Research Article
BibTex RIS Cite

Borlama Sıcaklığının ve Süresinin M42 Çeliğinin Yapısal ve Mekanik Özelliklerine Etkisi

Year 2024, , 1 - 5, 28.06.2024
https://doi.org/10.46810/tdfd.1437681

Abstract

Bu çalışmada borlama sıcaklığının ve süresinin M42 yüksek hız çeliğinin yapısal ve mekanik özellikleri üzerine etkisi incelenmiştir. Ekabor II tozu içerisine yerleştirilen numuneler 900℃ ve 1000℃ derecede 4 saat; 950°C derecede 2, 4 ve 6 saat kutu borlama işlemine maruz bırakılmıştır. Taramalı elektron mikroskop (SEM) görüntüleri incelendiğinde borun numunlerin içerisine difuz ettiği ve testere dişlisine benzer kesit morfolojisi oluştuğu görülmektedir. Borun varlığı enerji dağılım x-ışını spektrometresi (EDX) ile de ispatlanmıştır. Bunun yanında, borlama sıcaklığın artmasıyla bor tabaka kalınlıklarının da arttığı tespit edilmiştir. Mikrosertlik değerleri incelendiğinde en yüksek sıcaklıkta borlanan numunenin en yüksek sertlik değerine sahip olduğu ve borlama sıcaklığının düşmesiyle beraber sertlik değerlerinin azaldığı tespit edilmiştir. Benzer sonuçlar borlama süresiyle ilgili olarak da görülmüştür. En yüksek mikrosertlik ve tabaka kalınlığı değerleri 6 saatlik borlama sonucunda elde edilmiştir. Ayrıca, borlanmış numunelerin yüzeyden iç kısımlara doğru gidildikçe sertlik değerlerinin düştüğü görülmüştür.

Ethical Statement

Çalışmamız için Etik Kurul Belgesine İhtiyaç Yoktur.

Supporting Institution

Giresun Üniversitesi

Project Number

FEN-BAP-A-240222-23.

References

  • Ruiz-Trabolsi PA, Chino-Ulloa A, Miranda-Hernandez JG, Tadeo-Rosas R, Carrera-Espinoza R, Velazquez JC, et al. A Comparative Analysis of the Tribological Behavior of Hard Layers Obtained by Three Different Hardened-Surface Processes on the Surface of AISI 4140 Steel. Crystals. 2022;12(2).
  • Balusamy T, Narayanan TSNS, Ravichandran K, Park IS, Lee MH. Pack boronizing of AISI H11 tool steel: Role of surface mechanical attrition treatment. Vacuum. 2013;97:36-43.
  • Cimenoglu H, Atar E, Motallebzadeh A. High temperature tribological behaviour of bonded surfaces based on the phase structure of the boride layer. Wear. 2014;309(1-2):152-8.
  • Gök MS, Küçük Y, Erdoğan A, Öge M, Kanca E, Günen A. Dry sliding wear behavior of borided hot-work tool steel at elevated temperatures. Surface and Coatings Technology. 2017;328:54-62.
  • Handbook A. Heat treating. ASM international Materials Park, OH; 1991.
  • Bindal C, Üçisik AH. Characterization of borides formed on impurity-controlled chromium-based low alloy steels. Surf Coat Tech. 1999;122(2-3):208-13.
  • Hudáková M, Kusy M, Sedlická V, Grgac P. Analysis of the boronized layer on K190PM tool steel. Mater Tehnol. 2007;41(2):81-4.
  • Keddam M. Simulation of the growth kinetics of FeB and FeB phases on the AISI M2 borided steel: Effect of the paste thickness. International Journal of Materials Research. 2009;100(6):901-5.
  • Abdellah ZN, Keddam M, Elias A. Evaluation of the effective diffusion coefficient of boron in the FeB phase in the presence of chemical stresses. International Journal of Materials Research. 2013;104(3):260-5.
  • Gunes I. Kinetics of borided gear steels. Sadhana-Acad P Eng S. 2013;38(3):527-41.
  • Gunes I. Wear Behaviour of Plasma Paste Boronized of AISI 8620 Steel with Borax and BO Paste Mixtures. J Mater Sci Technol. 2013;29(7):662-8.
  • Kayali Y, Günes I, Ulu S. Diffusion kinetics of borided AISI 52100 and AISI 440C steels. Vacuum. 2012;86(10):1428-34.
  • Kulka M, Kulka M, Castro. Current trends in boriding: Springer; 2019.
  • Von Matuschka A, Boronizing H. Son Inc. Philadelphia, USA. 1980.
  • He XL, Xiao HP, Ozaydin MF, Balzuweit K, Liang H. Low-temperature boriding of high-carbon steel. Surf Coat Tech. 2015;263:21-6.
  • Vitry V, Kanta AF, Delaunois F. Mechanical and wear characterization of electroless nickel-boron coatings. Surf Coat Tech. 2011;206(7):1879-85.
  • Yildiz I, Çelik AG, Gunes I. Characterization and Diffusion Kinetics of borided Ni-Mg Alloys. Prot Met Phys Chem+. 2020;56(5):1015-22.
  • Bican O, Bayca SU, Ocak-Araz S, Yamaneli B, Tanis NA. Effects of the Boriding Process and of Quenching and Tempering after Boriding on the Microstructure, Hardness and Wear of Aisi 5140 Steel. Surf Rev Lett. 2020;27(6).
  • Keddam M, Chentouf SM. A diffusion model for describing the bilayer growth (FeB/FeB) during the iron powder-pack boriding. Appl Surf Sci. 2005;252(2):393-9.
  • Prince M, Raj GS, Kumar DY, Gopalakrishnan P. Boriding of Steels: Improvement of Mechanical Properties - a Review. High Temp Mater P-Us. 2022;26(2):43-89.
  • Erdogan A. Investigation of high temperature dry sliding behavior of borided H13 hot work tool steel with nanoboron powder. Surf Coat Tech. 2019;357:886-95.
  • Campos-Silva I, Ortiz-Domínguez M, López-Perrusquia N, Meneses-Amador A, Escobar-Galindo R, Martínez-Trinidad J. Characterization of AISI 4140 borided steels. Appl Surf Sci. 2010;256(8):2372-9.
  • Hoyle G. High speed steels. (No Title). 1988.
  • Llewellyn D, Hudd R. Steels: metallurgy and applications: Elsevier; 1998.
  • Zhou XF, Zhu WL, Jiang HB, Fang F, Tu YY, Jiang JQ. A New Approach for Refining Carbide Dimensions in M42 Super Hard High-speed Steel. J Iron Steel Res Int. 2016;23(8):800-7.
  • Luo Y, Guo H, Sun X, Mao M, Guo J. Effects of Austenitizing Conditions on the Microstructure of AISI M42 High-Speed Steel. Metals. 2017;7(1).

The Effect of Boriding Temperature and Time on the Structural and Mechanical Properties of M42 Steel

Year 2024, , 1 - 5, 28.06.2024
https://doi.org/10.46810/tdfd.1437681

Abstract

In this study, the effect of boriding temperature and time on the structural and mechanical properties of M42 high speed steel were investigated. Samples placed in Ekabor II powder were exposed to pack boriding treatment at 900°C and 1000°C for 4 hour and at 950°C for 2, 4 and 6 hours. Scanning electron microscope (SEM) images indicate that boron diffuses into the samples and a sawtooth-like cross-sectional morphology is formed. The presence of boron has also been proven by Energy Dispersive X-ray spectrometry (EDX). In addition, it was determined that boron layer thickness increased with increasing boriding temperature. When the microhardness values were examined, it was observed that the sample borided at the highest temperature had the highest hardness value and the hardness values decrease with the decreasing of boriding temperature. Similar results were also obtained regarding the boriding time. The highest microhardness and layer thickness values were obtained after 6 hours of boriding. Additionally, it was observed that the hardness values of borided samples decreased as they moved from the surface to the inner parts.

Project Number

FEN-BAP-A-240222-23.

References

  • Ruiz-Trabolsi PA, Chino-Ulloa A, Miranda-Hernandez JG, Tadeo-Rosas R, Carrera-Espinoza R, Velazquez JC, et al. A Comparative Analysis of the Tribological Behavior of Hard Layers Obtained by Three Different Hardened-Surface Processes on the Surface of AISI 4140 Steel. Crystals. 2022;12(2).
  • Balusamy T, Narayanan TSNS, Ravichandran K, Park IS, Lee MH. Pack boronizing of AISI H11 tool steel: Role of surface mechanical attrition treatment. Vacuum. 2013;97:36-43.
  • Cimenoglu H, Atar E, Motallebzadeh A. High temperature tribological behaviour of bonded surfaces based on the phase structure of the boride layer. Wear. 2014;309(1-2):152-8.
  • Gök MS, Küçük Y, Erdoğan A, Öge M, Kanca E, Günen A. Dry sliding wear behavior of borided hot-work tool steel at elevated temperatures. Surface and Coatings Technology. 2017;328:54-62.
  • Handbook A. Heat treating. ASM international Materials Park, OH; 1991.
  • Bindal C, Üçisik AH. Characterization of borides formed on impurity-controlled chromium-based low alloy steels. Surf Coat Tech. 1999;122(2-3):208-13.
  • Hudáková M, Kusy M, Sedlická V, Grgac P. Analysis of the boronized layer on K190PM tool steel. Mater Tehnol. 2007;41(2):81-4.
  • Keddam M. Simulation of the growth kinetics of FeB and FeB phases on the AISI M2 borided steel: Effect of the paste thickness. International Journal of Materials Research. 2009;100(6):901-5.
  • Abdellah ZN, Keddam M, Elias A. Evaluation of the effective diffusion coefficient of boron in the FeB phase in the presence of chemical stresses. International Journal of Materials Research. 2013;104(3):260-5.
  • Gunes I. Kinetics of borided gear steels. Sadhana-Acad P Eng S. 2013;38(3):527-41.
  • Gunes I. Wear Behaviour of Plasma Paste Boronized of AISI 8620 Steel with Borax and BO Paste Mixtures. J Mater Sci Technol. 2013;29(7):662-8.
  • Kayali Y, Günes I, Ulu S. Diffusion kinetics of borided AISI 52100 and AISI 440C steels. Vacuum. 2012;86(10):1428-34.
  • Kulka M, Kulka M, Castro. Current trends in boriding: Springer; 2019.
  • Von Matuschka A, Boronizing H. Son Inc. Philadelphia, USA. 1980.
  • He XL, Xiao HP, Ozaydin MF, Balzuweit K, Liang H. Low-temperature boriding of high-carbon steel. Surf Coat Tech. 2015;263:21-6.
  • Vitry V, Kanta AF, Delaunois F. Mechanical and wear characterization of electroless nickel-boron coatings. Surf Coat Tech. 2011;206(7):1879-85.
  • Yildiz I, Çelik AG, Gunes I. Characterization and Diffusion Kinetics of borided Ni-Mg Alloys. Prot Met Phys Chem+. 2020;56(5):1015-22.
  • Bican O, Bayca SU, Ocak-Araz S, Yamaneli B, Tanis NA. Effects of the Boriding Process and of Quenching and Tempering after Boriding on the Microstructure, Hardness and Wear of Aisi 5140 Steel. Surf Rev Lett. 2020;27(6).
  • Keddam M, Chentouf SM. A diffusion model for describing the bilayer growth (FeB/FeB) during the iron powder-pack boriding. Appl Surf Sci. 2005;252(2):393-9.
  • Prince M, Raj GS, Kumar DY, Gopalakrishnan P. Boriding of Steels: Improvement of Mechanical Properties - a Review. High Temp Mater P-Us. 2022;26(2):43-89.
  • Erdogan A. Investigation of high temperature dry sliding behavior of borided H13 hot work tool steel with nanoboron powder. Surf Coat Tech. 2019;357:886-95.
  • Campos-Silva I, Ortiz-Domínguez M, López-Perrusquia N, Meneses-Amador A, Escobar-Galindo R, Martínez-Trinidad J. Characterization of AISI 4140 borided steels. Appl Surf Sci. 2010;256(8):2372-9.
  • Hoyle G. High speed steels. (No Title). 1988.
  • Llewellyn D, Hudd R. Steels: metallurgy and applications: Elsevier; 1998.
  • Zhou XF, Zhu WL, Jiang HB, Fang F, Tu YY, Jiang JQ. A New Approach for Refining Carbide Dimensions in M42 Super Hard High-speed Steel. J Iron Steel Res Int. 2016;23(8):800-7.
  • Luo Y, Guo H, Sun X, Mao M, Guo J. Effects of Austenitizing Conditions on the Microstructure of AISI M42 High-Speed Steel. Metals. 2017;7(1).
There are 26 citations in total.

Details

Primary Language English
Subjects Material Physics
Journal Section Articles
Authors

Hasan Onur Tan 0000-0003-3796-9889

Selçuk Atasoy 0000-0003-0712-7904

Sitki Aktaş 0000-0002-9143-6752

Project Number FEN-BAP-A-240222-23.
Early Pub Date June 28, 2024
Publication Date June 28, 2024
Submission Date February 15, 2024
Acceptance Date March 25, 2024
Published in Issue Year 2024

Cite

APA Tan, H. O., Atasoy, S., & Aktaş, S. (2024). The Effect of Boriding Temperature and Time on the Structural and Mechanical Properties of M42 Steel. Türk Doğa Ve Fen Dergisi, 13(2), 1-5. https://doi.org/10.46810/tdfd.1437681
AMA Tan HO, Atasoy S, Aktaş S. The Effect of Boriding Temperature and Time on the Structural and Mechanical Properties of M42 Steel. TDFD. June 2024;13(2):1-5. doi:10.46810/tdfd.1437681
Chicago Tan, Hasan Onur, Selçuk Atasoy, and Sitki Aktaş. “The Effect of Boriding Temperature and Time on the Structural and Mechanical Properties of M42 Steel”. Türk Doğa Ve Fen Dergisi 13, no. 2 (June 2024): 1-5. https://doi.org/10.46810/tdfd.1437681.
EndNote Tan HO, Atasoy S, Aktaş S (June 1, 2024) The Effect of Boriding Temperature and Time on the Structural and Mechanical Properties of M42 Steel. Türk Doğa ve Fen Dergisi 13 2 1–5.
IEEE H. O. Tan, S. Atasoy, and S. Aktaş, “The Effect of Boriding Temperature and Time on the Structural and Mechanical Properties of M42 Steel”, TDFD, vol. 13, no. 2, pp. 1–5, 2024, doi: 10.46810/tdfd.1437681.
ISNAD Tan, Hasan Onur et al. “The Effect of Boriding Temperature and Time on the Structural and Mechanical Properties of M42 Steel”. Türk Doğa ve Fen Dergisi 13/2 (June 2024), 1-5. https://doi.org/10.46810/tdfd.1437681.
JAMA Tan HO, Atasoy S, Aktaş S. The Effect of Boriding Temperature and Time on the Structural and Mechanical Properties of M42 Steel. TDFD. 2024;13:1–5.
MLA Tan, Hasan Onur et al. “The Effect of Boriding Temperature and Time on the Structural and Mechanical Properties of M42 Steel”. Türk Doğa Ve Fen Dergisi, vol. 13, no. 2, 2024, pp. 1-5, doi:10.46810/tdfd.1437681.
Vancouver Tan HO, Atasoy S, Aktaş S. The Effect of Boriding Temperature and Time on the Structural and Mechanical Properties of M42 Steel. TDFD. 2024;13(2):1-5.