Research Article
BibTex RIS Cite

Identification and Classification of Imbalance Faults in Induction Motors Using Surrogate Models

Year 2025, Volume: 14 Issue: 2, 111 - 123, 27.06.2025
https://doi.org/10.46810/tdfd.1613491

Abstract

Induction motors, with their robust structures, low maintenance costs, and high reliability, have a wide range of applications in the industry. However, these motors are susceptible to electrical and mechanical faults caused by environmental and operational conditions. Fault types include issues such as bearing problems, stator winding faults, and rotor bar breakages, with mechanical imbalance faults emerging as a critical issue that adversely affects motor performance.
This study aims to compare the performance of surrogate models (RBF and KRG) with deep learning models (RNN, GRU, LSTM) for diagnosing imbalance faults in induction motors. For this purpose, the experimentally collected current (Ia, Ib, Ic) and vibration (X, Y, Z) signals were analyzed in the frequency domain, and the features obtained through FFT were used in the classification processes for three classes (Healthy, DA_1, DA_2). According to the results, the RBF model exhibited the best performance with 97.78% accuracy and 97.64% precision, while the KRG model achieved a notable success with 93.89% accuracy and 93.71% precision. In contrast, the highest-performing deep learning models, RNN and LSTM, demonstrated lower performance with 87.22% accuracy and 87.23% precision. The RBF model outperformed the highest-accuracy deep learning model, RNN, by achieving a 12.11% improvement in accuracy and an 11.93% improvement in precision, proving to be a superior tool for diagnosing imbalance faults. Particularly, the RBF model achieved 100% accuracy in the DA_2 class, effectively distinguishing it from other classes due to its distinct features. These findings demonstrate that surrogate models offer an effective solution for diagnosing faults in induction motors by providing high accuracy and precision with limited data requirements and low computational cost.

References

  • Yeh, C. C., Sizov, G. Y., Sayed-Ahmed, A., Demerdash, N. A., Povinelli, R. J., Yaz, E. E., & Ionel, D. M. (2008). A reconfigurable motor for experimental emulation of stator winding interturn and broken bar faults in polyphase induction machines. IEEE tra.
  • Peroutka, Z., Glasberger, T., & Janda, M. (2009, September). Main problems and proposed solutions to induction machine drive control of multisystem locomotive. In 2009 IEEE Energy Conversion Congress and Exposition (pp. 430-437). IEEE..
  • Hughes, A., & Drury, B. (2019). Electric motors and drives: fundamentals, types and applications. Newnes..
  • Rangel-Magdaleno, J., Ramirez-Cortes, J., & Peregrina-Barreto, H. (2013, May). Broken bars detection on induction motor using MCSA and mathematical morphology: An experimental study. In 2013 IEEE International Instrumentation and Measurement Technology Co.
  • Sen, P. C. (2021). Principles of Electric Machines and Power Electronics, International Adaptation. John Wiley & Sons..
  • Liu, Y., & Bazzi, A. M. (2017). A review and comparison of fault detection and diagnosis methods for squirrel-cage induction motors: State of the art. ISA transactions, 70, 400-409..
  • Chen, C., & Mo, C. (2004). A method for intelligent fault diagnosis of rotating machinery. Digital Signal Processing, 14(3), 203-217..
  • Talhaoui, H., Menacer, A., Kessal, A., & Tarek, A. (2018). Experimental diagnosis of broken rotor bars fault in induction machine based on Hilbert and discrete wavelet transforms. The International Journal of Advanced Manufacturing Technology, 95(1), 1399.
  • Boldea, I. (2020). Induction Machines Handbook: Transients, Control Principles, Design and Testing. CRC press..
  • Jigyasu, R., Sharma, A., Mathew, L., & Chatterji, S. (2018, June). A review of condition monitoring and fault diagnosis methods for induction motor. In 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 1713-17.
  • Nandi, S., Bharadwaj, R., Toliyat, H. A., & Parlos, A. G. (1999, October). Study of three phase induction motors with incipient rotor cage faults under different supply conditions. In Conference Record of the 1999 IEEE Industry Applications Conference. Th.
  • Nandi, S., Toliyat, H. A., & Li, X. (2005). Condition monitoring and fault diagnosis of electrical motors—A review. IEEE transactions on energy conversion, 20(4), 719-729..
  • Aydın, Ö., & Akın, E. (2024). Kırık Rotor Çubuğu Arızalarının Belirlenmesinde Derin Öğrenme Yaklaşımları ve Motor Akım İmza Analizi. Türk Doğa ve Fen Dergisi, 13(3), 1-7..
  • Hassan, O. E., Amer, M., Abdelsalam, A. K., & Williams, B. W. (2018). Induction motor broken rotor bar fault detection techniques based on fault signature analysis–a review. IET Electric Power Applications, 12(7), 895-907..
  • Dias, C. G., & Pereira, F. H. (2018). Broken rotor bars detection in induction motors running at very low slip using a Hall effect sensor. IEEE Sensors Journal, 18(11), 4602-4613..
  • Dişli, F., Gedikpınar, M., & Sengur, A. (2023). Deep transfer learning-based broken rotor fault diagnosis for Induction Motors. Turkish Journal of Science and Technology, 18(1), 275-290..
  • Aydin, I., & Akin, E. (2024, July). Multi-sensory Fault Diagnosis of Broken Rotor Bars Using Transfer Learning. In International Conference on Intelligent and Fuzzy Systems (pp. 349-356). Cham: Springer Nature Switzerland..
  • Gao, Z., Cecati, C., & Ding, S. X. (2015). A survey of fault diagnosis and fault-tolerant techniques—Part I: Fault diagnosis with model-based and signal-based approaches. IEEE transactions on industrial electronics, 62(6), 3757-3767..
  • Tariq, M. F., Khan, A. Q., Abid, M., & Mustafa, G. (2018). Data-driven robust fault detection and isolation of three-phase induction motor. IEEE Transactions on Industrial Electronics, 66(6), 4707-4715..
  • Liu, T., Luo, H., Kaynak, O., & Yin, S. (2019). A novel control-performance-oriented data-driven fault classification approach. IEEE Systems Journal, 14(2), 1830-1839..
  • Doğan, Z. (2012). Ayrıklaştırma yöntemleri ve yapay sinir ağı kullanarak asenkron motorlarda arıza teşhisi (Doctoral dissertation, Marmara Universitesi (Turkey))..
  • Gundewar, S. K., & Kane, P. V. (2021). Condition monitoring and fault diagnosis of induction motor. Journal of Vibration Engineering & Technologies, 9, 643-674..
  • Guo, C., Al-Shudeifat, M. A., Yan, J., Bergman, L. A., McFarland, D. M., & Butcher, E. A. (2013). Application of empirical mode decomposition to a Jeffcott rotor with a breathing crack. Journal of Sound and Vibration, 332(16), 3881-3892..
  • Dişli, F., Gedikpınar, M., & Sengur, A. (2023). Kırık Rotor Çubuğu Sayısının Ampirik Mod Ayrışımı ve Makine Öğrenmesi Yaklaşımları İle Belirlenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 35(2), 783-795..
  • Rangel-Magdaleno, J., Peregrina-Barreto, H., Ramirez-Cortes, J., Morales-Caporal, R., & Cruz-Vega, I. (2016). Vibration analysis of partially damaged rotor bar in induction motor under different load condition using DWT. Shock and Vibration, 2016(1), 3530.
  • Henao, H., Capolino, G. A., Fernandez-Cabanas, M., Filippetti, F., Bruzzese, C., Strangas, E., ... & Hedayati-Kia, S. (2014). Trends in fault diagnosis for electrical machines: A review of diagnostic techniques. IEEE industrial electronics magazine, 8(2),.
  • Rapur, J. S., & Tiwari, R. (2017). Experimental time-domain vibration-based fault diagnosis of centrifugal pumps using support vector machine. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 3(4), 044501..
  • Yang, H., Mathew, J., & Ma, L. (2005). Fault diagnosis of rolling element bearings using basis pursuit. Mechanical Systems and Signal Processing, 19(2), 341-356..
  • Jigyasu, R., Shrivastava, V., Singh, S., & Bhadoria, V. (2022, April). Transfer learning based bearing and rotor fault diagnosis of induction motor. In 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICAC.
  • Li, X., Zhang, W., Ding, Q., & Li, X. (2019). Diagnosing rotating machines with weakly supervised data using deep transfer learning. IEEE transactions on industrial informatics, 16(3), 1688-1697..
  • Bhosekar, A., & Ierapetritou, M. (2018). Advances in surrogate based modeling, feasibility analysis, and optimization: A review. Computers & Chemical Engineering, 108, 250-267..
  • Jiang, P., Zhou, Q., Shao, X., Jiang, P., Zhou, Q., & Shao, X. (2020). Surrogate-model-based design and optimization (pp. 135-236). Springer Singapore..
  • Zhou, Q., Wang, Y., Choi, S. K., Jiang, P., Shao, X., & Hu, J. (2017). A sequential multi-fidelity metamodeling approach for data regression. Knowledge-Based Systems, 134, 199-212..
  • Mohammadi, S., Bui, V. H., Su, W., & Wang, B. (2024). Surrogate Modeling for Solving OPF: A Review. Sustainability, 16(22), 9851..
  • Lu, Z., Lv, Y., & Ouyang, H. (2019). A super-harmonic feature based updating method for crack identification in rotors using a kriging surrogate model. Applied Sciences, 9(12), 2428..
  • Chevalier-Jabet, K., Verma, L., & Kremer, F. (2024). Using a surrogate model for the detection of defective PWR fuel rods. Annals of Nuclear Energy, 209, 110779..
  • Han, F., Guo, X., & Gao, H. (2013). Bearing parameter identification of rotor-bearing system based on Kriging surrogate model and evolutionary algorithm. Journal of Sound and Vibration, 332(11), 2659-2671..
  • Yang, H., Bai, X., & Wang, C. (2024). Research on surrogate models and optimization of equipment dynamics for complex systems. AIP Advances, 14(3)..
  • Krige, D. G. (1951). A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy, 52(6), 119-139..
  • Hardy, R. L. (1971). Multiquadric equations of topography and other irregular surfaces. Journal of geophysical research, 76(8), 1905-1915..
  • Dyn, N., Levin, D., & Rippa, S. (1986). Numerical procedures for surface fitting of scattered data by radial functions. SIAM Journal on Scientific and Statistical Computing, 7(2), 639-659..
  • Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons..
  • CHENG, Mengyu, et al. A review of data-driven surrogate models for design optimization of electric motors. IEEE Transactions on Transportation Electrification, 2024..
  • Poudel, S. (2023, August 28). Recurrent neural network (RNN) architecture explained. Medium. URL : https://medium.com/@poudelsushmita878/recurrent-neural-network-rnn-architecture-explained-1d69560541ef , Last Access Date : 10.12.2024.
  • Akbari Asanjan, A., Yang, T., Hsu, K., Sorooshian, S., Lin, J., & Peng, Q. (2018). Short‐term precipitation forecast based on the PERSIANN system and LSTM recurrent neural networks. Journal of Geophysical Research: Atmospheres, 123(22), 12-543..
  • Dey, P., Hossain, E., Hossain, M. I., Chowdhury, M. A., Alam, M. S., Hossain, M. S., & Andersson, K. (2021). Comparative analysis of recurrent neural networks in stock price prediction for different frequency domains. Algorithms, 14(8), 251..
  • Anishnama. (2023, May 4). Understanding gated recurrent unit (GRU) in deep learning. Medium. URL : https://medium.com/@anishnama20/understanding-gated-recurrent-unit-gru-in-deep-learning-2e54923f3e2 , Last Access Date : 10.12.2024.
  • CHUNG, Junyoung, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014..
  • Rojas, C. A. (2024, April 8). What is LSTM (Long Short Term Memory)? Medium. URL : https://blog.ai-evergreen.club/what-is-lstm-long-short-term-memory-221099a981f7 , Last Access Date : 10.12.2024.
  • Elmaz, F., Eyckerman, R., Casteels, W., Latré, S., & Hellinckx, P. (2021). CNN-LSTM architecture for predictive indoor temperature modeling. Building and Environment, 206, 108327.
  • HOCHREITER, Sepp; SCHMIDHUBER, Jürgen. Long short-term memory. Neural computation, 1997, 9.8: 1735-1780..
  • LALE, Timur; YÜKSEK, Gökhan. Identification and Classification of Turn ShortCircuit and Demagnetization Failures in PMSM Using LSTM and GRU Methods. Bulletin of the Polish Academy of Sciences Technical Sciences, 2024, e15158-e15158.
  • SMT: Surrogate Modeling Toolbox, https://smt.readthedocs.io/en/latest/ , Last Access Date : 26.12.2024.

Identification and Diagnosis of Asynchronous Motor Imbalance Faults Using Surrogate Models

Year 2025, Volume: 14 Issue: 2, 111 - 123, 27.06.2025
https://doi.org/10.46810/tdfd.1613491

Abstract

Asenkron motorlar, sağlam yapıları, düşük bakım maliyetleri ve yüksek güvenilirlikleri ile endüstride geniş bir kullanım alanına sahiptir. Ancak, bu motorlar çevresel ve operasyonel koşullardan kaynaklanan elektriksel ve mekanik arızalara maruz kalabilmektedir. Arıza türleri arasında rulman problemleri, stator sargı hataları ve rotor çubuğu kırılmaları gibi sorunlar yer almakta, özellikle mekanik dengesizlik arızaları motor performansını olumsuz etkileyen kritik bir sorun olarak öne çıkmaktadır.
Bu çalışma, asenkron motorlarda dengesizlik arızalarının teşhis edilmesine yönelik yeni bir yaklaşım olan vekil modeller (RBF ve KRG) ile derin öğrenme modellerinin (RNN, GRU, LSTM) performansını karşılaştırmayı amaçlamaktadır. Bu amaçla, deneysel olarak toplanan akım (Ia, Ib, Ic) ve titreşim (X, Y, Z) sinyalleri, frekans alanında analiz edilmiş ve FFT ile elde edilen özellikler, üç sınıf (Sağlıklı, DA_1, DA_2) için sınıflandırma süreçlerinde kullanılmıştır. Sonuçlara göre, RBF modeli, %97.78 doğruluk ve %97.64 keskinlik oranı ile en iyi performansı sergilemiş, KRG modeli ise %93.89 doğruluk ve %93.71 keskinlik oranı ile dikkate değer bir başarı göstermiştir. Buna karşılık, derin öğrenme modellerinden en yüksek doğruluk oranına sahip olan RNN ve LSTM %87.22 doğruluk ve %87.23 keskinlik oranı ile daha düşük bir performans göstermiştir. RBF modeli, en yüksek doğruluklu derin öğrenme modeli olan RNN’e göre doğruluk oranında %12.11, keskinlik oranında ise %11.93'lük bir artış sağlamış, bu da dengesizlik arızalarının teşhisinde üstün bir araç olduğunu kanıtlamıştır. Özellikle DA_2 sınıfında %100 doğruluk oranına ulaşarak, belirgin özellikleri sayesinde diğer sınıflardan ayrışmıştır. Bu bulgular, vekil modellerin sınırlı veri gereksinimi ve düşük hesaplama maliyetiyle birlikte yüksek doğruluk ve keskinlik oranları sunarak, asenkron motor arıza teşhisinde etkili bir çözüm sunduğunu göstermektedir.

References

  • Yeh, C. C., Sizov, G. Y., Sayed-Ahmed, A., Demerdash, N. A., Povinelli, R. J., Yaz, E. E., & Ionel, D. M. (2008). A reconfigurable motor for experimental emulation of stator winding interturn and broken bar faults in polyphase induction machines. IEEE tra.
  • Peroutka, Z., Glasberger, T., & Janda, M. (2009, September). Main problems and proposed solutions to induction machine drive control of multisystem locomotive. In 2009 IEEE Energy Conversion Congress and Exposition (pp. 430-437). IEEE..
  • Hughes, A., & Drury, B. (2019). Electric motors and drives: fundamentals, types and applications. Newnes..
  • Rangel-Magdaleno, J., Ramirez-Cortes, J., & Peregrina-Barreto, H. (2013, May). Broken bars detection on induction motor using MCSA and mathematical morphology: An experimental study. In 2013 IEEE International Instrumentation and Measurement Technology Co.
  • Sen, P. C. (2021). Principles of Electric Machines and Power Electronics, International Adaptation. John Wiley & Sons..
  • Liu, Y., & Bazzi, A. M. (2017). A review and comparison of fault detection and diagnosis methods for squirrel-cage induction motors: State of the art. ISA transactions, 70, 400-409..
  • Chen, C., & Mo, C. (2004). A method for intelligent fault diagnosis of rotating machinery. Digital Signal Processing, 14(3), 203-217..
  • Talhaoui, H., Menacer, A., Kessal, A., & Tarek, A. (2018). Experimental diagnosis of broken rotor bars fault in induction machine based on Hilbert and discrete wavelet transforms. The International Journal of Advanced Manufacturing Technology, 95(1), 1399.
  • Boldea, I. (2020). Induction Machines Handbook: Transients, Control Principles, Design and Testing. CRC press..
  • Jigyasu, R., Sharma, A., Mathew, L., & Chatterji, S. (2018, June). A review of condition monitoring and fault diagnosis methods for induction motor. In 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 1713-17.
  • Nandi, S., Bharadwaj, R., Toliyat, H. A., & Parlos, A. G. (1999, October). Study of three phase induction motors with incipient rotor cage faults under different supply conditions. In Conference Record of the 1999 IEEE Industry Applications Conference. Th.
  • Nandi, S., Toliyat, H. A., & Li, X. (2005). Condition monitoring and fault diagnosis of electrical motors—A review. IEEE transactions on energy conversion, 20(4), 719-729..
  • Aydın, Ö., & Akın, E. (2024). Kırık Rotor Çubuğu Arızalarının Belirlenmesinde Derin Öğrenme Yaklaşımları ve Motor Akım İmza Analizi. Türk Doğa ve Fen Dergisi, 13(3), 1-7..
  • Hassan, O. E., Amer, M., Abdelsalam, A. K., & Williams, B. W. (2018). Induction motor broken rotor bar fault detection techniques based on fault signature analysis–a review. IET Electric Power Applications, 12(7), 895-907..
  • Dias, C. G., & Pereira, F. H. (2018). Broken rotor bars detection in induction motors running at very low slip using a Hall effect sensor. IEEE Sensors Journal, 18(11), 4602-4613..
  • Dişli, F., Gedikpınar, M., & Sengur, A. (2023). Deep transfer learning-based broken rotor fault diagnosis for Induction Motors. Turkish Journal of Science and Technology, 18(1), 275-290..
  • Aydin, I., & Akin, E. (2024, July). Multi-sensory Fault Diagnosis of Broken Rotor Bars Using Transfer Learning. In International Conference on Intelligent and Fuzzy Systems (pp. 349-356). Cham: Springer Nature Switzerland..
  • Gao, Z., Cecati, C., & Ding, S. X. (2015). A survey of fault diagnosis and fault-tolerant techniques—Part I: Fault diagnosis with model-based and signal-based approaches. IEEE transactions on industrial electronics, 62(6), 3757-3767..
  • Tariq, M. F., Khan, A. Q., Abid, M., & Mustafa, G. (2018). Data-driven robust fault detection and isolation of three-phase induction motor. IEEE Transactions on Industrial Electronics, 66(6), 4707-4715..
  • Liu, T., Luo, H., Kaynak, O., & Yin, S. (2019). A novel control-performance-oriented data-driven fault classification approach. IEEE Systems Journal, 14(2), 1830-1839..
  • Doğan, Z. (2012). Ayrıklaştırma yöntemleri ve yapay sinir ağı kullanarak asenkron motorlarda arıza teşhisi (Doctoral dissertation, Marmara Universitesi (Turkey))..
  • Gundewar, S. K., & Kane, P. V. (2021). Condition monitoring and fault diagnosis of induction motor. Journal of Vibration Engineering & Technologies, 9, 643-674..
  • Guo, C., Al-Shudeifat, M. A., Yan, J., Bergman, L. A., McFarland, D. M., & Butcher, E. A. (2013). Application of empirical mode decomposition to a Jeffcott rotor with a breathing crack. Journal of Sound and Vibration, 332(16), 3881-3892..
  • Dişli, F., Gedikpınar, M., & Sengur, A. (2023). Kırık Rotor Çubuğu Sayısının Ampirik Mod Ayrışımı ve Makine Öğrenmesi Yaklaşımları İle Belirlenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 35(2), 783-795..
  • Rangel-Magdaleno, J., Peregrina-Barreto, H., Ramirez-Cortes, J., Morales-Caporal, R., & Cruz-Vega, I. (2016). Vibration analysis of partially damaged rotor bar in induction motor under different load condition using DWT. Shock and Vibration, 2016(1), 3530.
  • Henao, H., Capolino, G. A., Fernandez-Cabanas, M., Filippetti, F., Bruzzese, C., Strangas, E., ... & Hedayati-Kia, S. (2014). Trends in fault diagnosis for electrical machines: A review of diagnostic techniques. IEEE industrial electronics magazine, 8(2),.
  • Rapur, J. S., & Tiwari, R. (2017). Experimental time-domain vibration-based fault diagnosis of centrifugal pumps using support vector machine. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 3(4), 044501..
  • Yang, H., Mathew, J., & Ma, L. (2005). Fault diagnosis of rolling element bearings using basis pursuit. Mechanical Systems and Signal Processing, 19(2), 341-356..
  • Jigyasu, R., Shrivastava, V., Singh, S., & Bhadoria, V. (2022, April). Transfer learning based bearing and rotor fault diagnosis of induction motor. In 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICAC.
  • Li, X., Zhang, W., Ding, Q., & Li, X. (2019). Diagnosing rotating machines with weakly supervised data using deep transfer learning. IEEE transactions on industrial informatics, 16(3), 1688-1697..
  • Bhosekar, A., & Ierapetritou, M. (2018). Advances in surrogate based modeling, feasibility analysis, and optimization: A review. Computers & Chemical Engineering, 108, 250-267..
  • Jiang, P., Zhou, Q., Shao, X., Jiang, P., Zhou, Q., & Shao, X. (2020). Surrogate-model-based design and optimization (pp. 135-236). Springer Singapore..
  • Zhou, Q., Wang, Y., Choi, S. K., Jiang, P., Shao, X., & Hu, J. (2017). A sequential multi-fidelity metamodeling approach for data regression. Knowledge-Based Systems, 134, 199-212..
  • Mohammadi, S., Bui, V. H., Su, W., & Wang, B. (2024). Surrogate Modeling for Solving OPF: A Review. Sustainability, 16(22), 9851..
  • Lu, Z., Lv, Y., & Ouyang, H. (2019). A super-harmonic feature based updating method for crack identification in rotors using a kriging surrogate model. Applied Sciences, 9(12), 2428..
  • Chevalier-Jabet, K., Verma, L., & Kremer, F. (2024). Using a surrogate model for the detection of defective PWR fuel rods. Annals of Nuclear Energy, 209, 110779..
  • Han, F., Guo, X., & Gao, H. (2013). Bearing parameter identification of rotor-bearing system based on Kriging surrogate model and evolutionary algorithm. Journal of Sound and Vibration, 332(11), 2659-2671..
  • Yang, H., Bai, X., & Wang, C. (2024). Research on surrogate models and optimization of equipment dynamics for complex systems. AIP Advances, 14(3)..
  • Krige, D. G. (1951). A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy, 52(6), 119-139..
  • Hardy, R. L. (1971). Multiquadric equations of topography and other irregular surfaces. Journal of geophysical research, 76(8), 1905-1915..
  • Dyn, N., Levin, D., & Rippa, S. (1986). Numerical procedures for surface fitting of scattered data by radial functions. SIAM Journal on Scientific and Statistical Computing, 7(2), 639-659..
  • Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons..
  • CHENG, Mengyu, et al. A review of data-driven surrogate models for design optimization of electric motors. IEEE Transactions on Transportation Electrification, 2024..
  • Poudel, S. (2023, August 28). Recurrent neural network (RNN) architecture explained. Medium. URL : https://medium.com/@poudelsushmita878/recurrent-neural-network-rnn-architecture-explained-1d69560541ef , Last Access Date : 10.12.2024.
  • Akbari Asanjan, A., Yang, T., Hsu, K., Sorooshian, S., Lin, J., & Peng, Q. (2018). Short‐term precipitation forecast based on the PERSIANN system and LSTM recurrent neural networks. Journal of Geophysical Research: Atmospheres, 123(22), 12-543..
  • Dey, P., Hossain, E., Hossain, M. I., Chowdhury, M. A., Alam, M. S., Hossain, M. S., & Andersson, K. (2021). Comparative analysis of recurrent neural networks in stock price prediction for different frequency domains. Algorithms, 14(8), 251..
  • Anishnama. (2023, May 4). Understanding gated recurrent unit (GRU) in deep learning. Medium. URL : https://medium.com/@anishnama20/understanding-gated-recurrent-unit-gru-in-deep-learning-2e54923f3e2 , Last Access Date : 10.12.2024.
  • CHUNG, Junyoung, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014..
  • Rojas, C. A. (2024, April 8). What is LSTM (Long Short Term Memory)? Medium. URL : https://blog.ai-evergreen.club/what-is-lstm-long-short-term-memory-221099a981f7 , Last Access Date : 10.12.2024.
  • Elmaz, F., Eyckerman, R., Casteels, W., Latré, S., & Hellinckx, P. (2021). CNN-LSTM architecture for predictive indoor temperature modeling. Building and Environment, 206, 108327.
  • HOCHREITER, Sepp; SCHMIDHUBER, Jürgen. Long short-term memory. Neural computation, 1997, 9.8: 1735-1780..
  • LALE, Timur; YÜKSEK, Gökhan. Identification and Classification of Turn ShortCircuit and Demagnetization Failures in PMSM Using LSTM and GRU Methods. Bulletin of the Polish Academy of Sciences Technical Sciences, 2024, e15158-e15158.
  • SMT: Surrogate Modeling Toolbox, https://smt.readthedocs.io/en/latest/ , Last Access Date : 26.12.2024.
There are 53 citations in total.

Details

Primary Language English
Subjects Information Modelling, Management and Ontologies, Electrical Machines and Drives
Journal Section Research Article
Authors

Özgür Aydın 0000-0001-8130-277X

Erhan Akın 0000-0001-6476-9255

Submission Date January 15, 2025
Acceptance Date April 28, 2025
Publication Date June 27, 2025
Published in Issue Year 2025 Volume: 14 Issue: 2

Cite

APA Aydın, Ö., & Akın, E. (2025). Identification and Classification of Imbalance Faults in Induction Motors Using Surrogate Models. Türk Doğa Ve Fen Dergisi, 14(2), 111-123. https://doi.org/10.46810/tdfd.1613491
AMA Aydın Ö, Akın E. Identification and Classification of Imbalance Faults in Induction Motors Using Surrogate Models. TJNS. June 2025;14(2):111-123. doi:10.46810/tdfd.1613491
Chicago Aydın, Özgür, and Erhan Akın. “Identification and Classification of Imbalance Faults in Induction Motors Using Surrogate Models”. Türk Doğa Ve Fen Dergisi 14, no. 2 (June 2025): 111-23. https://doi.org/10.46810/tdfd.1613491.
EndNote Aydın Ö, Akın E (June 1, 2025) Identification and Classification of Imbalance Faults in Induction Motors Using Surrogate Models. Türk Doğa ve Fen Dergisi 14 2 111–123.
IEEE Ö. Aydın and E. Akın, “Identification and Classification of Imbalance Faults in Induction Motors Using Surrogate Models”, TJNS, vol. 14, no. 2, pp. 111–123, 2025, doi: 10.46810/tdfd.1613491.
ISNAD Aydın, Özgür - Akın, Erhan. “Identification and Classification of Imbalance Faults in Induction Motors Using Surrogate Models”. Türk Doğa ve Fen Dergisi 14/2 (June2025), 111-123. https://doi.org/10.46810/tdfd.1613491.
JAMA Aydın Ö, Akın E. Identification and Classification of Imbalance Faults in Induction Motors Using Surrogate Models. TJNS. 2025;14:111–123.
MLA Aydın, Özgür and Erhan Akın. “Identification and Classification of Imbalance Faults in Induction Motors Using Surrogate Models”. Türk Doğa Ve Fen Dergisi, vol. 14, no. 2, 2025, pp. 111-23, doi:10.46810/tdfd.1613491.
Vancouver Aydın Ö, Akın E. Identification and Classification of Imbalance Faults in Induction Motors Using Surrogate Models. TJNS. 2025;14(2):111-23.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.