian Journal of Chemistry. 2007 Feb 15;19(2):1165.
  • [13]. Kusvuran S, Ellialtioglu S, Yasar F, Abak K. Antioxidative enzyme activities in the leaves and callus tissues of salt-tolerant and salt-susceptible melon varieties under salinity. African Journal of Biotechnology. 2012;11(3):635-41.
  • [14]. Dolatabadıan A, Sanavy SA, Chashmı NA. The effects of application of ascorbic acid (Vitamin C) on antioxidant enzymes activites, lipid peroxidant and proline accumulation of Canola (Brassica napus L.) under conditions of salt stress. Journal Agronomy and Crop Science. 2008:931-2250.
  • [15]. Li Y. Physiological responses of tomato seedlings (Lycopersicon esculentum) to salt stress. Modern Appl. Sci. 2009 Mar;3(3):171-6.
  • [16]. Chookhampaeng S. The effect of salt stress on growth, chlorophyll content proline content and antioxidative enzymes of pepper (Capsicum annuum L.) seedling. European Journal of Scientific Research. 2011;49(1):103-9.
  • [17]. Yasar F, Ellialtioglu S, Yildiz K. Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean. Russian journal of plant physiology. 2008 Nov;55(6):782-6.
  • [18]. Amirjani MR. Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. American Journal of Plant Physiology. 2010;5(6):350-60.
  • [19]. Akyüz F, Yıldırım AN, Yıldırım F, Şan B, Karakurt Y, Çelik C, Önder S. Effects of water stress on leaf antioxidant enzymes activities and protein contents in five Prunus rootstocks. InXXX International Horticultural Congress IHC2018: International Symposium on Cultivars, Rootstocks and Management Systems of 1281 2018 Aug 12 (pp. 369-376).
  • [20]. Yıldırım F, Meltem Es, Binici S, Çelik C, Yıldırım A, Karakurt Y. Antioxidant Enzymes Activities of Walnut Nursery Trees to Drought Stress Progression. International Journal of Agriculture Forestry and Life Sciences. 2021;5(2):217-25.
  • [21]. Yıldırım A. N., Şan B., Yıldırım F., Çelik C., Bayar B., Karakurt Y. (2021b). Physiological and biochemical responses of almond rootstocks to drought stress. Turkısh Journal Of Agrıculture And Forestry, 45, 522-532.
  • [22]. Alian A, Altman A, Heuer B. Genotypic difference in salinity and water stress tolerance of fresh market tomato cultivars. Plant science. 2000 Mar 7;152(1):59-65.
  • [23]. Heuer B. Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants. Plant Science. 2003 Oct 1;165(4):693-9.
  • [24]. Faheed FA, Hassanein AM, Azooz MM. Gradual increase in NaCl concentration overcomes inhibition of seed germination due to salinity stress in Sorghum bicolor (L.). Acta Agronomica Hungarica. 2005 Aug 1;53(2):229-39.
  • [25]. Sheteawi SA. Improving growth and yield of salt-stressed soybean by exogenous application of jasmonic acid and ascobin. International Journal of Agriculture and Biology (Pakistan). 2007.
  • [26]. Dhanapackiam S, Ilyas M. Effect of salinity on chlorophyll and carbohydrate contents of Sesbania grandiflora seedlings. Indian Journal of Science and Technology. 2010 Jan 1;3(1):64-6.
  • [27]. Hafez EM, Gharib HS. Effect of exogenous application of ascorbic acid on physiological and biochemical characteristics of wheat under water stress. International Journal of plant production. 2016 Oct 1;10(4):579-96.
  • [28]. Ahmadi FI, Karimi K, Struik PC. Effect of exogenous application of methyl jasmonate on physiological and biochemical characteristics of Brassica napus L. cv. Talaye under salinity stress. South African Journal of Botany. 2018 Mar 1;115:5-11.
  • [29]. Ejaz B, Sajid ZA, Aftab F. Effect of exogenous application of ascorbic acid on antioxidant enzyme activities, proline contents, and growth parameters of Saccharum spp. hybrid cv. HSF-240 under salt stress. Turkish Journal of Biology. 2012 Nov 21;36(6):630-40.
  • [30]. Molaei S, Rabiei V, Soleimani A, Razavi F. Exogenous application of glycine betaine increases the chilling tolerance of pomegranate fruits cv. Malase Saveh during cold storage. Journal of Food Processing and Preservation. 2021 Mar;45(3):e15315.
  • [31]. Wang SY, Shi XC, Liu FQ, Laborda P. Effects of exogenous methyl jasmonate on quality and preservation of postharvest fruits: A review. Food Chemistry. 2021 Aug 15;353:129482.
  • [32]. Choi MS, Kim W, Lee C, Oh CS. Harpins, multifunctional proteins secreted by gram-negative plant-pathogenic bacteria. Molecular plant-microbe interactions. 2013 Oct;26(10):1115-22.
  • [33]. Fontanilla M, Montes M, De Prado R. Effects of the foliar-applied protein" Harpin (Ea)"(messenger) on tomatoes infected with Phytophthora infestans. Communications in agricultural and applied biological sciences. 2005 Jan 1;70(3):41-5.
  • [34]. He SY, Huang HC, Collmer A. Pseudomonas syringae pv. syringae harpinPss: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell. 1993 Jul 2;73(7):1255-66.
  • [35]. Andi S, Taguchi F, Toyoda K, Shiraishi T, Ichinose Y. Effect of methyl jasmonate on harpin-induced hypersensitive cell death, generation of hydrogen peroxide and expression of PAL mRNA in tobacco suspension cultured BY-2 cells. Plant and Cell Physiology. 2001 Apr 15;42(4):446-9.
  • [36]. Ichinose Y, Andi S, Doi R, Tanaka R, Taguchi F, Sasabe M, Toyoda K, Shiraishi T, Yamada T. Generation of hydrogen peroxide is not required for harpin-induced apoptotic cell death in tobacco BY-2 cell suspension culture. Plant Physiology and Biochemistry. 2001 Sep 1;39(9):771-6.
  • [37]. Dong HP, Yu H, Bao Z, Guo X, Peng J, Yao Z, Chen G, Qu S, Dong H. The ABI2-dependent abscisic acid signalling controls HrpN-induced drought tolerance in Arabidopsis. Planta. 2005 Jun;221(3):313-27.
  • [38]. Zhang C, Shi H, Chen L, Wang X, Lü B, Zhang S, Liang Y, Liu R, Qian J, Sun W, You Z. Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1 in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae. BMC plant biology. 2011 Dec;11(1):1-9.
  • [39]. Almas S. The effects of plant activators on drought tolerance of cotton (Gossypium hirsutum L.) genotypes grown in Gap region in Turkey (Doctoral dissertation).
  • [40]. Bednarz CW, Brown SN, Flanders JT, Tankersley TB, Brown SM. Effects of foliar applied harpin protein on cotton lint yield, fiber quality, and crop maturity. Communications in soil science and plant analysis. 2002 Apr 10;33(5-6):933-45.
  • [41]. Tezcan H, Akbudak N, Şeniz V. Effect of harpin protein on yield and fruit quality of pepper grown in greenhouse conditions. InIII Balkan Symposium on Vegetables and Potatoes 729 2004 Sep 6 (pp. 267-270).
  • [42]. Li X, Han B, Xu M, Han L, Zhao Y, Liu Z, Dong H, Zhang C. Plant growth enhancement and associated physiological responses are coregulated by ethylene and gibberellin in response to harpin protein Hpa1. Planta. 2014 Apr;239(4):831-46.
  • [43]. Esen M. Su stresi altında Chandler ve Fernor ceviz çeşitlerinin tüplü fidanlarının göstermiş olduğu tepkiler.
  • [44]. Zhang Z, Huang R. Analysis of malondialdehyde, chlorophyll proline, soluble sugar, and glutathione content in Arabidopsis seedling. Bio-protocol. 2013 Jul 20;3(14):e817-.
  • [45]. Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and cell physiology. 1981 Aug 1;22(5):867-80.
  • [46]. Jiang T, Jahangir MM, Jiang Z, Lu X, Ying T. Influence of UV-C treatment on antioxidant capacity, antioxidant enzyme activity and texture of postharvest shiitake (Lentinus edodes) mushrooms during storage. Postharvest biology and technology. 2010 Jun 1;56(3):209-15.
  • [47]. Beers RF, Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol chem. 1952 Mar 1;195(1):133-40.
  • [48]. Shaheen S, Naseer S, Ashraf M, Akram NA. Salt stress affects water relations, photosynthesis, and oxidative defense mechanisms in Solanum melongena L. Journal of Plant Interactions. 2013 Mar 1;8(1):85-96.
  • [49]. Okkaoğlu H, Sönmez Ç, Şimşek Aö, Bayram E. Effect of salt stress on some agronomical characteristics and essential oil content of coriander (Coriandrum sativum L.) cultivars. Journal of Applied Biological Sciences. 2015;9(3):21-4.
  • [50]. Menezes RV, Azevedo AD, Ribeiro MD, Cova AM. Growth and contents of organic and inorganic solutes in amaranth under salt stress. Pesquisa Agropecuária Tropical. 2017 Jan;47:22-30.
  • [51]. Rahneshan Z, Nasibi F, Moghadam AA. Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. Journal of plant interactions. 2018 Jan 1;13(1):73-82.
  • [52]. Sahin U, Ekinci M, Ors S, Turan M, Yildiz S, Yildirim E. Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Scientia Horticulturae. 2018 Oct 20;240:196-204.
  • [53]. Inal A, Gunes A, Pilbeam DJ, Kadioglu YK, Eraslan F. Concentrations of essential and nonessential elements in shoots and storage roots of carrot grown in NaCl and Na2SO4 salinity. X‐Ray Spectrometry: An International Journal. 2009 Jan;38(1):45-51.
  • [54]. Kapoor N, Pande V. Effect of salt stress on growth parameters, moisture content, relative water content and photosynthetic pigments of fenugreek variety RMt-1. Journal of Plant Sciences. 2015;10(6):210-21.
  • [55]. Aydınlı M. Armut yetiştiriciliğinde kullanılan farklı anaçların tuzluluğa toleranslarının morfolojik, fizyolojik ve biyokimyasal parametreler ile incelenmesi.
  • [56]. Ashraf M, Mukhtar N, Rehman S, Rha ES. Salt-induced changes in photosynthetic activity and growth in a potential medicinal plant Bishop’s weed (Ammi majus L.). Photosynthetica. 2004 Dec;42(4):543-50.
  • [57]. Akbudak N, Tezcan H, Akbudak B, Seniz V. The effect of harpin protein on plant growth parameters, leaf chlorophyll, leaf colour and percentage rotten fruit of pepper plants inoculated with Botrytis cinerea. Scientia Horticulturae. 2006 Jun 29;109(2):107-12.
  • [58]. Abbas MA, Younis ME, Shukry WM. Plant growth, metabolism and adaptation in relation to stress conditions. XIV. Effect of salinity on the internal solute concentrations in Phaseolus vulgaris. Journal of Plant Physiology. 1991 Oct 1;138(6):722-7.
  • [59]. Franco JA, Esteban C, Rodriguez C. Effects of salinity on various growth stages of muskmelon cv. Revigal. Journal of Horticultural Science. 1993 Jan 1;68(6):899-904.
  • [60]. García LV, Marañón T, Moreno A, Clemente L. Above‐ground biomass and species richness in a Mediterranean salt marsh. Journal of Vegetation Science. 1993 Jun;4(3):417-24.
  • [61]. Chartzoulakis KS. Photosynthesis, water relations and leaf growth of cucumber exposed to salt stress. Scientia Horticulturae. 1994 Sep 1;59(1):27-35.
  • [62]. Sivritepe N. Asmalarda tuza dayanıklılık testleri ve tuza dayanımda etkili bazı faktörler üzerinde araştırmalar.
  • [63]. Shannon MC, Grieve CM. Tolerance of vegetable crops to salinity. Scientia horticulturae. 1998 Nov 30;78(1-4):5-38.
  • [64]. Chuang HW, Harnrak A, Chen YC, Hsu CM. A harpin-induced ethylene-responsive factor regulates plant growth and responses to biotic and abiotic stresses. Biochemical and biophysical research communications. 2010 Nov 12;402(2):414-20.
  • [65]. Ashraf M. Some important physiological selection criteria for salt tolerance in plants. Flora-Morphology, Distribution, Functional Ecology of Plants. 2004 Jan 1;199(5):361-76.
  • [66]. Yılmaz E, Tuna Al, Bürün B. Tolerance strategıes developed by plants to the effects of salt stress. Celal Bayar University Journal of Science. 2011;7(1):47-66.
  • [67]. Romero-Aranda R, Soria T, Cuartero J. Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant science. 2001 Jan 5;160(2):265-72.
  • [68]. Chen BH, Huang JH. Degradation and isomerization of chlorophyll a and β-carotene as affected by various heating and illumination treatments. Food Chemistry. 1998 Jul 1;62(3):299-307.
  • [69]. Verma S, Mishra SN. Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. Journal of plant physiology. 2005 Jun 14;162(6):669-77.
  • [70]. Ahmad P, Jaleel CA, Sharma S. Antioxidant defense system, lipid peroxidation, proline-metabolizing enzymes, and biochemical activities in two Morus alba genotypes subjected to NaCl stress. Russian Journal of Plant Physiology. 2010 Jul;57(4):509-17.
  • [71]. Maia JM, Costa de Macedo CE, Voigt EL, Freitas JB, Silveira JA. Antioxidative enzymatic protection in leaves of two contrasting cowpea cultivars under salinity. Biologia Plantarum. 2010 Mar;54(1):159-63.
  • [72]. Zhang M, Fang Y, Ji Y, Jiang Z, Wang L. Effects of salt stress on ion content, antioxidant enzymes and protein profile in different tissues of Broussonetia papyrifera. South African journal of botany. 2013 Mar 1;85:1-9.
  • [73]. García‐Caparrós P, Hasanuzzaman M, Lao MT. Oxidative stress and antioxidant defense in plants under salinity. Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms. 2019 Jul 18:291-309.
  • [74]. Akbudak N, Tezcan H. Bitkisel üretimde ve bitki korumada yeni bir etken madde: Harpin. Uludağ Üniversitesi Ziraat Fakültesi Dergisi. 2006;20(2):39-43.
  • [75]. Kumar S, Li G, Yang J, Huang X, Ji Q, Liu Z, Ke W, Hou H. Effect of salt stress on growth, physiological parameters, and ionic concentration of water dropwort (Oenanthe javanica) cultivars. Frontiers in plant science. 2021;12.
  • [76]. Zhou X, Chen Y, Zhao Y, Gao F, Liu H. The application of exogenous PopW increases the tolerance of Solanum lycopersicum L. to drought stress through multiple mechanisms. Physiology and Molecular Biology of Plants. 2020 Dec;26(12):2521-35.
There are 76 citations in total.

Details

Primary Language English
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Articles
Authors

Selçuk Binici 0000-0002-2373-3990

Civan Çelik 0000-0002-1696-5902

Fatma Yıldırım 0000-0001-7304-9647

Adnan Yıldırım 0000-0003-2526-040X

Publication Date June 29, 2022
Published in Issue Year 2022

Cite

APA Binici, S., Çelik, C., Yıldırım, F., Yıldırım, A. (2022). Determination of the Effect of Harpin Protein on NaCl Salt Stress in Pistachio (Pistacia vera L.) Seeds. Türk Doğa Ve Fen Dergisi, 11(2), 141-150. https://doi.org/10.46810/tdfd.1120976
AMA Binici S, Çelik C, Yıldırım F, Yıldırım A. Determination of the Effect of Harpin Protein on NaCl Salt Stress in Pistachio (Pistacia vera L.) Seeds. TDFD. June 2022;11(2):141-150. doi:10.46810/tdfd.1120976
Chicago Binici, Selçuk, Civan Çelik, Fatma Yıldırım, and Adnan Yıldırım. “Determination of the Effect of Harpin Protein on NaCl Salt Stress in Pistachio (Pistacia Vera L.) Seeds”. Türk Doğa Ve Fen Dergisi 11, no. 2 (June 2022): 141-50. https://doi.org/10.46810/tdfd.1120976.
EndNote Binici S, Çelik C, Yıldırım F, Yıldırım A (June 1, 2022) Determination of the Effect of Harpin Protein on NaCl Salt Stress in Pistachio (Pistacia vera L.) Seeds. Türk Doğa ve Fen Dergisi 11 2 141–150.
IEEE S. Binici, C. Çelik, F. Yıldırım, and A. Yıldırım, “Determination of the Effect of Harpin Protein on NaCl Salt Stress in Pistachio (Pistacia vera L.) Seeds”, TDFD, vol. 11, no. 2, pp. 141–150, 2022, doi: 10.46810/tdfd.1120976.
ISNAD Binici, Selçuk et al. “Determination of the Effect of Harpin Protein on NaCl Salt Stress in Pistachio (Pistacia Vera L.) Seeds”. Türk Doğa ve Fen Dergisi 11/2 (June 2022), 141-150. https://doi.org/10.46810/tdfd.1120976.
JAMA Binici S, Çelik C, Yıldırım F, Yıldırım A. Determination of the Effect of Harpin Protein on NaCl Salt Stress in Pistachio (Pistacia vera L.) Seeds. TDFD. 2022;11:141–150.
MLA Binici, Selçuk et al. “Determination of the Effect of Harpin Protein on NaCl Salt Stress in Pistachio (Pistacia Vera L.) Seeds”. Türk Doğa Ve Fen Dergisi, vol. 11, no. 2, 2022, pp. 141-50, doi:10.46810/tdfd.1120976.
Vancouver Binici S, Çelik C, Yıldırım F, Yıldırım A. Determination of the Effect of Harpin Protein on NaCl Salt Stress in Pistachio (Pistacia vera L.) Seeds. TDFD. 2022;11(2):141-50.