Review
BibTex RIS Cite

Hydrogels Synthesized from Natural Bacterial Polysaccharides with Therapeutic Effects on Cutaneous Wounds

Year 2025, Volume: 14 Issue: 4, 260 - 270, 30.12.2025
https://doi.org/10.46810/tdfd.1671294

Abstract

Skin injuries, the largest organ in the human body, arise from various causes, and the processes involved in wound healing are of significant importance. The stages of wound repair occur at varying intervals, depending on the wound type. Bacterial infection is a major challenge in the wound-healing process. However, current wound dressing materials often fail to adequately address the clinical need to mitigate bacterial infections. In this context, hydrogels that protect the wound surface from microorganisms and facilitate rapid healing have attracted attention for wound treatment. Natural polymers such as polysaccharides are commonly used in hydrogel synthesis. These polymers can be derived from animal, plant, bacterial, or marine sources. The natural origin of polysaccharides imparts biodegradable and biocompatible properties to hydrogel-based wound dressings. In particular, bacterial polysaccharides offer cost-effective and easily producible alternatives to other polysaccharides, owing to their growth characteristics and ability to utilize diverse substrates. This review aimed to examine the effects of natural polysaccharide-based hydrogels on the healing of infected wounds and the advantages of hydrogel dressings synthesized from natural polysaccharides for treating skin wounds of various etiologies. It also highlights recent advancements in hydrogels synthesized using bacterial polysaccharides among natural polymers. This review posits that the use of bacterial polysaccharides in the synthesis of hydrogel dressings for various wound treatments provides a novel perspective.

References

  • Verma D, Okhawilai M, Nangan S, Thakur V. K, Gopi S, Kuppusamy K, et al. A sustainable and green approach towards the utilization of biopolymers for effective wound dressing applications: A detailed review. Nano-Structures & Nano-Objects. 2024;37:101086.
  • Ding C, Liu X, Zhang S, Sun S, Yang J, Chai G, et al. Multifunctional hydrogel bioscaffolds based on polysaccharide to promote wound healing: A review. International Journal of Biological Macromolecules. 2024;259(2):129356.
  • Lee H, Jung Y, Lee N, Lee I, Lee J. H. Nature-derived polysaccharide-based composite hydrogels for promoting wound healing. International Journal of Molecular Sciences 2023;24(23):16714.
  • Raina N, Pahwa R, Thakur V. K, Gupta M. Polysaccharide-based hydrogels: New insights and futuristic prospects in wound healing. International Journal of Biological Macromolecules. 2022;223:1586-1603.
  • Ribeiro D. M. L, Carvalho Junior A. R, Vale de Macedo G. H. R, Chagas V. L, Silva L. D. S, Cutrim B. D. S, et al. Polysaccharide-based formulations for healing of skin-related wound infections: lessons from animal models and clinical trials. Biomolecules. 2019;10(1):63.
  • Yang J, Wang Z, Liang X, Wang W, Wang S, et al. Multifunctional polypeptide-based hydrogel bio-adhesives with pro-healing activities and their working principles. Advances in Colloid and Interface Science. 2024;327:103155.
  • Xue H, Sun M, Zhao X, Wang Y, Yan J, Zhang W. Preparation and characterization of polysaccharide-based hydrogels for cutaneous wound healing. Polymers. 2022;14(9):1716.
  • Liu M, Jin J, Zhong X, Liu L, Tang C, Cai L. Polysaccharide hydrogels for skin wound healing. Heliyon. 2024;10(15):e35014.
  • Yang X, Li J, Chen X, Wang T, Li G, Zhang K, et al. Multifunctional hydrogels for wound healing. Journal of Polymer Engineering. 2024;44(3):173-194.
  • Zhu N, Zhuang Y, Sun W, Wang J, Wang F, Han X, et al. Multistructured hydrogel promotes nerve regeneration. Materials Today Advances. 2024;21:100465.
  • Saharan R, Paliwal S. K, Tiwari A, Babu M. A, Tiwari V, Singh R, et al. Beyond traditional hydrogels: The emergence of graphene oxide-based hydrogels in drug delivery. Journal of Drug Delivery Science and Technology. 2024;94:105506.
  • Safarzadeh Kozani P, Safarzadeh Kozani P, Hamidi M, Valentine Okoro O, Eskandani M, Jaymand, M, et al. Polysaccharide-based hydrogels: Properties, advantages, challenges, and optimization methods for applications in regenerative medicine. International Journal of Polymeric Materials and Polymeric Biomaterials. 2022;71(17):1319-1333.
  • Zhang S, Liu H, Li W, Liu X, Ma L, Zhao T, et al. Polysaccharide-based hydrogel promotes skin wound repair and research progress on its repair mechanism. International Journal of Biological Macromolecules. 2023; 248 125949.
  • Zheng B. D, Gan L, Tian L. Y, Chen G. H. Protein/polysaccharide-based hydrogels loaded probiotic-mediated therapeutic systems: A review. International Journal of Biological Macromolecules. 2023;253(2):126841.
  • Jabeen N, Atif M. Polysaccharides based biopolymers for biomedical applications: A review. Polymers for Advanced Technologies. 2024; 35(1):1-23
  • Nosrati H, Khodaei M, Alizadeh Z, Banitalebi-Dehkordi M. Cationic, anionic and neutral polysaccharides for skin tissue engineering and wound healing applications. International journal of biological macromolecules. 2021;192:298-322.
  • Benítez J. M, Montáns F. J. The mechanical behavior of skin: Structures and models for the finite element analysis. Computers & Structures. 2017;190:75-107.
  • Ninan N, Muthiah M, Park I. K, Wong T. W, Thomas S, Grohens Y. Natural polymer/inorganic material based hybrid scaffolds for skin wound healing. Polymer Reviews. 2015;55(3):453-490.
  • Férnandez-Guarino M, Naharro-Rodriguez J, Bacci S. Disturbances in the skin homeostasis: Wound healing, an undefined process. Cosmetics. 2024;11(3):90.
  • Yan W. C, Davoodi P, Vijayavenkataraman S, Tian Y, Ng W. C, Fuh J. Y, et al. 3D bioprinting of skin tissue: from pre-processing to final product evaluation. Advanced drug delivery reviews. 2018;132:270-295.
  • Sadeghianmaryan A, Ahmadian N, Wheatley S, Sardroud H. A, Nasrolla, S. A. S, Naseri E, et al. Advancements in 3D-printable polysaccharides, proteins, and synthetic polymers for wound dressing and skin scaffolding–a review. International Journal of Biological Macromolecules. 2024;266(1):131207.
  • Supp D. M, Boyce S. T. Engineered skin substitutes: practices and potentials. Clinics in dermatology. 2005;23(4):403-412.
  • Sangha M. S, Deroide F, Meys R. Wound healing, scarring and management. Clinical and Experimental Dermatology. 2024;49(4):325-336.
  • Li A, Ma B, Hua S, Ping R, Ding L, Tian B, et al. Chitosan-based injectable hydrogel with multifunction for wound healing: A critical review. Carbohydrate Polymers. 2024;333:121952.
  • Zhang W, Liu L, Cheng H, Zhu J, Li X, Ye S, et al. Hydrogel-based dressings designed to facilitate wound healing. Materials Advances. 2024;5(4):1364-1394.
  • Gounden V, Singh M. Hydrogels and wound healing: Current and future prospects. Gels. 2024;10(1):43.
  • Yang Z, Ren K, Chen Y, Quanji X, Cai C, Yin J. Oxygen‐Generating hydrogels as oxygenation therapy for accelerated chronic wound healing. Advanced Healthcare Materials 2024;13(3):2302391.
  • Brumberg V, Astrelina T, Malivanova T, Samoilov A. Modern wound dressings: hydrogel dressings. Biomedicines. 2021;9(9):1235.
  • Olteanu G, Neacșu S. M, Joița F. A, Musuc A. M, Lupu E. C, Ioniță-Mîndrican C. B, et al. Advancements in regenerative hydrogels in skin wound treatment: A comprehensive review. International Journal of Molecular Sciences. 2024;25(7):3849.
  • Peña O. A, Martin P. Cellular and molecular mechanisms of skin wound healing. Nature Reviews Molecular Cell Biology. 2024;25(8):599-616.
  • Luo W, Li Z, Che J, Li X, Zhang H, Tian J, et al. Near-infrared responsive nanocomposite hydrogel dressing with anti-inflammation and pro-angiogenesis for wound healing. ACS Applied Materials & Interfaces. 202416(27):34720-34731.
  • Zahedi P, Rezaeian I, Ranaei‐Siadat S. O, Jafari S. H, Supaphol P. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polymers for Advanced Technologies. 2010;21(2):77-95.
  • Tavakoli S, Klar A. S. Advanced hydrogels as wound dressings. Biomolecules. 2020;10(8):1169.
  • Kaplani K, Koutsi S, Armenis V, Skondra F. G, Karantzelis N, Tsaniras S. C, et al. Wound healing related agents: Ongoing research and perspectives. Advanced Drug Delivery Reviews. 2018;129(1):242-253.
  • Abazari M, Akbari T, Hasani M, Sharifikolouei E, Raoufi M, Foroumadi A, et al. Polysaccharide-based hydrogels containing herbal extracts for wound healing applications. Carbohydrate Polymers. 2022;294:119808.
  • Liang Y, He J, Guo B. Functional hydrogels as wound dressing to enhance wound healing. ACS nano. 2021;15(8):12687-12722.
  • Zheng B. D, Xiao M. T. Polysaccharide-based hydrogel with photothermal effect for accelerating wound healing. Carbohydrate Polymers. 2023;299:120228.
  • Ahmadian Z, Gheybi H, Adeli M. Efficient wound healing by antibacterial property: Advances and trends of hydrogels, hydrogel-metal NP composites and photothermal therapy platforms. Journal of Drug Delivery Science and Technology. 2022;73:103458.
  • Xu H, Che Y, Zhou R, Wang L, Huang J, Kong W, et al. Research progress of natural polysaccharide-based and natural protein-based hydrogels for bacteria-infected wound healing. Chemical Engineering Journal. 2024;496:153803.
  • Uberoi A, McCready-Vangi A, Grice E. A. The wound microbiota: microbial mechanisms of impaired wound healing and infection. Nature Reviews Microbiology. 2024;22(8):507-521.
  • Rezvani Ghomi E, Khalili S, Nouri Khorasani S, Esmaeely Neisiany R, Ramakrishna S. Wound dressings: Current advances and future directions. Journal of Applied Polymer Science. 2019;136(27):47738.
  • Ho T. T. P, Tran H. A, Doan V. K, Maitz J, Li Z, Wise S. G,et al. Natural Polymer‐Based Materials for Wound Healing Applications. Advanced NanoBiomed Research. 2024;4(5):2300131.
  • Ribeiro M, Simões M, Vitorino C, Mascarenhas-Melo F. Hydrogels in cutaneous wound healing: Insights into characterization, properties, formulation and therapeutic potential. Gels. 2024;10(3):188.
  • Koehler J, Brandl F. P, Goepferich A. M. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. European Polymer Journal. 2018;100:1-11.
  • Pan Z, Ye H, Wu D. Recent advances on polymeric hydrogels as wound dressings APL bioengineering. 2021;5(1):011504.
  • Wang W, Ummartyotin S, Narain, R. Advances and challenges on hydrogels for wound dressing. Current opinion in biomedical engineering. 2023;26:100443.
  • Moreira T. D, Martins V. B, da Silva Júnior A. H, Sayer C, de Araújo P. H. H, Immich A. P. S. New insights into biomaterials for wound dressings and care: Challenges and trends. Progress in Organic Coatings. 2024;187:108118.
  • Borbolla-Jiménez F. V, Peña-Corona S. I, Farah S. J, Jiménez-Valdés M. T, Pineda-Pérez E, Romero-Montero A, et al. Films for wound healing fabricated using a solvent casting technique. Pharmaceutics 2023;15(7):1914.
  • de Carvalho A. C. W, Paiva N. F, Demonari I. K, Duarte M. P. F, do Couto R. O, de Freitas O, et al. The potential of films as transmucosal drug delivery systems. Pharmaceutics. 2023;15(11):2583.
  • Yu R, Zhang H, Guo B. Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nano-micro letters. 2022;14(1):1-46.
  • Broussard K. C, Powers J. G. Wound dressings: selecting the most appropriate type. American journal of clinical dermatology. 2013;14(6):449-459.
  • Liang Y, Liang Y, Zhang H, Guo B. Antibacterial biomaterials for skin wound dressing. Asian Journal of Pharmaceutical Sciences. 2022;17(3):353-384.
  • Ding Y, Zhu Z, Zhang X, Wang J. Novel functional dressing materials for intraoral wound care. Advanced Healthcare Materials. 2024;13(23):2400912.
  • Gist S, Tio-Matos I, Falzgraf S, Cameron S, Beebe M. Wound care in the geriatric client. Clinical interventions in aging. 2009;4:269-287.
  • Dong R, Guo B. Smart wound dressings for wound healing. Nano Today. 2021;41:101290.
  • Hargis A, Yaghi M, Bermudez N. M, Gefen A. Foam dressings for wound healing. Current Dermatology Reports. 2024;13(1):28-35.
  • Gefen A, Alves P, Beeckman D, Cullen B, Lázaro-Martínez J. L, Lev-Tov H, et al. How should clinical wound care and management translate to effective engineering standard testing requirements from foam dressings? Mapping the existing gaps and needs. Advances in wound care. 2024;13(1):34-52.
  • Sikka M. P, Bargir J. A, Garg S. Modern developments in burn wound dressing. Research Journal of Textile and Apparel. 2024;29(1):1-20.
  • Varaprasad K, Raghavendra G. M, Jayaramudu T, Yallapu M. M, Sadiku R. A mini review on hydrogels classification and recent developments in miscellaneous applications. Materials Science and Engineering: C. 2017;79:958-971.
  • Jacob S, Nair A. B, Shah J, Sreeharsha N, Gupta S, Shinu P. Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management. Pharmaceutics. 2021;13(3):357.
  • Zhang W, Hu J, Wu H, Lin X, Cai L. Stimuli-responsive hydrogel dressing for wound healing. APL Materials. 2025;13(1):010601.
  • Jafari A, Bhatt K, Niknezhad S. V, Ajji A, Griffith M, Andelfinger G, et al. Synthesis and characterization of photo-cross-linkable quince seed-based hydrogels for soft tissue engineering applications. Carbohydrate Polymers. 2025;352:123140.
  • Zhang Y, Huang Y. Rational design of smart hydrogels for biomedical applications. Frontiers in Chemistry. 2021;8:615665.
  • Markovic M. D, Spasojevic P. M, Pantic O. J, Savic S. I, Savkovic M. M. S, Panic V. V. Status and future scope of hydrogels in wound healing. Journal of Drug Delivery Science and Technology. 2024;98:105903.
  • Wang P, Cai F, Li Y, Yang X, Feng R, Lu H, et al. Emerging trends in the application of hydrogel-based biomaterials for enhanced wound healing: A literature review. International journal of biological macromolecules. 2024;261(1):129300.
  • Jaiswal R, Sherje A. P. Recent advances in biopolymer-based smart hydrogel for wound healing. Journal of Drug Delivery Science and Technology. 2024;99:105990.
  • Munyiri C. N, Madivoli E. S, Kisato J, Gichuki J, Kareru P. G. Biopolymer based hydrogels: crosslinking strategies and their applications. International Journal of Polymeric Materials and Polymeric Biomaterials. 2025;74(7):625-640.
  • Zhao L, Zhou Y, Zhang J, Liang H, Chen X, Tan H. Natural polymer-based hydrogels: From polymer to biomedical applications. Pharmaceutics. 2023;15(10):2514.
  • Hama R, Ulziibayar A, Reinhardt J. W, Watanabe T, Kelly J, Shinoka T. Recent developments in biopolymer-based hydrogels for tissue engineering applications. Biomolecules. 2023;13(2):280.
  • Kolipaka T, Pandey G, Abraham N, Srinivasarao D. A, Raghuvanshi R. S, Rajinikanth P. S, et al. Stimuli-responsive polysaccharide-based smart hydrogels for diabetic wound healing: Design aspects, preparation methods and regulatory perspectives. Carbohydrate polymers. 2024;324:121537.
  • Ghiorghita C. A, Platon I. V, Lazar M. M, Dinu M. V, Aprotosoaie A. C. Trends in polysaccharide-based hydrogels and their role in enhancing the bioavailability and bioactivity of phytocompounds. Carbohydrate polymers. 2024;334:122033.
  • Zhang C. W, Si M, Chen C, He P, Fei Z, Xu N, et al. Hierarchical Engineering for Biopolymer‐based Hydrogels with Tailored Property and Functionality. Advanced Materials. 2025;2414897.
  • Zubair M, Hussain A, Shahzad S, Arshad M, Ullah A. Emerging trends and challenges in polysaccharide derived materials for wound care applications: A review. International Journal of Biological Macromolecules. 2024;270(1):132048.
  • Patel D. K, Jung E, Priya S, Won S. Y, Han S. S. Recent advances in biopolymer-based hydrogels and their potential biomedical applications. Carbohydrate polymers. 2024;323:121408.
  • Zhang H, Li Y, Fu Y, Jiao H, Wang X, Wang Q, et al. A structure-functionality insight into the bioactivity of microbial polysaccharides toward biomedical applications: A review. Carbohydrate Polymers. 2024;335:122078.
  • Abdl Aali R. A. K, Al-Sahlany S. T. G. Gellan gum as a unique microbial polysaccharide: Its characteristics, synthesis, and current application trends. Gels. 2024;10(3):183.
  • Yermagambetova A, Tazhibayeva S, Takhistov P, Tyussyupova B, Tapia-Hernández J. A, Musabekov K. Microbial Polysaccharides as Functional Components of Packaging and Drug Delivery Applications. Polymers. 2024;16(20): 2854.
  • Ghosh S, Lahiri D, Nag M, Dey A, Sarkar T, Pathak S. K, et al. Bacterial biopolymer: Its role in pathogenesis to effective biomaterials. Polymers. 2021;13(8):1242.
  • Kaur R, Pathak L, Vyas P. Biobased polymers of plant and microbial origin and their applications-a review. Biotechnology for Sustainable Materials. 2024;1(1):13.
  • Kumar P, Kumar B, Gihar S, Kumar D. Review on emerging trends and challenges in the modification of xanthan gum for various applications. Carbohydrate Research. 2024;538:109070.
  • Ma C, Du L, Guo Y, Yang X. A review of polysaccharide hydrogels as materials for skin repair and wound dressing: Construction, functionalization and challenges. International Journal of Biological Macromolecules. 2024;280(3):135838.
  • Patel J, Maji B, Moorthy N. H. N, Maiti S. Xanthan gum derivatives: Review of synthesis, properties and diverse applications. RSC advances. 2020;10(45):27103-27136.
  • Wu Q, Lu Z, Wang L, Peng S, Wang Z, Qiu Y, et al. Konjac glucomannan/xanthan gum hydrogels loaded with metal-phenolic networks encapsulated probiotic to promote infected wound healing. Carbohydrate Polymers. 2025;353:123243.
  • Cheng Y, Ling J, Ouyang X. K, Wang N. Curdlan/xanthan gum-based composite hydrogel with near-infrared irradiation responsive properties for infected wounds healing. International Journal of Biological Macromolecules. 2025;284(2):138199.
  • Dahiya D, Nigam P. S. Dextran of diverse molecular-configurations used as a blood-plasma substitute, drug-delivery vehicle and food additive biosynthesized by Leuconostoc, Lactobacillus and Weissella. Applied Sciences. 2023;13(22):12526.
  • Díaz-Montes E. Dextran: sources, structures, and properties. Polysaccharides. 2021;2(3):554-565.
  • Zang J, Yin Z, Ouyang H, Liu Y, Liu Z, Yin Z. Advances in the preparation, applications, challenges, and future trends of polysaccharide‐based gels as food‐grade delivery systems for probiotics: A review. Comprehensive Reviews in Food Science and Food Safety. 2025;24(1):e70111.
  • Petrovici A. R, Pinteala M, Simionescu N. Dextran formulations as effective delivery systems of therapeutic agents. Molecules. 2023;28(3):1086.
  • Sepe F, Valentino A, Marcolongo L, Petillo O, Calarco A, Margarucci S, et al. Polysaccharide Hydrogels as Delivery Platforms for Natural Bioactive Molecules: From Tissue Regeneration to Infection Control. Gels. 2025;11(3):198.
  • Zhao Y, Jalili S. Dextran, as a biological macromolecule for the development of bioactive wound dressing materials: A review of recent progress and future perspectives. International Journal of Biological Macromolecules. 2022;(207):666-682.
  • Zhao J, Zhu H, Xu T, Xu S, Wang Y, Hou Y, et al. Self-Healing Oxidized Dextran/Sodium Alginate Hydrogel Dressing with Hemostatic Activity Speeds Up Wound Healing in Burn Injuries. ACS Applied Materials & Interfaces. 2025;17(2):2940–2951
  • Li M, Tang H, Geng X, Zhou J, Mou S, Li C, et al. All-natural hydrogel composed of carboxymethyl chitosan and oxidized dextran for promoting wound healing by immune-microenvironment regulation. Carbohydrate Polymers. 2025;347:122731.
  • Gomes D, Batista-Silva J. P, Sousa A, Passarinha L. A. Progress and opportunities in Gellan gum-based materials: A review of preparation, characterization and emerging applications. Carbohydrate Polymers. 2023;311:120782.
  • Lalebeigi F, Alimohamadi A, Afarin S, Aliabadi H. A. M, Mahdavi M, Farahbakhshpour F, et al. Recent advances on biomedical applications of gellan gum: A review. Carbohydrate Polymers. 2024;334:122008.
  • Putro J. N, Soetaredjo F. E, Lunardi V. B, Irawaty W, Yuliana M, Santoso S. P, et al. Polysaccharides gums in drug delivery systems: A review. International Journal of Biological Macromolecules. 2023;253(4):127020.
  • Mahmod Z, Zulkifli M. F, Masimen M. A. A, Ismail W. I. W, Sharifudin M. A, Amin K. A. M. Investigating the efficacy of gellan gum hydrogel films infused with Acacia stingless bee honey in wound healing. International Journal of Biological Macromolecules. 2025;296:139753.

Cilt Yaraları Üzerinde İyileştirici Etkisi Olan Doğal Bakteriyel Polisakkaritlerle Sentezlenmiş Hidrojeller

Year 2025, Volume: 14 Issue: 4, 260 - 270, 30.12.2025
https://doi.org/10.46810/tdfd.1671294

Abstract

İnsanın en büyük organı olan deride çeşitli sebeplerden dolayı oluşan yaralanmalar ve bu yaraların iyileşme süreçleri büyük bir öneme sahiptir. Yara onarım aşamaları yara çeşidine göre farklı zaman aralıklarında gerçekleşebilmektedir. Yara iyileşme sürecinin en ciddi sorunlarından biri bakteriyel enfeksiyonlardır. Fakat günümüzdeki çeşitli yara pansuman malzemeleri bakteriyel enfeksiyonları azaltmak için yeterli klinik ihtiyaçları karşılayamamaktadır. Bu noktada yara tedavilerinde, yara yüzeyini çeşitli mikroorganizmalardan koruyan ve yaranın hızlı iyileşmesine katkı sağlayan hidrojeller dikkat çekmektedir. Polisakkarit gibi doğal kaynaklı polimerler hidrojel sentezinde sıkça kullanılmaktadır. Bu polimerler hayvansal, bitkisel, bakteriyel ve deniz organizmaları kaynaklı olabilmektedir. Polisakkaritlerin doğal kaynaklı olmaları hidrojel yara pansumanlarına biyobozunur ve biyouyumluluk özellikleri kazandırmaktadır. Bakteriyel polisakkaritler büyüme özellikleri ve çok çeşitli substratlardan yararlanma yetenekleri nedeniyle diğer polisakkaritlere göre uygun maliyetli ve kolay üretilebilir alternatiflerdir. Bu inceleme çeşitli nedenlerden dolayı ciltte oluşan yaraların tedavisinde doğal polisakkarit bazlı hidrojellerin enfekte yara iyileşmesi sürecindeki etkilerinden ve doğal polisakkaritlerden sentezlenen hidrojel pansumanların avantajlarını ortaya koymayı amaçlamaktadır. Ayrıca doğal polimerler arasında bulunan bakteriyel polisakkaritler ile sentezlenen hidrojellerin mevcut gelişimleri ortaya koymayı amaçlamaktadır. Bu incelemenin sonucunda çeşitli yara tedavileri için hidrojel pansumanların sentezinde bakteriyel polisakkatlerin kullanımı yeni bir bakış açısı sağlayacaktır.

References

  • Verma D, Okhawilai M, Nangan S, Thakur V. K, Gopi S, Kuppusamy K, et al. A sustainable and green approach towards the utilization of biopolymers for effective wound dressing applications: A detailed review. Nano-Structures & Nano-Objects. 2024;37:101086.
  • Ding C, Liu X, Zhang S, Sun S, Yang J, Chai G, et al. Multifunctional hydrogel bioscaffolds based on polysaccharide to promote wound healing: A review. International Journal of Biological Macromolecules. 2024;259(2):129356.
  • Lee H, Jung Y, Lee N, Lee I, Lee J. H. Nature-derived polysaccharide-based composite hydrogels for promoting wound healing. International Journal of Molecular Sciences 2023;24(23):16714.
  • Raina N, Pahwa R, Thakur V. K, Gupta M. Polysaccharide-based hydrogels: New insights and futuristic prospects in wound healing. International Journal of Biological Macromolecules. 2022;223:1586-1603.
  • Ribeiro D. M. L, Carvalho Junior A. R, Vale de Macedo G. H. R, Chagas V. L, Silva L. D. S, Cutrim B. D. S, et al. Polysaccharide-based formulations for healing of skin-related wound infections: lessons from animal models and clinical trials. Biomolecules. 2019;10(1):63.
  • Yang J, Wang Z, Liang X, Wang W, Wang S, et al. Multifunctional polypeptide-based hydrogel bio-adhesives with pro-healing activities and their working principles. Advances in Colloid and Interface Science. 2024;327:103155.
  • Xue H, Sun M, Zhao X, Wang Y, Yan J, Zhang W. Preparation and characterization of polysaccharide-based hydrogels for cutaneous wound healing. Polymers. 2022;14(9):1716.
  • Liu M, Jin J, Zhong X, Liu L, Tang C, Cai L. Polysaccharide hydrogels for skin wound healing. Heliyon. 2024;10(15):e35014.
  • Yang X, Li J, Chen X, Wang T, Li G, Zhang K, et al. Multifunctional hydrogels for wound healing. Journal of Polymer Engineering. 2024;44(3):173-194.
  • Zhu N, Zhuang Y, Sun W, Wang J, Wang F, Han X, et al. Multistructured hydrogel promotes nerve regeneration. Materials Today Advances. 2024;21:100465.
  • Saharan R, Paliwal S. K, Tiwari A, Babu M. A, Tiwari V, Singh R, et al. Beyond traditional hydrogels: The emergence of graphene oxide-based hydrogels in drug delivery. Journal of Drug Delivery Science and Technology. 2024;94:105506.
  • Safarzadeh Kozani P, Safarzadeh Kozani P, Hamidi M, Valentine Okoro O, Eskandani M, Jaymand, M, et al. Polysaccharide-based hydrogels: Properties, advantages, challenges, and optimization methods for applications in regenerative medicine. International Journal of Polymeric Materials and Polymeric Biomaterials. 2022;71(17):1319-1333.
  • Zhang S, Liu H, Li W, Liu X, Ma L, Zhao T, et al. Polysaccharide-based hydrogel promotes skin wound repair and research progress on its repair mechanism. International Journal of Biological Macromolecules. 2023; 248 125949.
  • Zheng B. D, Gan L, Tian L. Y, Chen G. H. Protein/polysaccharide-based hydrogels loaded probiotic-mediated therapeutic systems: A review. International Journal of Biological Macromolecules. 2023;253(2):126841.
  • Jabeen N, Atif M. Polysaccharides based biopolymers for biomedical applications: A review. Polymers for Advanced Technologies. 2024; 35(1):1-23
  • Nosrati H, Khodaei M, Alizadeh Z, Banitalebi-Dehkordi M. Cationic, anionic and neutral polysaccharides for skin tissue engineering and wound healing applications. International journal of biological macromolecules. 2021;192:298-322.
  • Benítez J. M, Montáns F. J. The mechanical behavior of skin: Structures and models for the finite element analysis. Computers & Structures. 2017;190:75-107.
  • Ninan N, Muthiah M, Park I. K, Wong T. W, Thomas S, Grohens Y. Natural polymer/inorganic material based hybrid scaffolds for skin wound healing. Polymer Reviews. 2015;55(3):453-490.
  • Férnandez-Guarino M, Naharro-Rodriguez J, Bacci S. Disturbances in the skin homeostasis: Wound healing, an undefined process. Cosmetics. 2024;11(3):90.
  • Yan W. C, Davoodi P, Vijayavenkataraman S, Tian Y, Ng W. C, Fuh J. Y, et al. 3D bioprinting of skin tissue: from pre-processing to final product evaluation. Advanced drug delivery reviews. 2018;132:270-295.
  • Sadeghianmaryan A, Ahmadian N, Wheatley S, Sardroud H. A, Nasrolla, S. A. S, Naseri E, et al. Advancements in 3D-printable polysaccharides, proteins, and synthetic polymers for wound dressing and skin scaffolding–a review. International Journal of Biological Macromolecules. 2024;266(1):131207.
  • Supp D. M, Boyce S. T. Engineered skin substitutes: practices and potentials. Clinics in dermatology. 2005;23(4):403-412.
  • Sangha M. S, Deroide F, Meys R. Wound healing, scarring and management. Clinical and Experimental Dermatology. 2024;49(4):325-336.
  • Li A, Ma B, Hua S, Ping R, Ding L, Tian B, et al. Chitosan-based injectable hydrogel with multifunction for wound healing: A critical review. Carbohydrate Polymers. 2024;333:121952.
  • Zhang W, Liu L, Cheng H, Zhu J, Li X, Ye S, et al. Hydrogel-based dressings designed to facilitate wound healing. Materials Advances. 2024;5(4):1364-1394.
  • Gounden V, Singh M. Hydrogels and wound healing: Current and future prospects. Gels. 2024;10(1):43.
  • Yang Z, Ren K, Chen Y, Quanji X, Cai C, Yin J. Oxygen‐Generating hydrogels as oxygenation therapy for accelerated chronic wound healing. Advanced Healthcare Materials 2024;13(3):2302391.
  • Brumberg V, Astrelina T, Malivanova T, Samoilov A. Modern wound dressings: hydrogel dressings. Biomedicines. 2021;9(9):1235.
  • Olteanu G, Neacșu S. M, Joița F. A, Musuc A. M, Lupu E. C, Ioniță-Mîndrican C. B, et al. Advancements in regenerative hydrogels in skin wound treatment: A comprehensive review. International Journal of Molecular Sciences. 2024;25(7):3849.
  • Peña O. A, Martin P. Cellular and molecular mechanisms of skin wound healing. Nature Reviews Molecular Cell Biology. 2024;25(8):599-616.
  • Luo W, Li Z, Che J, Li X, Zhang H, Tian J, et al. Near-infrared responsive nanocomposite hydrogel dressing with anti-inflammation and pro-angiogenesis for wound healing. ACS Applied Materials & Interfaces. 202416(27):34720-34731.
  • Zahedi P, Rezaeian I, Ranaei‐Siadat S. O, Jafari S. H, Supaphol P. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polymers for Advanced Technologies. 2010;21(2):77-95.
  • Tavakoli S, Klar A. S. Advanced hydrogels as wound dressings. Biomolecules. 2020;10(8):1169.
  • Kaplani K, Koutsi S, Armenis V, Skondra F. G, Karantzelis N, Tsaniras S. C, et al. Wound healing related agents: Ongoing research and perspectives. Advanced Drug Delivery Reviews. 2018;129(1):242-253.
  • Abazari M, Akbari T, Hasani M, Sharifikolouei E, Raoufi M, Foroumadi A, et al. Polysaccharide-based hydrogels containing herbal extracts for wound healing applications. Carbohydrate Polymers. 2022;294:119808.
  • Liang Y, He J, Guo B. Functional hydrogels as wound dressing to enhance wound healing. ACS nano. 2021;15(8):12687-12722.
  • Zheng B. D, Xiao M. T. Polysaccharide-based hydrogel with photothermal effect for accelerating wound healing. Carbohydrate Polymers. 2023;299:120228.
  • Ahmadian Z, Gheybi H, Adeli M. Efficient wound healing by antibacterial property: Advances and trends of hydrogels, hydrogel-metal NP composites and photothermal therapy platforms. Journal of Drug Delivery Science and Technology. 2022;73:103458.
  • Xu H, Che Y, Zhou R, Wang L, Huang J, Kong W, et al. Research progress of natural polysaccharide-based and natural protein-based hydrogels for bacteria-infected wound healing. Chemical Engineering Journal. 2024;496:153803.
  • Uberoi A, McCready-Vangi A, Grice E. A. The wound microbiota: microbial mechanisms of impaired wound healing and infection. Nature Reviews Microbiology. 2024;22(8):507-521.
  • Rezvani Ghomi E, Khalili S, Nouri Khorasani S, Esmaeely Neisiany R, Ramakrishna S. Wound dressings: Current advances and future directions. Journal of Applied Polymer Science. 2019;136(27):47738.
  • Ho T. T. P, Tran H. A, Doan V. K, Maitz J, Li Z, Wise S. G,et al. Natural Polymer‐Based Materials for Wound Healing Applications. Advanced NanoBiomed Research. 2024;4(5):2300131.
  • Ribeiro M, Simões M, Vitorino C, Mascarenhas-Melo F. Hydrogels in cutaneous wound healing: Insights into characterization, properties, formulation and therapeutic potential. Gels. 2024;10(3):188.
  • Koehler J, Brandl F. P, Goepferich A. M. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. European Polymer Journal. 2018;100:1-11.
  • Pan Z, Ye H, Wu D. Recent advances on polymeric hydrogels as wound dressings APL bioengineering. 2021;5(1):011504.
  • Wang W, Ummartyotin S, Narain, R. Advances and challenges on hydrogels for wound dressing. Current opinion in biomedical engineering. 2023;26:100443.
  • Moreira T. D, Martins V. B, da Silva Júnior A. H, Sayer C, de Araújo P. H. H, Immich A. P. S. New insights into biomaterials for wound dressings and care: Challenges and trends. Progress in Organic Coatings. 2024;187:108118.
  • Borbolla-Jiménez F. V, Peña-Corona S. I, Farah S. J, Jiménez-Valdés M. T, Pineda-Pérez E, Romero-Montero A, et al. Films for wound healing fabricated using a solvent casting technique. Pharmaceutics 2023;15(7):1914.
  • de Carvalho A. C. W, Paiva N. F, Demonari I. K, Duarte M. P. F, do Couto R. O, de Freitas O, et al. The potential of films as transmucosal drug delivery systems. Pharmaceutics. 2023;15(11):2583.
  • Yu R, Zhang H, Guo B. Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nano-micro letters. 2022;14(1):1-46.
  • Broussard K. C, Powers J. G. Wound dressings: selecting the most appropriate type. American journal of clinical dermatology. 2013;14(6):449-459.
  • Liang Y, Liang Y, Zhang H, Guo B. Antibacterial biomaterials for skin wound dressing. Asian Journal of Pharmaceutical Sciences. 2022;17(3):353-384.
  • Ding Y, Zhu Z, Zhang X, Wang J. Novel functional dressing materials for intraoral wound care. Advanced Healthcare Materials. 2024;13(23):2400912.
  • Gist S, Tio-Matos I, Falzgraf S, Cameron S, Beebe M. Wound care in the geriatric client. Clinical interventions in aging. 2009;4:269-287.
  • Dong R, Guo B. Smart wound dressings for wound healing. Nano Today. 2021;41:101290.
  • Hargis A, Yaghi M, Bermudez N. M, Gefen A. Foam dressings for wound healing. Current Dermatology Reports. 2024;13(1):28-35.
  • Gefen A, Alves P, Beeckman D, Cullen B, Lázaro-Martínez J. L, Lev-Tov H, et al. How should clinical wound care and management translate to effective engineering standard testing requirements from foam dressings? Mapping the existing gaps and needs. Advances in wound care. 2024;13(1):34-52.
  • Sikka M. P, Bargir J. A, Garg S. Modern developments in burn wound dressing. Research Journal of Textile and Apparel. 2024;29(1):1-20.
  • Varaprasad K, Raghavendra G. M, Jayaramudu T, Yallapu M. M, Sadiku R. A mini review on hydrogels classification and recent developments in miscellaneous applications. Materials Science and Engineering: C. 2017;79:958-971.
  • Jacob S, Nair A. B, Shah J, Sreeharsha N, Gupta S, Shinu P. Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management. Pharmaceutics. 2021;13(3):357.
  • Zhang W, Hu J, Wu H, Lin X, Cai L. Stimuli-responsive hydrogel dressing for wound healing. APL Materials. 2025;13(1):010601.
  • Jafari A, Bhatt K, Niknezhad S. V, Ajji A, Griffith M, Andelfinger G, et al. Synthesis and characterization of photo-cross-linkable quince seed-based hydrogels for soft tissue engineering applications. Carbohydrate Polymers. 2025;352:123140.
  • Zhang Y, Huang Y. Rational design of smart hydrogels for biomedical applications. Frontiers in Chemistry. 2021;8:615665.
  • Markovic M. D, Spasojevic P. M, Pantic O. J, Savic S. I, Savkovic M. M. S, Panic V. V. Status and future scope of hydrogels in wound healing. Journal of Drug Delivery Science and Technology. 2024;98:105903.
  • Wang P, Cai F, Li Y, Yang X, Feng R, Lu H, et al. Emerging trends in the application of hydrogel-based biomaterials for enhanced wound healing: A literature review. International journal of biological macromolecules. 2024;261(1):129300.
  • Jaiswal R, Sherje A. P. Recent advances in biopolymer-based smart hydrogel for wound healing. Journal of Drug Delivery Science and Technology. 2024;99:105990.
  • Munyiri C. N, Madivoli E. S, Kisato J, Gichuki J, Kareru P. G. Biopolymer based hydrogels: crosslinking strategies and their applications. International Journal of Polymeric Materials and Polymeric Biomaterials. 2025;74(7):625-640.
  • Zhao L, Zhou Y, Zhang J, Liang H, Chen X, Tan H. Natural polymer-based hydrogels: From polymer to biomedical applications. Pharmaceutics. 2023;15(10):2514.
  • Hama R, Ulziibayar A, Reinhardt J. W, Watanabe T, Kelly J, Shinoka T. Recent developments in biopolymer-based hydrogels for tissue engineering applications. Biomolecules. 2023;13(2):280.
  • Kolipaka T, Pandey G, Abraham N, Srinivasarao D. A, Raghuvanshi R. S, Rajinikanth P. S, et al. Stimuli-responsive polysaccharide-based smart hydrogels for diabetic wound healing: Design aspects, preparation methods and regulatory perspectives. Carbohydrate polymers. 2024;324:121537.
  • Ghiorghita C. A, Platon I. V, Lazar M. M, Dinu M. V, Aprotosoaie A. C. Trends in polysaccharide-based hydrogels and their role in enhancing the bioavailability and bioactivity of phytocompounds. Carbohydrate polymers. 2024;334:122033.
  • Zhang C. W, Si M, Chen C, He P, Fei Z, Xu N, et al. Hierarchical Engineering for Biopolymer‐based Hydrogels with Tailored Property and Functionality. Advanced Materials. 2025;2414897.
  • Zubair M, Hussain A, Shahzad S, Arshad M, Ullah A. Emerging trends and challenges in polysaccharide derived materials for wound care applications: A review. International Journal of Biological Macromolecules. 2024;270(1):132048.
  • Patel D. K, Jung E, Priya S, Won S. Y, Han S. S. Recent advances in biopolymer-based hydrogels and their potential biomedical applications. Carbohydrate polymers. 2024;323:121408.
  • Zhang H, Li Y, Fu Y, Jiao H, Wang X, Wang Q, et al. A structure-functionality insight into the bioactivity of microbial polysaccharides toward biomedical applications: A review. Carbohydrate Polymers. 2024;335:122078.
  • Abdl Aali R. A. K, Al-Sahlany S. T. G. Gellan gum as a unique microbial polysaccharide: Its characteristics, synthesis, and current application trends. Gels. 2024;10(3):183.
  • Yermagambetova A, Tazhibayeva S, Takhistov P, Tyussyupova B, Tapia-Hernández J. A, Musabekov K. Microbial Polysaccharides as Functional Components of Packaging and Drug Delivery Applications. Polymers. 2024;16(20): 2854.
  • Ghosh S, Lahiri D, Nag M, Dey A, Sarkar T, Pathak S. K, et al. Bacterial biopolymer: Its role in pathogenesis to effective biomaterials. Polymers. 2021;13(8):1242.
  • Kaur R, Pathak L, Vyas P. Biobased polymers of plant and microbial origin and their applications-a review. Biotechnology for Sustainable Materials. 2024;1(1):13.
  • Kumar P, Kumar B, Gihar S, Kumar D. Review on emerging trends and challenges in the modification of xanthan gum for various applications. Carbohydrate Research. 2024;538:109070.
  • Ma C, Du L, Guo Y, Yang X. A review of polysaccharide hydrogels as materials for skin repair and wound dressing: Construction, functionalization and challenges. International Journal of Biological Macromolecules. 2024;280(3):135838.
  • Patel J, Maji B, Moorthy N. H. N, Maiti S. Xanthan gum derivatives: Review of synthesis, properties and diverse applications. RSC advances. 2020;10(45):27103-27136.
  • Wu Q, Lu Z, Wang L, Peng S, Wang Z, Qiu Y, et al. Konjac glucomannan/xanthan gum hydrogels loaded with metal-phenolic networks encapsulated probiotic to promote infected wound healing. Carbohydrate Polymers. 2025;353:123243.
  • Cheng Y, Ling J, Ouyang X. K, Wang N. Curdlan/xanthan gum-based composite hydrogel with near-infrared irradiation responsive properties for infected wounds healing. International Journal of Biological Macromolecules. 2025;284(2):138199.
  • Dahiya D, Nigam P. S. Dextran of diverse molecular-configurations used as a blood-plasma substitute, drug-delivery vehicle and food additive biosynthesized by Leuconostoc, Lactobacillus and Weissella. Applied Sciences. 2023;13(22):12526.
  • Díaz-Montes E. Dextran: sources, structures, and properties. Polysaccharides. 2021;2(3):554-565.
  • Zang J, Yin Z, Ouyang H, Liu Y, Liu Z, Yin Z. Advances in the preparation, applications, challenges, and future trends of polysaccharide‐based gels as food‐grade delivery systems for probiotics: A review. Comprehensive Reviews in Food Science and Food Safety. 2025;24(1):e70111.
  • Petrovici A. R, Pinteala M, Simionescu N. Dextran formulations as effective delivery systems of therapeutic agents. Molecules. 2023;28(3):1086.
  • Sepe F, Valentino A, Marcolongo L, Petillo O, Calarco A, Margarucci S, et al. Polysaccharide Hydrogels as Delivery Platforms for Natural Bioactive Molecules: From Tissue Regeneration to Infection Control. Gels. 2025;11(3):198.
  • Zhao Y, Jalili S. Dextran, as a biological macromolecule for the development of bioactive wound dressing materials: A review of recent progress and future perspectives. International Journal of Biological Macromolecules. 2022;(207):666-682.
  • Zhao J, Zhu H, Xu T, Xu S, Wang Y, Hou Y, et al. Self-Healing Oxidized Dextran/Sodium Alginate Hydrogel Dressing with Hemostatic Activity Speeds Up Wound Healing in Burn Injuries. ACS Applied Materials & Interfaces. 2025;17(2):2940–2951
  • Li M, Tang H, Geng X, Zhou J, Mou S, Li C, et al. All-natural hydrogel composed of carboxymethyl chitosan and oxidized dextran for promoting wound healing by immune-microenvironment regulation. Carbohydrate Polymers. 2025;347:122731.
  • Gomes D, Batista-Silva J. P, Sousa A, Passarinha L. A. Progress and opportunities in Gellan gum-based materials: A review of preparation, characterization and emerging applications. Carbohydrate Polymers. 2023;311:120782.
  • Lalebeigi F, Alimohamadi A, Afarin S, Aliabadi H. A. M, Mahdavi M, Farahbakhshpour F, et al. Recent advances on biomedical applications of gellan gum: A review. Carbohydrate Polymers. 2024;334:122008.
  • Putro J. N, Soetaredjo F. E, Lunardi V. B, Irawaty W, Yuliana M, Santoso S. P, et al. Polysaccharides gums in drug delivery systems: A review. International Journal of Biological Macromolecules. 2023;253(4):127020.
  • Mahmod Z, Zulkifli M. F, Masimen M. A. A, Ismail W. I. W, Sharifudin M. A, Amin K. A. M. Investigating the efficacy of gellan gum hydrogel films infused with Acacia stingless bee honey in wound healing. International Journal of Biological Macromolecules. 2025;296:139753.
There are 96 citations in total.

Details

Primary Language English
Subjects Signal Transduction, Clinical Sciences (Other)
Journal Section Review
Authors

Merve İlayda Doğan 0009-0004-1304-6769

Derya Önal Darılmaz 0000-0003-3684-3512

Submission Date April 8, 2025
Acceptance Date September 30, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 14 Issue: 4

Cite

APA Doğan, M. İ., & Önal Darılmaz, D. (2025). Hydrogels Synthesized from Natural Bacterial Polysaccharides with Therapeutic Effects on Cutaneous Wounds. Türk Doğa Ve Fen Dergisi, 14(4), 260-270. https://doi.org/10.46810/tdfd.1671294
AMA Doğan Mİ, Önal Darılmaz D. Hydrogels Synthesized from Natural Bacterial Polysaccharides with Therapeutic Effects on Cutaneous Wounds. TJNS. December 2025;14(4):260-270. doi:10.46810/tdfd.1671294
Chicago Doğan, Merve İlayda, and Derya Önal Darılmaz. “Hydrogels Synthesized from Natural Bacterial Polysaccharides With Therapeutic Effects on Cutaneous Wounds”. Türk Doğa Ve Fen Dergisi 14, no. 4 (December 2025): 260-70. https://doi.org/10.46810/tdfd.1671294.
EndNote Doğan Mİ, Önal Darılmaz D (December 1, 2025) Hydrogels Synthesized from Natural Bacterial Polysaccharides with Therapeutic Effects on Cutaneous Wounds. Türk Doğa ve Fen Dergisi 14 4 260–270.
IEEE M. İ. Doğan and D. Önal Darılmaz, “Hydrogels Synthesized from Natural Bacterial Polysaccharides with Therapeutic Effects on Cutaneous Wounds”, TJNS, vol. 14, no. 4, pp. 260–270, 2025, doi: 10.46810/tdfd.1671294.
ISNAD Doğan, Merve İlayda - Önal Darılmaz, Derya. “Hydrogels Synthesized from Natural Bacterial Polysaccharides With Therapeutic Effects on Cutaneous Wounds”. Türk Doğa ve Fen Dergisi 14/4 (December2025), 260-270. https://doi.org/10.46810/tdfd.1671294.
JAMA Doğan Mİ, Önal Darılmaz D. Hydrogels Synthesized from Natural Bacterial Polysaccharides with Therapeutic Effects on Cutaneous Wounds. TJNS. 2025;14:260–270.
MLA Doğan, Merve İlayda and Derya Önal Darılmaz. “Hydrogels Synthesized from Natural Bacterial Polysaccharides With Therapeutic Effects on Cutaneous Wounds”. Türk Doğa Ve Fen Dergisi, vol. 14, no. 4, 2025, pp. 260-7, doi:10.46810/tdfd.1671294.
Vancouver Doğan Mİ, Önal Darılmaz D. Hydrogels Synthesized from Natural Bacterial Polysaccharides with Therapeutic Effects on Cutaneous Wounds. TJNS. 2025;14(4):260-7.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.