Synthesis and Characterization of Erbia - Doped Yttria - Stabilized Ceria - Zirconia Based Nanoceramics
Year 2025,
Volume: 14 Issue: 4, 158 - 164, 30.12.2025
Şenol Durmuşoğlu
,
Elif Esra Altuner
Abstract
Erbia doped yttria-stabilized ceria-zirconia based nanocrystalline ceramics were fabricated via the conversion technique from polymer to ceramic by metal acetate as preceramic hybrid polymer solutions. Samples were characterized by Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, and X-ray Diffraction. Nanocrystallite size was evaluated via the Scherrer formula. The smallest lattice constant and crystallite size were acquired for the sample comprising Zr (74 %), Y (11 %), Ce (10 %), and Er (5 %) as the ratio of atomic weight. Scanning Electron Microscopy results indicate that increase in yttria content increased the agglomeration of the grains
References
-
Bernal S., Kaspar J. , Trovarelli A. Recent Progress in Catalysis by Ceria and Related Compounds, Catal. Today. 1999; 50:173.
-
Centeno M.A., Paulis M., Montes M., Odriozola J.A. Catalytic combustion of volatile organic compounds on Au/CeO2/Al2O3 and Au/Al2O3 catalysts, Appl. Catal. A-Gen. 2002; 234(1-2):65-67.
-
Shan W., Liu F., Yu Y., He H. The use of ceria for the selective catalytic reduction of NOx with NH3, Chineese Journal of Catalysis. 20014; 35(8): 1251-1259.
-
Grover V., Tyagi A.K. Investigations of Ternary Phase Relations in a CeO2–Gd2O3–ThO2 System, J. Am. Ceram. Soc. 2006; 89(9):2917-2921.
-
Somers J., Papaioannou, D., McGinley J., Sommer, J. Safety assessment of plutonium mixed oxide fuel irradiated up to 37.7 GW day tonne−1, Journal of Nuclear Materials. 2013;437(1-3):303-309.
-
Suda A., Yamamura K., Morikawa A.,Nagai Y., Sobukawa Y., Ukyo Y., et al. Atmospheric pressure solvothermal synthesis of ceria–zirconia solid solutions and their large oxygen storage capacity, Journal of Materials Sciences, 2008; 43: 2258–2262..
-
Uslu I., Aytimur A., Ozturk M.K., Kocyigit S. Synthesis and characterization of neodymium doped ceria nanocrystalline ceramic structures, Ceram. Int., 2012; 38(6): 4943-4951.
-
Chavan S.V., Mathews M.D., Tyagi A.K. Phase relations and thermal expansion studies in the CeO2–NdO1.5 system, Materials Research Bulletin. 2005; 40(9): 1558-1568.
-
Degueldre C., Paratte J.M. Concepts for an inert matrix fuel, an overview, J. Nucl. Mater. 1999; 274;(1-2):1-6.
-
Stan M., Armstrong T.J., Butt D.P., Wallace T.C., Park Y.S., Haertling C.L., Hartmann T., Hanrahan R.J., Stability of the Perovskite Compounds in the Ce-Ga-O and Pu-Ga-O Systems, J. Am. Ceram. Soc. 2002; 85(11):2811-2816.
-
Chandramouli V., Anthonysamy S., Rao P.R.V., Combustion synthesis of thoria – a feasibility study, J. Nucl. Mater. 1999; 265:255-261.
-
Uslu I., Aytimur A., Production and characterization of poly(vinyl alcohol)/poly(vinylpyrrolidone) iodine/poly(ethylene glycol) electrospun fibers with (hydroxypropyl)methyl cellulose and aloe vera as promising material for wound dressing, J. Appl. Polym. Sci. 2012; 124(4):3520-3524.
-
Andrade G., . Barbosa-Stancioli E.F, Mansur A.A.P., Vasconcelos W.L., Mansur H.S. Design of novel hybrid organic-inorganic nanostructured biomaterials for immunoassay applications, Biomed. Mater. 2006;1(4):221-34.
-
Aytimur A., Uslu I., Kocyigit S., Ozcan F. Magnesia stabilized zirconia doped with boron, ceria and gadolinia Ceram. Int. 2012; 38: 3851.
-
Alvarado E., Torres-Martinez L.M., Fuentes A.F., Quintana P., Preparation and characterization of MgO powders obtained from different magnesium salts and the mineral dolomite, Polyhedron 2000; 19(22-23): 2345-2351.
-
Ding Y., Zhang G.T., Wu H., Hai B., Wang L.B., Qian Y.T., Nanoscale Magnesium Hydroxide and Magnesium Oxide Powders: Control over Size, Shape, and Structure via Hydrothermal Synthesis, Chem. Mater. 2001; 13(2): 435.
-
Karunagaran B., Kumar R.T.R., Mangalaraj D., Narayandass S.K., Rao G.M., Influence of thermal annealing on the composition and structural parameters of DC magnetron sputtered titanium dioxide thin films, Cryst. Res. Technol. 2002(37):1285.
-
Klug P.H., Alexander L.E., X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, John Wiley & Sons, New York, 1974(1).
-
Prasad N., Varma, K.B.R. Nanocrystallization of SrBi2Nb2O9 from glasses in the system Li2B4O7 SrO Bi2O3 Nb2O5, Mater. Sci. Eng. B-Adv. 2002; 90(3): 246-253.
-
Suryanarayana C., Norton M.G., X-ray diffraction a practical approach, X-ray Diffraction. Plenum Press, New York, 1998; 1:3-19.
-
Vishunumurthy G., Bhaskar A., A Comprehensive Study on the Impact of Aluminum Doping on X-ray Diffraction Peak Profile Analysis, Structural, Morphological, and Optical Properties of ZnO Nanoparticles Synthesized by Sol–Gel Auto-Combustion, Journal of Electronic Materials. 2025; 54: 2146–2166.
-
Çılğın E. Synergistic effects of SWCNT and MgO nanoparticle additives on engine performance and emissions: a laboratory analysis approach, Biofuels. 2025; 1759-7277.
-
Kaya, N. Analysis of the physical properties of MgB2 superconductor with Zn(NO3)2·6H2O, Journal of Materials Science: Materials in Electronics. 2025; 36(5).
Erbia - Katkılı İtriya - Stabilizeli Serya - Zirkonyum Bazlı Nanoseramiklerın Sentezi ve Karakterizasyonu
Year 2025,
Volume: 14 Issue: 4, 158 - 164, 30.12.2025
Şenol Durmuşoğlu
,
Elif Esra Altuner
Abstract
Erbia- katkılı itriya - stabilizeli seryum-zirkonyum bazlı nanokristalin seramikler, ön seramik hibrit polimer çözeltileri olarak metal asetat ile polimerden seramiğe dönüşüm tekniği ile üretildi. Numuneler Taramalı Elektron Mikroskobu, Fourier Dönüşümlü Kızılötesi Spektroskopisi ve X-ışını Kırınımı ile karakterize edildi. Nanokristalit boyutu Scherrer formülü ile değerlendirildi. En küçük kafes sabiti ve kristalit boyutu, atom ağırlığına oran olarak Zr (%74), Y (%11), Ce (%10) ve Er (%5) içeren numune için elde edildi. Taramalı Elektron Mikroskobu sonuçları itriya içeriğindeki artışın taneciklerin aglomerasyonunu artırdığını göstermektedir.
References
-
Bernal S., Kaspar J. , Trovarelli A. Recent Progress in Catalysis by Ceria and Related Compounds, Catal. Today. 1999; 50:173.
-
Centeno M.A., Paulis M., Montes M., Odriozola J.A. Catalytic combustion of volatile organic compounds on Au/CeO2/Al2O3 and Au/Al2O3 catalysts, Appl. Catal. A-Gen. 2002; 234(1-2):65-67.
-
Shan W., Liu F., Yu Y., He H. The use of ceria for the selective catalytic reduction of NOx with NH3, Chineese Journal of Catalysis. 20014; 35(8): 1251-1259.
-
Grover V., Tyagi A.K. Investigations of Ternary Phase Relations in a CeO2–Gd2O3–ThO2 System, J. Am. Ceram. Soc. 2006; 89(9):2917-2921.
-
Somers J., Papaioannou, D., McGinley J., Sommer, J. Safety assessment of plutonium mixed oxide fuel irradiated up to 37.7 GW day tonne−1, Journal of Nuclear Materials. 2013;437(1-3):303-309.
-
Suda A., Yamamura K., Morikawa A.,Nagai Y., Sobukawa Y., Ukyo Y., et al. Atmospheric pressure solvothermal synthesis of ceria–zirconia solid solutions and their large oxygen storage capacity, Journal of Materials Sciences, 2008; 43: 2258–2262..
-
Uslu I., Aytimur A., Ozturk M.K., Kocyigit S. Synthesis and characterization of neodymium doped ceria nanocrystalline ceramic structures, Ceram. Int., 2012; 38(6): 4943-4951.
-
Chavan S.V., Mathews M.D., Tyagi A.K. Phase relations and thermal expansion studies in the CeO2–NdO1.5 system, Materials Research Bulletin. 2005; 40(9): 1558-1568.
-
Degueldre C., Paratte J.M. Concepts for an inert matrix fuel, an overview, J. Nucl. Mater. 1999; 274;(1-2):1-6.
-
Stan M., Armstrong T.J., Butt D.P., Wallace T.C., Park Y.S., Haertling C.L., Hartmann T., Hanrahan R.J., Stability of the Perovskite Compounds in the Ce-Ga-O and Pu-Ga-O Systems, J. Am. Ceram. Soc. 2002; 85(11):2811-2816.
-
Chandramouli V., Anthonysamy S., Rao P.R.V., Combustion synthesis of thoria – a feasibility study, J. Nucl. Mater. 1999; 265:255-261.
-
Uslu I., Aytimur A., Production and characterization of poly(vinyl alcohol)/poly(vinylpyrrolidone) iodine/poly(ethylene glycol) electrospun fibers with (hydroxypropyl)methyl cellulose and aloe vera as promising material for wound dressing, J. Appl. Polym. Sci. 2012; 124(4):3520-3524.
-
Andrade G., . Barbosa-Stancioli E.F, Mansur A.A.P., Vasconcelos W.L., Mansur H.S. Design of novel hybrid organic-inorganic nanostructured biomaterials for immunoassay applications, Biomed. Mater. 2006;1(4):221-34.
-
Aytimur A., Uslu I., Kocyigit S., Ozcan F. Magnesia stabilized zirconia doped with boron, ceria and gadolinia Ceram. Int. 2012; 38: 3851.
-
Alvarado E., Torres-Martinez L.M., Fuentes A.F., Quintana P., Preparation and characterization of MgO powders obtained from different magnesium salts and the mineral dolomite, Polyhedron 2000; 19(22-23): 2345-2351.
-
Ding Y., Zhang G.T., Wu H., Hai B., Wang L.B., Qian Y.T., Nanoscale Magnesium Hydroxide and Magnesium Oxide Powders: Control over Size, Shape, and Structure via Hydrothermal Synthesis, Chem. Mater. 2001; 13(2): 435.
-
Karunagaran B., Kumar R.T.R., Mangalaraj D., Narayandass S.K., Rao G.M., Influence of thermal annealing on the composition and structural parameters of DC magnetron sputtered titanium dioxide thin films, Cryst. Res. Technol. 2002(37):1285.
-
Klug P.H., Alexander L.E., X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, John Wiley & Sons, New York, 1974(1).
-
Prasad N., Varma, K.B.R. Nanocrystallization of SrBi2Nb2O9 from glasses in the system Li2B4O7 SrO Bi2O3 Nb2O5, Mater. Sci. Eng. B-Adv. 2002; 90(3): 246-253.
-
Suryanarayana C., Norton M.G., X-ray diffraction a practical approach, X-ray Diffraction. Plenum Press, New York, 1998; 1:3-19.
-
Vishunumurthy G., Bhaskar A., A Comprehensive Study on the Impact of Aluminum Doping on X-ray Diffraction Peak Profile Analysis, Structural, Morphological, and Optical Properties of ZnO Nanoparticles Synthesized by Sol–Gel Auto-Combustion, Journal of Electronic Materials. 2025; 54: 2146–2166.
-
Çılğın E. Synergistic effects of SWCNT and MgO nanoparticle additives on engine performance and emissions: a laboratory analysis approach, Biofuels. 2025; 1759-7277.
-
Kaya, N. Analysis of the physical properties of MgB2 superconductor with Zn(NO3)2·6H2O, Journal of Materials Science: Materials in Electronics. 2025; 36(5).