Research Article
BibTex RIS Cite

Task-Specific Airfoil Design for Fixed-Wing UAVs in High-Climb Reconnaissance Missions: A CST and XFOIL-Based Approach

Year 2025, Volume: 14 Issue: 4, 66 - 84, 30.12.2025
https://doi.org/10.46810/tdfd.1762609

Abstract

This study presents a systematic airfoil optimisation framework for fixed-wing unmanned aerial vehicles (UAVs) operating in high-climb reconnaissance missions. Emphasising the climb phase, critical for early surveillance and mission efficiency, the approach combines Class-Shape Transformation (CST) geometry parameterisation with XFOIL-based aerodynamic simulations. Three baseline airfoils (NLF1015, SG6042, TL54) were modified through CST to produce optimised variants. The climb phase was segmented into four altitude-dependent intervals, each analysed using a weighted angle-of-attack (AoA) strategy to reflect realistic aerodynamic demands across varying atmospheric conditions. Simulation results indicate significant improvements in lift-to-drag ratio, climb rate, and time-to-altitude for the optimised designs. The SG6042-derived variant delivered the most balanced performance, with strong lift and stable aerodynamic efficiency. The TL54-based profile achieved the lowest drag, favourable in energy-constrained scenarios. In contrast, the NLF1015-based variant showed limited improvement due to high drag sensitivity at elevated AoA. This study demonstrates the value of phase-specific aerodynamic optimisation in UAV design and supports the use of CST and XFOIL as efficient tools for early-stage performance refinement. The framework offers a foundation for future work involving higher-fidelity CFD models and multi-objective optimisation methods.

References

  • Santos PD, Gamboa P V. Evaluation of Energy Required for Flight by a UAV Fitted with a Variable-Span Wing Performing a Given Mission Profile. AIAA Atmospheric Flight Mechanics Conference.2015:1–9. https://doi.org/10.2514/6.2015-2391.
  • Watanabe K, Shibata T, Ueba M. Derivation and Flight Test Validation of Maximum Rate of Climb during Takeoff for Fixed-Wing UAV Driven by Propeller Engine. Aerospace 2024;11. https://doi.org/10.3390/aerospace11030233.
  • Suti A, Rito G Di, Galatolo R. Climbing performance enhancement of small fixed-wing UAVs via hybrid electric propulsion. Proc - 2021 IEEE Work Electr Mach Des Control Diagnosis, WEMDCD 2021 2021:305–10. https://doi.org/10.1109/WEMDCD51469.2021.9425638.
  • Dündar Ö, Bilici M, Ünler T. Design and performance analyses of a fixed wing battery VTOL UAV. Eng Sci Technol an Int J 2020;23:1182–93. https://doi.org/10.1016/j.jestch.2020.02.002.
  • Vale J, Lau F, Suleman A. Energy Efficiency Studies of A Morphing Unmanned Aircraft. J Aeronaut Aerosp Eng 2013;02. https://doi.org/10.4172/2168-9792.1000122.
  • Kaneko S, Martins JR. Simultaneous optimization of design and takeoff trajectory for an eVTOL aircraft. Aerosp Sci Technol 2024;155:109617. https://doi.org/10.1016/j.ast.2024.109617.
  • Gao Y, Qiao Z, Pei X, Wu G, Bai Y. Design of Energy-Management Strategy for Solar-Powered UAV. Sustainability. 2023;15(20):14972.
  • Celik Y, Ingham D, Ma L, Pourkashanian M. Novel hybrid blade design and its impact on the overall and self-starting performance of a three-dimensional H-type Darrieus wind turbine. J Fluids Struct 2023;119:103876. https://doi.org/10.1016/j.jfluidstructs.2023.103876.
  • Manolesos M, Celik Y, Ramsay H, Karande R, Wood B, Dinwoodie I, et al. Performance improvement of a Vestas V52 850kW wind turbine by retrofitting passive flow control devices. J Phys Conf Ser 2024;2767. https://doi.org/10.1088/1742-6596/2767/2/022027.
  • Celik Y. A Comparative Aerodynamic Analysis of NACA and NREL Aerofoils for Darrieus Turbines Using CFD. Int J Innov Eng Appl 2022;6:111–7. https://doi.org/10.46460/ijiea.1075684.
  • Rouco P, Orgeira-Crespo P, Rey González GD, Aguado-Agelet F. Airfoil Optimization and Analysis Using Global Sensitivity Analysis and Generative Design. Aerospace 2025;12. https://doi.org/10.3390/aerospace12030180.
  • Hasan MS, Svorcan JM, Simonovic AM, Mirkov NS, Kostic OP. Optımal Aırfoıl Desıgn And Wıng Analysıs For Solar-Powered Hıgh-Altıtude Platform Statıon. Explor Econ Hist 1993;24:ETG 5-1-ETG 5-17. https://doi.org/10.1080/00033799300200371.
  • Nikolaou E, Kilimtzidis S, Kostopoulos V. Multi-Fidelity Surrogate-Assisted Aerodynamic Optimization of Aircraft Wings. Aerospace 2025;12. https://doi.org/10.3390/aerospace12040359.
  • Benaouali A, Kachel S. Multidisciplinary design optimization of aircraft wing using commercial software integration. Aerosp Sci Technol 2019;92:766–76. https://doi.org/10.1016/j.ast.2019.06.040.
  • Kulfan BM, Bussoletti JE. “Fundamental” parametric geometry representations for aircraft component shapes. Collect Tech Pap - 11th AIAA/ISSMO Multidiscip Anal Optim Conf 2006;1:547–91. https://doi.org/10.2514/6.2006-6948.
  • Masters DA, Taylor NJ, Rendall TCS, Allen CB, Poole DJ. Geometric comparison of aerofoil shape parameterization methods. AIAA J 2017;55:1575–89. https://doi.org/10.2514/1.J054943.
  • Anitha D, Shamili GK, Ravi Kumar P, Sabari Vihar R. Air foil Shape Optimization Using Cfd and Parametrization Methods. Mater Today Proc 2018;5:5364–73. https://doi.org/10.1016/j.matpr.2017.12.122.
  • Guan X, Li Z, Song B. A study on CST aerodynamic shape parameterization method. Acta Aeronaut Astronaut Sin 2012;33(4):625–33.
  • Straathof MH. Parametric study of the class-shape-refinement-transformation method. Optimization 2012;61:637–59. https://doi.org/10.1080/02331934.2011.627335.
  • Kulfan BM. Modification of CST airfoil representation methodology. [Internet] Http//Www Brendakulfan Com/Docs/CST8 Pdf 2009;7:21.
  • Zhu F, Qin N. Intuitive class/shape function parameterization for airfoils. AIAA J 2014;52:17–25. [cited 2025 December 12] https://doi.org/10.2514/1.J052610.
  • Olson ED. Three-dimensional piecewise-continuous class-shape transformation of wings. 16th AIAA/ISSMO Multidiscip Anal Optim Conf 2015:1–16. https://doi.org/10.2514/6.2015-3238.
  • Su H, Gong CL, Gu LX. Two-level aerodynamic shape optimization strategy based on three-dimensional CST modeling method. J Solid Rocket Technol 2014;37(1):1–6.
  • Mark D. XFOIL: An analysis and design system for low Reynolds number airfoils. Low Reynolds Number Aerodyn. Springer, 1989, p. 1–12.
  • Singh AP; Winoto SH; Shah DA; Lim KG; Goh RE. A computational study on airfoils at a low Reynolds number. ASME Int Mech Eng Congr Expo 2000;19258:405–11.
  • Arshad A, Rodrigues LB, López IM. Design Optimization and Investigation of Aerodynamic Characteristics of Low Reynolds Number Airfoils. Int J Aeronaut Sp Sci 2021;22:751–64. https://doi.org/10.1007/s42405-021-00362-2.
  • Panagiotou P, Yakinthos K. Aerodynamic efficiency and performance enhancement of fixed-wing UAVs. Aerosp Sci Technol 2020;99:105575. https://doi.org/10.1016/j.ast.2019.105575.
  • Kimmons J; Thomas P; Colonia S. Aerodynamic effects of surface deformities on aerofoils for low-speed stratospheric flight. Proc Inst Mech Eng Part G J Aerosp Eng 2023;237(1):108–29.
  • Durmus S. Aerodynamıc Performance Comparıson Of Aırfoıls In Flyıng Wıng UAV. Journal, Int Appl Innov Eng 2023;7.
  • Ceze M, Hayashiy M, Volpez E. A study of the CST parameterization characteristics. Collect Tech Pap - AIAA Appl Aerodyn Conf 2009. https://doi.org/10.2514/6.2009-3767.
  • Sasaki D, Ito A, Ishida T, Nakahashi K. Design optimization of a mild-stall airfoil/wing for UAV and PAV applications. Collect Tech Pap - AIAA Appl Aerodyn Conf 2009:1–15. https://doi.org/10.2514/6.2009-4111.
  • Carreño Ruiz M, Renzulli L, D’Ambrosio D. Airfoil optimization for rotors operating in the ultra-low Reynolds number regime. Phys Fluids 2023;35. https://doi.org/10.1063/5.0166170.
  • Hansen TH. Airfoil optimization for wind turbine application. Wind Energy 2018;21:502–14. https://doi.org/10.1002/we.2174.
  • Liang C, Xi D, Zhang S, Chen B, Wang X, Guo Q. Optimization on Airfoil of Vertical Axis Wind Turbine Based on CST Parameterization and NSGA-II Aigorithm 2016:1–17. https://doi.org/10.20944/preprints201608.013.

Yüksek Tırmanışlı Keşif Görevlerine Uygun Sabit Kanatlı İHA’lar İçin Göreve Özel Hava Profili Tasarımı: CST ve XFOIL Tabanlı Bir Yaklaşım

Year 2025, Volume: 14 Issue: 4, 66 - 84, 30.12.2025
https://doi.org/10.46810/tdfd.1762609

Abstract

Bu çalışma, yüksek tırmanışlı keşif görevlerinde görev yapan sabit kanatlı insansız hava araçları (İHA'lar) için sistematik bir kanat profili optimizasyon çerçevesi sunmaktadır. Erken keşif ve görev verimliliği açısından kritik öneme sahip olan tırmanış safhasına odaklanan yaklaşım, Class-Shape Transformation (CST) tabanlı geometrik parametrelendirme ile XFOIL tabanlı aerodinamik simülasyonları birleştirmektedir. Üç referans hücum profili (NLF1015, SG6042, TL54), CST yöntemiyle optimize edilmiş varyantlara dönüştürülmüştür. Tırmanış safhası, irtifaya bağlı olarak dört alt aşamaya ayrılmış ve her biri, farklı atmosfer koşullarında ortaya çıkan gerçekçi aerodinamik talepleri yansıtmak amacıyla ağırlıklı hücum açısı stratejisiyle analiz edilmiştir. Simülasyon sonuçları, optimize edilmiş tasarımlarda kaldırma/sürükleme oranı, tırmanış hızı ve irtifaya ulaşma süresi açısından anlamlı iyileşmeler olduğunu göstermektedir. SG6042 temelli varyant, güçlü kaldırma kabiliyeti ve istikrarlı aerodinamik verimlilik ile en dengeli performansı sergilemiştir. TL54 tabanlı profil, en düşük sürüklemeyi sağlayarak enerji kısıtlı senaryolar için avantaj sunmuştur. Buna karşılık, NLF1015 tabanlı varyant, yüksek hücum açılarında oluşan sürükleme hassasiyeti nedeniyle sınırlı iyileşme göstermiştir. Bu çalışma, İHA tasarımında safhaya özgü aerodinamik optimizasyonun önemini ortaya koymakta ve CST ile XFOIL’in erken tasarım sürecinde etkili araçlar olarak kullanımını desteklemektedir. Sunulan çerçeve, yüksek doğruluklu HAD modelleri ve çok amaçlı optimizasyon yöntemlerini içeren gelecekteki çalışmalar için sağlam bir temel oluşturmaktadır.

References

  • Santos PD, Gamboa P V. Evaluation of Energy Required for Flight by a UAV Fitted with a Variable-Span Wing Performing a Given Mission Profile. AIAA Atmospheric Flight Mechanics Conference.2015:1–9. https://doi.org/10.2514/6.2015-2391.
  • Watanabe K, Shibata T, Ueba M. Derivation and Flight Test Validation of Maximum Rate of Climb during Takeoff for Fixed-Wing UAV Driven by Propeller Engine. Aerospace 2024;11. https://doi.org/10.3390/aerospace11030233.
  • Suti A, Rito G Di, Galatolo R. Climbing performance enhancement of small fixed-wing UAVs via hybrid electric propulsion. Proc - 2021 IEEE Work Electr Mach Des Control Diagnosis, WEMDCD 2021 2021:305–10. https://doi.org/10.1109/WEMDCD51469.2021.9425638.
  • Dündar Ö, Bilici M, Ünler T. Design and performance analyses of a fixed wing battery VTOL UAV. Eng Sci Technol an Int J 2020;23:1182–93. https://doi.org/10.1016/j.jestch.2020.02.002.
  • Vale J, Lau F, Suleman A. Energy Efficiency Studies of A Morphing Unmanned Aircraft. J Aeronaut Aerosp Eng 2013;02. https://doi.org/10.4172/2168-9792.1000122.
  • Kaneko S, Martins JR. Simultaneous optimization of design and takeoff trajectory for an eVTOL aircraft. Aerosp Sci Technol 2024;155:109617. https://doi.org/10.1016/j.ast.2024.109617.
  • Gao Y, Qiao Z, Pei X, Wu G, Bai Y. Design of Energy-Management Strategy for Solar-Powered UAV. Sustainability. 2023;15(20):14972.
  • Celik Y, Ingham D, Ma L, Pourkashanian M. Novel hybrid blade design and its impact on the overall and self-starting performance of a three-dimensional H-type Darrieus wind turbine. J Fluids Struct 2023;119:103876. https://doi.org/10.1016/j.jfluidstructs.2023.103876.
  • Manolesos M, Celik Y, Ramsay H, Karande R, Wood B, Dinwoodie I, et al. Performance improvement of a Vestas V52 850kW wind turbine by retrofitting passive flow control devices. J Phys Conf Ser 2024;2767. https://doi.org/10.1088/1742-6596/2767/2/022027.
  • Celik Y. A Comparative Aerodynamic Analysis of NACA and NREL Aerofoils for Darrieus Turbines Using CFD. Int J Innov Eng Appl 2022;6:111–7. https://doi.org/10.46460/ijiea.1075684.
  • Rouco P, Orgeira-Crespo P, Rey González GD, Aguado-Agelet F. Airfoil Optimization and Analysis Using Global Sensitivity Analysis and Generative Design. Aerospace 2025;12. https://doi.org/10.3390/aerospace12030180.
  • Hasan MS, Svorcan JM, Simonovic AM, Mirkov NS, Kostic OP. Optımal Aırfoıl Desıgn And Wıng Analysıs For Solar-Powered Hıgh-Altıtude Platform Statıon. Explor Econ Hist 1993;24:ETG 5-1-ETG 5-17. https://doi.org/10.1080/00033799300200371.
  • Nikolaou E, Kilimtzidis S, Kostopoulos V. Multi-Fidelity Surrogate-Assisted Aerodynamic Optimization of Aircraft Wings. Aerospace 2025;12. https://doi.org/10.3390/aerospace12040359.
  • Benaouali A, Kachel S. Multidisciplinary design optimization of aircraft wing using commercial software integration. Aerosp Sci Technol 2019;92:766–76. https://doi.org/10.1016/j.ast.2019.06.040.
  • Kulfan BM, Bussoletti JE. “Fundamental” parametric geometry representations for aircraft component shapes. Collect Tech Pap - 11th AIAA/ISSMO Multidiscip Anal Optim Conf 2006;1:547–91. https://doi.org/10.2514/6.2006-6948.
  • Masters DA, Taylor NJ, Rendall TCS, Allen CB, Poole DJ. Geometric comparison of aerofoil shape parameterization methods. AIAA J 2017;55:1575–89. https://doi.org/10.2514/1.J054943.
  • Anitha D, Shamili GK, Ravi Kumar P, Sabari Vihar R. Air foil Shape Optimization Using Cfd and Parametrization Methods. Mater Today Proc 2018;5:5364–73. https://doi.org/10.1016/j.matpr.2017.12.122.
  • Guan X, Li Z, Song B. A study on CST aerodynamic shape parameterization method. Acta Aeronaut Astronaut Sin 2012;33(4):625–33.
  • Straathof MH. Parametric study of the class-shape-refinement-transformation method. Optimization 2012;61:637–59. https://doi.org/10.1080/02331934.2011.627335.
  • Kulfan BM. Modification of CST airfoil representation methodology. [Internet] Http//Www Brendakulfan Com/Docs/CST8 Pdf 2009;7:21.
  • Zhu F, Qin N. Intuitive class/shape function parameterization for airfoils. AIAA J 2014;52:17–25. [cited 2025 December 12] https://doi.org/10.2514/1.J052610.
  • Olson ED. Three-dimensional piecewise-continuous class-shape transformation of wings. 16th AIAA/ISSMO Multidiscip Anal Optim Conf 2015:1–16. https://doi.org/10.2514/6.2015-3238.
  • Su H, Gong CL, Gu LX. Two-level aerodynamic shape optimization strategy based on three-dimensional CST modeling method. J Solid Rocket Technol 2014;37(1):1–6.
  • Mark D. XFOIL: An analysis and design system for low Reynolds number airfoils. Low Reynolds Number Aerodyn. Springer, 1989, p. 1–12.
  • Singh AP; Winoto SH; Shah DA; Lim KG; Goh RE. A computational study on airfoils at a low Reynolds number. ASME Int Mech Eng Congr Expo 2000;19258:405–11.
  • Arshad A, Rodrigues LB, López IM. Design Optimization and Investigation of Aerodynamic Characteristics of Low Reynolds Number Airfoils. Int J Aeronaut Sp Sci 2021;22:751–64. https://doi.org/10.1007/s42405-021-00362-2.
  • Panagiotou P, Yakinthos K. Aerodynamic efficiency and performance enhancement of fixed-wing UAVs. Aerosp Sci Technol 2020;99:105575. https://doi.org/10.1016/j.ast.2019.105575.
  • Kimmons J; Thomas P; Colonia S. Aerodynamic effects of surface deformities on aerofoils for low-speed stratospheric flight. Proc Inst Mech Eng Part G J Aerosp Eng 2023;237(1):108–29.
  • Durmus S. Aerodynamıc Performance Comparıson Of Aırfoıls In Flyıng Wıng UAV. Journal, Int Appl Innov Eng 2023;7.
  • Ceze M, Hayashiy M, Volpez E. A study of the CST parameterization characteristics. Collect Tech Pap - AIAA Appl Aerodyn Conf 2009. https://doi.org/10.2514/6.2009-3767.
  • Sasaki D, Ito A, Ishida T, Nakahashi K. Design optimization of a mild-stall airfoil/wing for UAV and PAV applications. Collect Tech Pap - AIAA Appl Aerodyn Conf 2009:1–15. https://doi.org/10.2514/6.2009-4111.
  • Carreño Ruiz M, Renzulli L, D’Ambrosio D. Airfoil optimization for rotors operating in the ultra-low Reynolds number regime. Phys Fluids 2023;35. https://doi.org/10.1063/5.0166170.
  • Hansen TH. Airfoil optimization for wind turbine application. Wind Energy 2018;21:502–14. https://doi.org/10.1002/we.2174.
  • Liang C, Xi D, Zhang S, Chen B, Wang X, Guo Q. Optimization on Airfoil of Vertical Axis Wind Turbine Based on CST Parameterization and NSGA-II Aigorithm 2016:1–17. https://doi.org/10.20944/preprints201608.013.
There are 34 citations in total.

Details

Primary Language English
Subjects Aerodynamics (Excl. Hypersonic Aerodynamics)
Journal Section Research Article
Authors

Yunus Çelik 0000-0001-7762-3415

Submission Date August 12, 2025
Acceptance Date October 13, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 14 Issue: 4

Cite

APA Çelik, Y. (2025). Task-Specific Airfoil Design for Fixed-Wing UAVs in High-Climb Reconnaissance Missions: A CST and XFOIL-Based Approach. Türk Doğa Ve Fen Dergisi, 14(4), 66-84. https://doi.org/10.46810/tdfd.1762609
AMA Çelik Y. Task-Specific Airfoil Design for Fixed-Wing UAVs in High-Climb Reconnaissance Missions: A CST and XFOIL-Based Approach. TJNS. December 2025;14(4):66-84. doi:10.46810/tdfd.1762609
Chicago Çelik, Yunus. “Task-Specific Airfoil Design for Fixed-Wing UAVs in High-Climb Reconnaissance Missions: A CST and XFOIL-Based Approach”. Türk Doğa Ve Fen Dergisi 14, no. 4 (December 2025): 66-84. https://doi.org/10.46810/tdfd.1762609.
EndNote Çelik Y (December 1, 2025) Task-Specific Airfoil Design for Fixed-Wing UAVs in High-Climb Reconnaissance Missions: A CST and XFOIL-Based Approach. Türk Doğa ve Fen Dergisi 14 4 66–84.
IEEE Y. Çelik, “Task-Specific Airfoil Design for Fixed-Wing UAVs in High-Climb Reconnaissance Missions: A CST and XFOIL-Based Approach”, TJNS, vol. 14, no. 4, pp. 66–84, 2025, doi: 10.46810/tdfd.1762609.
ISNAD Çelik, Yunus. “Task-Specific Airfoil Design for Fixed-Wing UAVs in High-Climb Reconnaissance Missions: A CST and XFOIL-Based Approach”. Türk Doğa ve Fen Dergisi 14/4 (December2025), 66-84. https://doi.org/10.46810/tdfd.1762609.
JAMA Çelik Y. Task-Specific Airfoil Design for Fixed-Wing UAVs in High-Climb Reconnaissance Missions: A CST and XFOIL-Based Approach. TJNS. 2025;14:66–84.
MLA Çelik, Yunus. “Task-Specific Airfoil Design for Fixed-Wing UAVs in High-Climb Reconnaissance Missions: A CST and XFOIL-Based Approach”. Türk Doğa Ve Fen Dergisi, vol. 14, no. 4, 2025, pp. 66-84, doi:10.46810/tdfd.1762609.
Vancouver Çelik Y. Task-Specific Airfoil Design for Fixed-Wing UAVs in High-Climb Reconnaissance Missions: A CST and XFOIL-Based Approach. TJNS. 2025;14(4):66-84.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.