Research Article
BibTex RIS Cite

Investigation of The Effect of Molding Material Difference on Design in GGG70 Ductile Cast Iron Production

Year 2024, , 14 - 20, 28.06.2024
https://doi.org/10.46810/tdfd.1347331

Abstract

The casting process involves filling a prepared mould cavity with molten metal, which takes the shape of the container. While the liquid metal takes the shape of the container it is in, the method is attractive, while the volumetric changes during the liquid-solid transformation reveal the importance of moulding design for the manufacture of solid parts. Especially in cast irons, moulds with the same design may produce different results depending on the changing casting and foundry conditions because the volumetric change that occurs during the solidification of ductile cast irons is affected by many parameters and develops differently than in steel and aluminium castings. This study used model wet and resin molding materials to create single and double-riser moulding and castings with different section thicknesses. The importance of the type of mold material used in castings and the number of feeders for the robust production of the cast part was evaluated using experimental and modeling techniques. When the results were examined, it was seen that the shrinkage risk was lower with resin mould than with green sand moulding. In addition, depending on the riser connection point, the importance of the riser neck has emerged.

References

  • Stefanescu, D. M. (2005). Solidification and modeling of cast iron—A short history of the defining moments. Materials Science and Engineering: A, 413, 322-333.
  • Fredriksson, H., Stjerndahl, J., & Tinoco, J. (2005). On the solidification of nodular cast iron and its relation to the expansion and contraction. Materials Science and Engineering: A, 413, 363-372.
  • Park, Y. K., Ha, K., Bae, K. C., Shin, K. Y., Lee, K. Y., Shim, D. S., & Lee, W. (2022). Mechanical properties and wear resistance of direct energy deposited Fe–12Mn–5Cr–1Ni-0.4 C steel deposited on spheroidal graphite cast iron. Journal of Materials Research and Technology, 19, 3484-3497.
  • Karadeniz, E., Çolak, M., & Barutçu, F. (2017). GGG-60 Küresel Grafitli Dökme Demir Üretiminde Aşilayici Türü Ve Miktarinin İçyapi Ve Mekanik Özelliklere Etkisinin İncelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6(1), 275-282.
  • Kasvayee, K. A., Ghassemali, E., Svensson, I. L., Olofsson, J., & Jarfors, A. E. (2017). Characterization and modeling of the mechanical behavior of high silicon ductile iron. Materials Science and Engineering: A, 708, 159-170.
  • Labrecque, C., & Gagne, M. (1998). Ductile iron: Fifty years of continuous development. Canadian metallurgical quarterly, 37(5), 343-378.
  • Soiński, M. S., Kordas, P., Skurka, K., & Jakubus, A. (2016). Investigations of ferritic nodular cast iron containing about 5-6% aluminium. Archives of Foundry Engineering, 16.
  • Adebayo, A. O., Ajibola, O. O., Owa, A. F., Borisade, S. G., Alaneme, K. K., & Oyetunji, A. (2021). Charaterisation and dry sliding wear behaviour of 2.29 wt% aluminium-alloyed ductile iron. Materials Today: Proceedings, 38, 1152-1158.
  • Rıdvan, G. E. C. Ü. (2022). Küresel grafitli dökme demirlerin aşınma davranışına alüminyum ilavesinin ve östemperleme ısıl işleminin etkilerinin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(2), 1-1.
  • Kayaalp, K., Şahin, Ö., & Kiliçli, V. (2022). Normalize Isil İşleminde Arakritik Östenitleme Sicakliğinin Küresel Grafitli Dökme Demirin Mikroyapi Ve Mekanik Özellikleri Üzerine Etkisi. Konya Journal of Engineering Sciences, 10(3), 692-703.
  • Kayikçi, R., & Neşet, A. K. A. R. (2007). Farklı kesit kalınlıklarına sahip büyük hacimli bir çelik dökümün simülasyon teknikleri ile tasarlanması. Politeknik Dergisi, 10(4), 395-401.
  • Çolak, M. (2020). OPTICast yazılımı ile döküm endüstrisinde kalıplama tasarımı optimizasyonu uygulaması. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(3), 545-551.
  • Çolak, M., & Kayıkçı, R. (2005). Döküm simülasyon programları üzerine bir değerlendirme. Metal Dünyası, 189, 2-4.
  • Çolak, M., & Şirin, S. (2010). SolidCast Döküm Simülasyon Programıyla Kalıplama Tasarımının İşlem Basamakları. Metal Dünyası Dergisi, 202, 2-5.
  • Franssman, H. (2007). Hızlı ve Dogru Yolluk ve Besleyici Dizaynı için Döküm Simülasyon Programlarının Pratik Kullanımı. Metal Dünyası, 164, 30-31.
  • Schmidt, D. C. (2007). The Basics of Solidification, Gating and Risering of Cast Irons, AFS Wisconsin Regional Conference, Finite Solutions Inc Slinger WI, February 8.
  • Meredith, J. F. (2008). Solving porosity problems in graphitic iron castings. Casting Solutions Pty Ltd Moorebank, NSW, Australia.
  • Çolak, M., & Şekerden, M. (2022). Modelling And Validation Of Effect Of Binder Type On Feeding Behaviour Of Spheroidal Graphite Cast Iron. International Journal of Cast Metals Research, 35(1-3), 9-16.
  • Çolak, M., & Kaya, S. (2021). Investigation of the effect of inoculant and casting temperature on fluidity properties in the production of spheroidal graphite cast iron. Transactions of the Indian Institute of Metals, 74, 205-214.
  • İ. Arda, S. Şirin, M. Çolak, R. Kayıkcı. Küresel Grafitli Dökme Demir Dökümlerinde Hacimsel Değişime Etki Eden Faktörlerin İncelenmesi. 6 th International Advanced Technologies Symposium (IATS’11), 16-18 May 2011, Elazığ, Turkiye
  • Çolak, M., Arslan, İ., & Gavgali, E. (2018). Gri Dökme Demirlerin Katilaşma Modellemesi ve Gerçek Dökümler ile Karşilaştirmasi. Engineering Sciences, 13(4), 280-290.
  • Asan, Y. E., & Çolak, M. (2022). Modeling the Effect of Pour Height, Casting Temperature and Die Preheating Temperature on the Fluidity of Different Section Thicknesses in Permanent Mold Casting of Al12Si Alloys. Erzincan University Journal of Science and Technology, 15(Special Issue I), 14-27.
  • Çolak, M., & Dispinar, D. (2021). The influence of metallostatic pressure, grain refiner, and modification on the critical solid fraction (CSF) of cast A380 alloy. Journal of Engg. Research Vol, 9(4B), 269-280.
  • Teke, Ç., Çolak, M., Taş, M., & İpek, M. (2019). Modeling of the impact of initial mold temperature, Al5Ti1B and Al10Sr additions on the critical fraction of solid in die casting of aluminum alloys using fuzzy expert system. Polish Acad Sciences Inst Physics.
  • Dogan, O. N., Schrems, K. K., & Hawk, J. A. (2003). Microstructure of thin-wall ductile iron castings (No. DOE/ARC-2004-041). Albany Research Center (ARC), Albany, OR (United States).
  • Pedersen, K. M., Hattel, J. H., & Tiedje, N. (2006). Numerical modelling of thin-walled hypereutectic ductile cast iron parts. Acta materialia, 54(19), 5103-5114.
  • Bockus, S., & Zaldarys, G. (2009). Influence of the section size and holding time on the graphite parameters of ductile iron production. Metalurgija, 48(1), 19-22.
  • Guzel, E., Yuksel, C., Bayrak, Y., Sen, O., & Ekerim, A. (2014). Effect of section thickness on the microstructure and hardness of ductile cast iron. Materials Testing, 56(4), 285-288.
  • Alabbasian, F., Boutorabi, S. M. A., & Kheirandish, S. (2016). Effect of inoculation and casting modulus on the microstructure and mechanical properties of ductile Ni-resist cast iron. Materials Science and Engineering: A, 651, 467-473.
  • Megahed, H., El-Kashif, E., Shash, A. Y., & Essam, M. A. (2019). Effect of holding time, thickness and heat treatment on microstructure and mechanical properties of compacted graphite cast iron. Journal of Materials Research and Technology, 8(1), 1188-1196.
  • Çolak, M., Şirin, S., Kayıkcı, R., & Bilgin, Ö. (2010). Küresel Grafitli Dökme Demir Dökümlerinde Simülasyon Tekniği ile Besleyici Tasarımı ve Uygulamaları, 3. Uluslararası Döküm ve Çevre Sempozyumu (IFES 2009), İstanbul, Türkiye.
  • Kayıkçı, R., & Nergiz, M. (2010). Besleyicisiz Döküm Yöntemi ile Dökülen Bir Küresel Grafitli Dökme Demir Dökümün İncelenmesi in: 3. Uluslararası Döküm ve Çevre Sempozyumu (IFES2009), Ocak.
  • Ravi, B., & Joshi, D. (2007). Feedability analysis and optimisation driven by casting simulation. Indian Foundry Journal, 53(6), 71-78.
  • Mozammil, S., Karloopia, J., & Jha, P. K. (2018). Investigation of porosity in Al casting. Materials Today: Proceedings, 5(9), 17270-17276.
  • Guo, Z., Saunders, N., Miodownik, A. P., & Schillé, J. P. (2005). Modelling of materials properties and behaviour critical to casting simulation. Materials Science and Engineering: A, 413, 465-469.
  • Nimbulkar, S. L., & Dalu, R. S. (2016). Design optimization of gating and feeding system through simulation technique for sand casting of wear plate. Perspectives in Science, 8, 39-42.
  • Choudhari, C. M., Narkhede, B. E., & Mahajan, S. K. (2014). Casting design and simulation of cover plate using AutoCAST-X software for defect minimization with experimental validation. Procedia Materials Science, 6, 786-797.
  • Sutaria, M., Gada, V. H., Sharma, A., & Ravi, B. (2012). Computation of feed-paths for casting solidification using level-set-method. Journal of Materials Processing Technology, 212(6), 1236-1249.
Year 2024, , 14 - 20, 28.06.2024
https://doi.org/10.46810/tdfd.1347331

Abstract

References

  • Stefanescu, D. M. (2005). Solidification and modeling of cast iron—A short history of the defining moments. Materials Science and Engineering: A, 413, 322-333.
  • Fredriksson, H., Stjerndahl, J., & Tinoco, J. (2005). On the solidification of nodular cast iron and its relation to the expansion and contraction. Materials Science and Engineering: A, 413, 363-372.
  • Park, Y. K., Ha, K., Bae, K. C., Shin, K. Y., Lee, K. Y., Shim, D. S., & Lee, W. (2022). Mechanical properties and wear resistance of direct energy deposited Fe–12Mn–5Cr–1Ni-0.4 C steel deposited on spheroidal graphite cast iron. Journal of Materials Research and Technology, 19, 3484-3497.
  • Karadeniz, E., Çolak, M., & Barutçu, F. (2017). GGG-60 Küresel Grafitli Dökme Demir Üretiminde Aşilayici Türü Ve Miktarinin İçyapi Ve Mekanik Özelliklere Etkisinin İncelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6(1), 275-282.
  • Kasvayee, K. A., Ghassemali, E., Svensson, I. L., Olofsson, J., & Jarfors, A. E. (2017). Characterization and modeling of the mechanical behavior of high silicon ductile iron. Materials Science and Engineering: A, 708, 159-170.
  • Labrecque, C., & Gagne, M. (1998). Ductile iron: Fifty years of continuous development. Canadian metallurgical quarterly, 37(5), 343-378.
  • Soiński, M. S., Kordas, P., Skurka, K., & Jakubus, A. (2016). Investigations of ferritic nodular cast iron containing about 5-6% aluminium. Archives of Foundry Engineering, 16.
  • Adebayo, A. O., Ajibola, O. O., Owa, A. F., Borisade, S. G., Alaneme, K. K., & Oyetunji, A. (2021). Charaterisation and dry sliding wear behaviour of 2.29 wt% aluminium-alloyed ductile iron. Materials Today: Proceedings, 38, 1152-1158.
  • Rıdvan, G. E. C. Ü. (2022). Küresel grafitli dökme demirlerin aşınma davranışına alüminyum ilavesinin ve östemperleme ısıl işleminin etkilerinin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(2), 1-1.
  • Kayaalp, K., Şahin, Ö., & Kiliçli, V. (2022). Normalize Isil İşleminde Arakritik Östenitleme Sicakliğinin Küresel Grafitli Dökme Demirin Mikroyapi Ve Mekanik Özellikleri Üzerine Etkisi. Konya Journal of Engineering Sciences, 10(3), 692-703.
  • Kayikçi, R., & Neşet, A. K. A. R. (2007). Farklı kesit kalınlıklarına sahip büyük hacimli bir çelik dökümün simülasyon teknikleri ile tasarlanması. Politeknik Dergisi, 10(4), 395-401.
  • Çolak, M. (2020). OPTICast yazılımı ile döküm endüstrisinde kalıplama tasarımı optimizasyonu uygulaması. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(3), 545-551.
  • Çolak, M., & Kayıkçı, R. (2005). Döküm simülasyon programları üzerine bir değerlendirme. Metal Dünyası, 189, 2-4.
  • Çolak, M., & Şirin, S. (2010). SolidCast Döküm Simülasyon Programıyla Kalıplama Tasarımının İşlem Basamakları. Metal Dünyası Dergisi, 202, 2-5.
  • Franssman, H. (2007). Hızlı ve Dogru Yolluk ve Besleyici Dizaynı için Döküm Simülasyon Programlarının Pratik Kullanımı. Metal Dünyası, 164, 30-31.
  • Schmidt, D. C. (2007). The Basics of Solidification, Gating and Risering of Cast Irons, AFS Wisconsin Regional Conference, Finite Solutions Inc Slinger WI, February 8.
  • Meredith, J. F. (2008). Solving porosity problems in graphitic iron castings. Casting Solutions Pty Ltd Moorebank, NSW, Australia.
  • Çolak, M., & Şekerden, M. (2022). Modelling And Validation Of Effect Of Binder Type On Feeding Behaviour Of Spheroidal Graphite Cast Iron. International Journal of Cast Metals Research, 35(1-3), 9-16.
  • Çolak, M., & Kaya, S. (2021). Investigation of the effect of inoculant and casting temperature on fluidity properties in the production of spheroidal graphite cast iron. Transactions of the Indian Institute of Metals, 74, 205-214.
  • İ. Arda, S. Şirin, M. Çolak, R. Kayıkcı. Küresel Grafitli Dökme Demir Dökümlerinde Hacimsel Değişime Etki Eden Faktörlerin İncelenmesi. 6 th International Advanced Technologies Symposium (IATS’11), 16-18 May 2011, Elazığ, Turkiye
  • Çolak, M., Arslan, İ., & Gavgali, E. (2018). Gri Dökme Demirlerin Katilaşma Modellemesi ve Gerçek Dökümler ile Karşilaştirmasi. Engineering Sciences, 13(4), 280-290.
  • Asan, Y. E., & Çolak, M. (2022). Modeling the Effect of Pour Height, Casting Temperature and Die Preheating Temperature on the Fluidity of Different Section Thicknesses in Permanent Mold Casting of Al12Si Alloys. Erzincan University Journal of Science and Technology, 15(Special Issue I), 14-27.
  • Çolak, M., & Dispinar, D. (2021). The influence of metallostatic pressure, grain refiner, and modification on the critical solid fraction (CSF) of cast A380 alloy. Journal of Engg. Research Vol, 9(4B), 269-280.
  • Teke, Ç., Çolak, M., Taş, M., & İpek, M. (2019). Modeling of the impact of initial mold temperature, Al5Ti1B and Al10Sr additions on the critical fraction of solid in die casting of aluminum alloys using fuzzy expert system. Polish Acad Sciences Inst Physics.
  • Dogan, O. N., Schrems, K. K., & Hawk, J. A. (2003). Microstructure of thin-wall ductile iron castings (No. DOE/ARC-2004-041). Albany Research Center (ARC), Albany, OR (United States).
  • Pedersen, K. M., Hattel, J. H., & Tiedje, N. (2006). Numerical modelling of thin-walled hypereutectic ductile cast iron parts. Acta materialia, 54(19), 5103-5114.
  • Bockus, S., & Zaldarys, G. (2009). Influence of the section size and holding time on the graphite parameters of ductile iron production. Metalurgija, 48(1), 19-22.
  • Guzel, E., Yuksel, C., Bayrak, Y., Sen, O., & Ekerim, A. (2014). Effect of section thickness on the microstructure and hardness of ductile cast iron. Materials Testing, 56(4), 285-288.
  • Alabbasian, F., Boutorabi, S. M. A., & Kheirandish, S. (2016). Effect of inoculation and casting modulus on the microstructure and mechanical properties of ductile Ni-resist cast iron. Materials Science and Engineering: A, 651, 467-473.
  • Megahed, H., El-Kashif, E., Shash, A. Y., & Essam, M. A. (2019). Effect of holding time, thickness and heat treatment on microstructure and mechanical properties of compacted graphite cast iron. Journal of Materials Research and Technology, 8(1), 1188-1196.
  • Çolak, M., Şirin, S., Kayıkcı, R., & Bilgin, Ö. (2010). Küresel Grafitli Dökme Demir Dökümlerinde Simülasyon Tekniği ile Besleyici Tasarımı ve Uygulamaları, 3. Uluslararası Döküm ve Çevre Sempozyumu (IFES 2009), İstanbul, Türkiye.
  • Kayıkçı, R., & Nergiz, M. (2010). Besleyicisiz Döküm Yöntemi ile Dökülen Bir Küresel Grafitli Dökme Demir Dökümün İncelenmesi in: 3. Uluslararası Döküm ve Çevre Sempozyumu (IFES2009), Ocak.
  • Ravi, B., & Joshi, D. (2007). Feedability analysis and optimisation driven by casting simulation. Indian Foundry Journal, 53(6), 71-78.
  • Mozammil, S., Karloopia, J., & Jha, P. K. (2018). Investigation of porosity in Al casting. Materials Today: Proceedings, 5(9), 17270-17276.
  • Guo, Z., Saunders, N., Miodownik, A. P., & Schillé, J. P. (2005). Modelling of materials properties and behaviour critical to casting simulation. Materials Science and Engineering: A, 413, 465-469.
  • Nimbulkar, S. L., & Dalu, R. S. (2016). Design optimization of gating and feeding system through simulation technique for sand casting of wear plate. Perspectives in Science, 8, 39-42.
  • Choudhari, C. M., Narkhede, B. E., & Mahajan, S. K. (2014). Casting design and simulation of cover plate using AutoCAST-X software for defect minimization with experimental validation. Procedia Materials Science, 6, 786-797.
  • Sutaria, M., Gada, V. H., Sharma, A., & Ravi, B. (2012). Computation of feed-paths for casting solidification using level-set-method. Journal of Materials Processing Technology, 212(6), 1236-1249.
There are 38 citations in total.

Details

Primary Language English
Subjects Information Systems Philosophy, Research Methods and Theory
Journal Section Articles
Authors

Muhammet Emin Keskin 0000-0003-4342-6303

Melek Durmuş 0009-0006-1439-3759

Mete Şekerden 0009-0002-3862-9480

Murat Çolak 0000-0002-8255-5987

Early Pub Date June 28, 2024
Publication Date June 28, 2024
Published in Issue Year 2024

Cite

APA Keskin, M. E., Durmuş, M., Şekerden, M., Çolak, M. (2024). Investigation of The Effect of Molding Material Difference on Design in GGG70 Ductile Cast Iron Production. Türk Doğa Ve Fen Dergisi, 13(2), 14-20. https://doi.org/10.46810/tdfd.1347331
AMA Keskin ME, Durmuş M, Şekerden M, Çolak M. Investigation of The Effect of Molding Material Difference on Design in GGG70 Ductile Cast Iron Production. TDFD. June 2024;13(2):14-20. doi:10.46810/tdfd.1347331
Chicago Keskin, Muhammet Emin, Melek Durmuş, Mete Şekerden, and Murat Çolak. “Investigation of The Effect of Molding Material Difference on Design in GGG70 Ductile Cast Iron Production”. Türk Doğa Ve Fen Dergisi 13, no. 2 (June 2024): 14-20. https://doi.org/10.46810/tdfd.1347331.
EndNote Keskin ME, Durmuş M, Şekerden M, Çolak M (June 1, 2024) Investigation of The Effect of Molding Material Difference on Design in GGG70 Ductile Cast Iron Production. Türk Doğa ve Fen Dergisi 13 2 14–20.
IEEE M. E. Keskin, M. Durmuş, M. Şekerden, and M. Çolak, “Investigation of The Effect of Molding Material Difference on Design in GGG70 Ductile Cast Iron Production”, TDFD, vol. 13, no. 2, pp. 14–20, 2024, doi: 10.46810/tdfd.1347331.
ISNAD Keskin, Muhammet Emin et al. “Investigation of The Effect of Molding Material Difference on Design in GGG70 Ductile Cast Iron Production”. Türk Doğa ve Fen Dergisi 13/2 (June 2024), 14-20. https://doi.org/10.46810/tdfd.1347331.
JAMA Keskin ME, Durmuş M, Şekerden M, Çolak M. Investigation of The Effect of Molding Material Difference on Design in GGG70 Ductile Cast Iron Production. TDFD. 2024;13:14–20.
MLA Keskin, Muhammet Emin et al. “Investigation of The Effect of Molding Material Difference on Design in GGG70 Ductile Cast Iron Production”. Türk Doğa Ve Fen Dergisi, vol. 13, no. 2, 2024, pp. 14-20, doi:10.46810/tdfd.1347331.
Vancouver Keskin ME, Durmuş M, Şekerden M, Çolak M. Investigation of The Effect of Molding Material Difference on Design in GGG70 Ductile Cast Iron Production. TDFD. 2024;13(2):14-20.