Research Article
BibTex RIS Cite

Production of Cellulase Enzyme by Pseudomonas reinekei SL7 Isolated from Paper Mill Wastes

Year 2025, Volume: 14 Issue: 4, 15 - 21, 30.12.2025
https://doi.org/10.46810/tdfd.1750168

Abstract

The constantly growing energy requirements of today’s society and swiftly depleting fossil fuels indicate a need for a renewable alternatives. Cellulose is regarded as an alternative energy source and has recently become significant around the globe. Its obstinate structure must be degraded to utilize this valuable resource. Cellulose-degrading microorganisms are of great importance in the efficient use of cellulose resources. Screening of natural cellulolytic microorganisms and optimization of fermentation conditions are the focal points of research studies. Waste from paper mills is considered to be one of the main sources of cellulolytic bacteria. In the current study, isolation of cellulolytic bacteria was performed from paper mill wastes. After the determining the isolate showing the best cellulase activity, it was identified by sequencing the 16S rRNA gene region. According to the sequence analysis, it was detected that the isolate SL7 showed similarity to Pseudomonas reinekei with the rate of 99%. By optimizing the process parameters, the highest production of cellulase was obtained at temperature of 30 ⁰C, pH 7, carboxymethyl cellulose (CMC) concentration of 20 g/L, yeast extract concentration of 2 g/L and incubation time of 60 h. Under optimized conditions, the enzyme activity was detected to be 34.2 U/mL.

References

  • Vieira S, Barros MV, Sydney ACN, Piekarski CM, de Francisco AC, Vandenberghe LPdS, et al. Sustainability of sugarcane lignocellulosic biomass pretreatment for the production of bioethanol. Bioresour Technol. 2020; 299: 122635.
  • Liu X. Microbial technology for the sustainable development of energy and environment. Biotechnol Rep. 2020; 27: e00486.
  • Al-Battashi HS, Annamalai N, Sivakumar N, Al-Bahry S, Tripathi BN, Nguyen QD, et al. Lignocellulosic biomass (LCB): a potential alternative biorefinery feedstock for polyhydroxyalkanoates production. Rev Environ Sci Biotechnol. 2019; 18(1): 183–205.
  • Malik WA, Khan HM, Javed S. Bioprocess optimization for enhanced production of bacterial cellulase and hydrolysis of sugarcane bagasse. Bioenerg Res. 2021; 1-14
  • Sticklen MB. Retraction: plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet. 2010; 11(4): 308.
  • Sutaoney P, Rai SN, Sinha S, Choudhary R, Gupta AK, Singh SK, et al. Current perspective in research and industrial applications of microbial cellulases. Int J Biol Macromol. 2024; 130639.
  • Bhardwaj N, Kumar B, Agrawal K, Verma P. Current perspective on production and applications of microbial cellulases: a review. Bioresour Bioprocess. 2021; 8: 1-34.
  • Lahiri D, Nag M, Mukherjee D, Garai S, Banerjee R, Ray RR. Recent trends in approaches for optimization of process parameters for the production of microbial cellulase from wastes. Environ Sustain. 2021; 4(2): 273-84.
  • Juturu V, Wu JC. Microbial cellulases: Engineering, production and applications. Renew Sustain Energy Rev. 2014; 33: 188-203.
  • Wang W, Kang L, Lee YY. Production of cellulase from kraft paper mill sludge by Trichoderma reesei rut C-30. Appl Biochem Biotechnol. 2010; 161: 382-394.
  • Baltaci MO. Enhancement of cellulase production by co-culture of Streptomyces ambofaciens OZ2 and Cytobacillus oceanisediminis OZ5 isolated from rumen samples. Biocatal Biotransfor. 2022; 40(2): 144-52.
  • Demir Y, Dikbaş N, Beydemir Ş. Purification and biochemical characterization of phytase enzyme from Lactobacillus coryniformis (MH121153). Mol Biotechnol. 2018; 60(11): 783–790.
  • Hegazy WK, Abdel-Salam MS, Hussain AA, Abo-Ghalia HH, Hafez SS. Improvement of cellulose degradation by cloning of endo-β-1, 3-1, 4 glucanase (bgls) gene from Bacillus subtilis BTN7A strain. J Genet Eng Biotechnol. 2018; 16(2): 281–285.
  • Hussain AA, Abdel-Salam MS, Abo-Ghalia HH, Hegazy WK, Hafez SS. Optimization and molecular identification of novel cellulose degrading bacteria isolated from Egyptian environment. J Genet Eng Biotechnol. 2017; 15(1): 77–85.
  • Tuysuz E, Ozkan H, Arslan NP, Adiguzel A, Baltaci MO, Taskin M. Bioconversion of waste sheep wool to microbial peptone by Bacillus licheniformis EY2. Biofuel Bioprod Biorefin. 2021; 15(5): 1372-84.
  • Aggarwal NK, Goyal V, Saini A, Yadav A, Gupta R. Enzymatic saccharification of pretreated rice straw by cellulases from Aspergillus niger BK01. 3 Biotech. 2017; 7(3): 1–10.
  • Cheng CL, Chang JS. Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas sp. CL3 for fermentative hydrogen production. Bioresour Technol. 2011; 102(18): 8628-34.
  • Zhang J, Hou H, Chen G, Wang S, Zhang J. The isolation and functional identification on producing cellulase of Pseudomonas mendocina. Bioengineered. 2016; 7(5): 382-91.
  • Menendez E, Ramírez-Bahena MH, Fabryova A, Igual JM, Benada O, Mateos, PF, et al. Pseudomonas coleopterorum sp. nov., a cellulase-producing bacterium isolated from the bark beetle Hylesinus fraxini. Int J Syst Evol Microbiol. 2015; 2852-2858.
  • Ilić N, Milić M, Beluhan S, Dimitrijević-Branković S. Cellulases: from lignocellulosic biomass to improved production. Energies. 2023; 16(8): 3598.
  • Borthakur I, Devi RP, Karthikeyan S, Ramesh D, Murugananthi D. Microbial Cellulase Production: Current Technologies and Future Prospects. J Pure Appl Microbiol. 2024; 18(4).
  • Castañeda-Cisneros YE, Mercado-Flores Y, Anducho-Reyes MA, Álvarez-Cervantes J, Ponce-Lira B, Evangelista-Martínez Z, Téllez-Jurado A. Isolation and selection of Streptomyces species from semi-arid agricultural soils and their potential as producers of xylanases and cellulases. Curr Microbio. 2020; 77(11):3460-72.
  • Sinjaroonsak S, Chaiyaso T, H-Kittikun A. Optimization of cellulase and xylanase productions by Streptomyces thermocoprophilus TC13W using low cost pretreated oil palm empty fruit bunch. Waste Biomass Valori. 2020;11(8):3925-36.
  • Hu Y, Du C, Pensupa N, Lin CS. Optimisation of fungal cellulase production from textile waste using experimental design. Process Saf Environ Prot. 2018; 118:133-42.
  • Pramanik SK, Mahmud S, Paul GK, Jabin T, Naher K, Uddin MS, Zaman S, Saleh MA. Fermentation optimization of cellulase production from sugarcane bagasse by Bacillus pseudomycoides and molecular modeling study of cellulase. Curr res microb sci. 2021; 2:100013.

Kağıt Fabrikası Atıklarından İzole Edilen Pseudomonas reinekei SL7 Suşu ile Selülaz Enzimi Üretimi

Year 2025, Volume: 14 Issue: 4, 15 - 21, 30.12.2025
https://doi.org/10.46810/tdfd.1750168

Abstract

Günümüz toplumunun sürekli artan enerji gereksinimleri ve hızla tükenen fosil yakıtlar, yenilenebilir alternatiflere olan ihtiyacı göstermektedir. Selüloz alternatif bir enerji kaynağı olarak kabul edilmekte ve son zamanlarda dünya çapında önemli hale gelmiştir. Bu değerli kaynağın kullanılabilmesi için inatçı yapısının parçalanması gerekmektedir. Selüloz parçalayan mikroorganizmalar, selüloz kaynaklarının verimli kullanımında büyük öneme sahiptir. Doğal selülolitik mikroorganizmaların taranması ve fermantasyon koşullarının optimizasyonu araştırma çalışmalarının odak noktalarıdır. Kağıt fabrikası atıkları, selülolitik bakterilerin başlıca kaynaklarından biri olarak düşünülmektedir. Mevcut çalışmada, kağıt fabrikası atıklarından selülolitik bakteri izolasyonu gerçekleştirilmiştir. En iyi selülaz aktivitesini gösteren izolat belirlendikten sonra, 16S rRNA gen bölgesinin sekans analizi ile tanımlanmıştır. Dizi analizine göre, SL7 kodlu izolatın Pseudomonas reinekei'ye %99 oranında benzerlik gösterdiği tespit edilmiştir. Proses parametrelerinin optimize edilmesiyle en yüksek selülaz üretimi 30 ⁰C sıcaklık, pH 7, 20 g/L karboksimetil selüloz (CMC) konsantrasyonu, 2 g/L maya ekstraktı konsantrasyonu ve 60 saatlik inkübasyon süresinde elde edilmiştir. Optimize edilmiş koşullar altında enzim aktivitesinin 34,2 U/mL olduğu tespit edilmiştir.

References

  • Vieira S, Barros MV, Sydney ACN, Piekarski CM, de Francisco AC, Vandenberghe LPdS, et al. Sustainability of sugarcane lignocellulosic biomass pretreatment for the production of bioethanol. Bioresour Technol. 2020; 299: 122635.
  • Liu X. Microbial technology for the sustainable development of energy and environment. Biotechnol Rep. 2020; 27: e00486.
  • Al-Battashi HS, Annamalai N, Sivakumar N, Al-Bahry S, Tripathi BN, Nguyen QD, et al. Lignocellulosic biomass (LCB): a potential alternative biorefinery feedstock for polyhydroxyalkanoates production. Rev Environ Sci Biotechnol. 2019; 18(1): 183–205.
  • Malik WA, Khan HM, Javed S. Bioprocess optimization for enhanced production of bacterial cellulase and hydrolysis of sugarcane bagasse. Bioenerg Res. 2021; 1-14
  • Sticklen MB. Retraction: plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet. 2010; 11(4): 308.
  • Sutaoney P, Rai SN, Sinha S, Choudhary R, Gupta AK, Singh SK, et al. Current perspective in research and industrial applications of microbial cellulases. Int J Biol Macromol. 2024; 130639.
  • Bhardwaj N, Kumar B, Agrawal K, Verma P. Current perspective on production and applications of microbial cellulases: a review. Bioresour Bioprocess. 2021; 8: 1-34.
  • Lahiri D, Nag M, Mukherjee D, Garai S, Banerjee R, Ray RR. Recent trends in approaches for optimization of process parameters for the production of microbial cellulase from wastes. Environ Sustain. 2021; 4(2): 273-84.
  • Juturu V, Wu JC. Microbial cellulases: Engineering, production and applications. Renew Sustain Energy Rev. 2014; 33: 188-203.
  • Wang W, Kang L, Lee YY. Production of cellulase from kraft paper mill sludge by Trichoderma reesei rut C-30. Appl Biochem Biotechnol. 2010; 161: 382-394.
  • Baltaci MO. Enhancement of cellulase production by co-culture of Streptomyces ambofaciens OZ2 and Cytobacillus oceanisediminis OZ5 isolated from rumen samples. Biocatal Biotransfor. 2022; 40(2): 144-52.
  • Demir Y, Dikbaş N, Beydemir Ş. Purification and biochemical characterization of phytase enzyme from Lactobacillus coryniformis (MH121153). Mol Biotechnol. 2018; 60(11): 783–790.
  • Hegazy WK, Abdel-Salam MS, Hussain AA, Abo-Ghalia HH, Hafez SS. Improvement of cellulose degradation by cloning of endo-β-1, 3-1, 4 glucanase (bgls) gene from Bacillus subtilis BTN7A strain. J Genet Eng Biotechnol. 2018; 16(2): 281–285.
  • Hussain AA, Abdel-Salam MS, Abo-Ghalia HH, Hegazy WK, Hafez SS. Optimization and molecular identification of novel cellulose degrading bacteria isolated from Egyptian environment. J Genet Eng Biotechnol. 2017; 15(1): 77–85.
  • Tuysuz E, Ozkan H, Arslan NP, Adiguzel A, Baltaci MO, Taskin M. Bioconversion of waste sheep wool to microbial peptone by Bacillus licheniformis EY2. Biofuel Bioprod Biorefin. 2021; 15(5): 1372-84.
  • Aggarwal NK, Goyal V, Saini A, Yadav A, Gupta R. Enzymatic saccharification of pretreated rice straw by cellulases from Aspergillus niger BK01. 3 Biotech. 2017; 7(3): 1–10.
  • Cheng CL, Chang JS. Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas sp. CL3 for fermentative hydrogen production. Bioresour Technol. 2011; 102(18): 8628-34.
  • Zhang J, Hou H, Chen G, Wang S, Zhang J. The isolation and functional identification on producing cellulase of Pseudomonas mendocina. Bioengineered. 2016; 7(5): 382-91.
  • Menendez E, Ramírez-Bahena MH, Fabryova A, Igual JM, Benada O, Mateos, PF, et al. Pseudomonas coleopterorum sp. nov., a cellulase-producing bacterium isolated from the bark beetle Hylesinus fraxini. Int J Syst Evol Microbiol. 2015; 2852-2858.
  • Ilić N, Milić M, Beluhan S, Dimitrijević-Branković S. Cellulases: from lignocellulosic biomass to improved production. Energies. 2023; 16(8): 3598.
  • Borthakur I, Devi RP, Karthikeyan S, Ramesh D, Murugananthi D. Microbial Cellulase Production: Current Technologies and Future Prospects. J Pure Appl Microbiol. 2024; 18(4).
  • Castañeda-Cisneros YE, Mercado-Flores Y, Anducho-Reyes MA, Álvarez-Cervantes J, Ponce-Lira B, Evangelista-Martínez Z, Téllez-Jurado A. Isolation and selection of Streptomyces species from semi-arid agricultural soils and their potential as producers of xylanases and cellulases. Curr Microbio. 2020; 77(11):3460-72.
  • Sinjaroonsak S, Chaiyaso T, H-Kittikun A. Optimization of cellulase and xylanase productions by Streptomyces thermocoprophilus TC13W using low cost pretreated oil palm empty fruit bunch. Waste Biomass Valori. 2020;11(8):3925-36.
  • Hu Y, Du C, Pensupa N, Lin CS. Optimisation of fungal cellulase production from textile waste using experimental design. Process Saf Environ Prot. 2018; 118:133-42.
  • Pramanik SK, Mahmud S, Paul GK, Jabin T, Naher K, Uddin MS, Zaman S, Saleh MA. Fermentation optimization of cellulase production from sugarcane bagasse by Bacillus pseudomycoides and molecular modeling study of cellulase. Curr res microb sci. 2021; 2:100013.
There are 25 citations in total.

Details

Primary Language English
Subjects Enzymes
Journal Section Research Article
Authors

Mehmet Akif Ömeroğlu 0000-0003-0694-2480

Submission Date July 24, 2025
Acceptance Date September 30, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 14 Issue: 4

Cite

APA Ömeroğlu, M. A. (2025). Production of Cellulase Enzyme by Pseudomonas reinekei SL7 Isolated from Paper Mill Wastes. Türk Doğa Ve Fen Dergisi, 14(4), 15-21. https://doi.org/10.46810/tdfd.1750168
AMA Ömeroğlu MA. Production of Cellulase Enzyme by Pseudomonas reinekei SL7 Isolated from Paper Mill Wastes. TJNS. December 2025;14(4):15-21. doi:10.46810/tdfd.1750168
Chicago Ömeroğlu, Mehmet Akif. “Production of Cellulase Enzyme by Pseudomonas Reinekei SL7 Isolated from Paper Mill Wastes”. Türk Doğa Ve Fen Dergisi 14, no. 4 (December 2025): 15-21. https://doi.org/10.46810/tdfd.1750168.
EndNote Ömeroğlu MA (December 1, 2025) Production of Cellulase Enzyme by Pseudomonas reinekei SL7 Isolated from Paper Mill Wastes. Türk Doğa ve Fen Dergisi 14 4 15–21.
IEEE M. A. Ömeroğlu, “Production of Cellulase Enzyme by Pseudomonas reinekei SL7 Isolated from Paper Mill Wastes”, TJNS, vol. 14, no. 4, pp. 15–21, 2025, doi: 10.46810/tdfd.1750168.
ISNAD Ömeroğlu, Mehmet Akif. “Production of Cellulase Enzyme by Pseudomonas Reinekei SL7 Isolated from Paper Mill Wastes”. Türk Doğa ve Fen Dergisi 14/4 (December2025), 15-21. https://doi.org/10.46810/tdfd.1750168.
JAMA Ömeroğlu MA. Production of Cellulase Enzyme by Pseudomonas reinekei SL7 Isolated from Paper Mill Wastes. TJNS. 2025;14:15–21.
MLA Ömeroğlu, Mehmet Akif. “Production of Cellulase Enzyme by Pseudomonas Reinekei SL7 Isolated from Paper Mill Wastes”. Türk Doğa Ve Fen Dergisi, vol. 14, no. 4, 2025, pp. 15-21, doi:10.46810/tdfd.1750168.
Vancouver Ömeroğlu MA. Production of Cellulase Enzyme by Pseudomonas reinekei SL7 Isolated from Paper Mill Wastes. TJNS. 2025;14(4):15-21.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.