Research Article
BibTex RIS Cite

AASHTO-93 Yönteminin Mekanistik Ampirik Tasarım Yöntemleri İle Uyumunun Belirlenmesi

Year 2020, , 64 - 75, 30.12.2020
https://doi.org/10.46810/tdfd.732275

Abstract

Esnek üst yapı tasarımında kullanılan ve ampirik bir yöntem olan AASHTO yönteminin, değişen yük, yükleme durumu, tabaka malzemelerinin tanımlanması ve çevresel koşullar gibi parametrelere uyumunun sağlanması amacıyla mekanistik-ampirik (M-A) yöntemler ile kıyas ve entegrasyonunun sağlanması gerekmektedir. Bu çalışmada geleneksel bir esnek üst yapı kesitinin, bitümlü sıcak karışım (BSK) yüzey tabakası ile temel tabakasının değişen kalınlık ve rijitlik oranlarına bağlı olarak yol ömrü analizleri AASHTO ve M-A yöntem kullanılarak yapılmış ve elde edilen sonuçlar kıyaslanmıştır. M-A yöntemde farklı transfer denklemleri kullanılmış ve bu transfer denklemleri arasından AASHTO yöntemi ile en uyumlu sonucu veren denklemler tespit edilmeye çalışılmıştır. Yapılan analizler sonucunda yorulmaya bağlı Shell modeli ile tekerlek izinde oturmaya bağlı Ulaşım ve Yol Araştırma Laboratuarı modellerinin AASHTO yöntemine en uyumlu sonuçlar veren iki model olduğu tespit edilmiştir.

References

  • [1] Tunç A. Yol malzemeleri ve uygulamaları. 2nd ed. Nobel Yayınevi; 2007.
  • [2] Tunç A. Kaplama mühendisliği ve uygulamaları. Asil Yayın Dağıtım; 2004.
  • [3] Huang YH. Pavement Analysis and Design. 2nd ed. Upper Saddle River, NJ: Pearson Prentice Hall; 2004.
  • [4] Hogentogler CA, Terzaghi C. Interrelationship of load, road and subgrade. Public Road 1929:37–64.
  • [5] Hadi MNS, Bodhinayake BC. Non-linear finite element analysis of flexible pavements. Adv Eng Softw 2003;34:657–62.
  • [6] Barber ES. Application of triaxial test results to the calculations of flexible pavement thickness. Proceedings, Highw. Res. Board, 1946.
  • [7] McLeod NW. Flexible pavement thickness requirements. Proceedings, Assoc. Asph. Paving Technol., 1956.
  • [8] Keeling RC. Design of flexible pavement using the triaxial compression test. Highw Res Board Bull 1947;8.
  • [9] Sağlık A, Güngör AG. Esnek üstyapılar projelendirme rehberi. Ankara: Karayolları Genel Müdürlüğü; 2008.
  • [10] Mashayekhi M, Amini AA, Behbahani H, Nobakht S. Comparison of mechanistic-empirical and empirical flexible pavement design procedures of Aashto : a Case study. 5th Int. Conf. Bitum. Mix. Pavements, 2011, p. 319–28.
  • [11] Alhasan A, Ali A, Offenbacker D, Smadi O, Lewis-Beck C. Incorporating spatial variability of pavement foundation layers stiffness in reliability-based mechanistic-empirical pavement performance prediction. Transp Geotech 2018;17:1–13.
  • [12] Carvalho RL, Schwartz CW. Comparisons of flexible pavement designs: AASHTO empirical versus NCHRP project 1-37A mechanistic-empirical. Transp Res Rec 2006:167–74.
  • [13] Mousa MR, Abo-Hashema MA, Gadallah AA, Mousa RM. Evaluation of pavement performance prediction models under different traffic and climatic conditions. 14th Int. Conf. Asph. Pavement Eng. Infrastructure., 2015, p. 1–19.
  • [14] Luo Z, Karki A, Pan E, Abbas AR, Arefin MS, Hu B. Effect of uncertain material property on system reliability in mechanistic-empirical pavement design. Constr Build Mater 2018;172:488–98.
  • [15] Luo X, Gu F, Zhang Y, Lytton RL, Zollinger D. Mechanistic-empirical models for better consideration of subgrade and unbound layers influence on pavement performance. Transp Geotech 2017;13:52–68.
  • [16] Muniandy R, Eltaher A, Thamer N. Comparison of flexible pavement performance using Kenlayer and Chev PC software program. Aust J Basic Appl Sci 2013;7:112–9.
  • [17] Samad E. Sensitivity analysis in flexible pavement performance using mechanistic empirical method (Case study: Cirebon–Losari road segment, West Java). Civ Eng Forum 2011;20:1163–74.
  • [18] Tang X, Stoffels SM, Palomino AM. Mechanistic-empirical approach to characterizing permanent deformation of reinforced soft soil subgrade. Geotext Geomembranes 2016;44:429–41.
  • [19] Behiry AEAEM. Fatigue and rutting lives in flexible pavement. Ain Shams Eng J 2012;3:367–74.
  • [20] Ghanizadeh AR, Ziaie A. NonPAS : A program for nonlinear analysis of flexible pavements. Int J Integr Eng 2015;7:21–8.
  • [21] Singh AK, Sahoo JP. Analysis and design of two layered flexible pavement systems: A new mechanistic approach. Comput Geotech 2020;117:103238.
  • [22] Ahmed A, Erlingsson S. Viscoelastic response modelling of a pavement under moving load. Transp Res Procedia 2016;14:748–57.
  • [23] Sarkar A. Numerical comparison of flexible pavement dynamic response under different axles. Int J Pavement Eng 2016;17:377–87.
  • [24] Chegenizadeh A, Keramatikerman M, Nikraz H. Flexible pavement modelling using Kenlayer. Electron J Geotech Eng 2016;21:2467–79.
Year 2020, , 64 - 75, 30.12.2020
https://doi.org/10.46810/tdfd.732275

Abstract

References

  • [1] Tunç A. Yol malzemeleri ve uygulamaları. 2nd ed. Nobel Yayınevi; 2007.
  • [2] Tunç A. Kaplama mühendisliği ve uygulamaları. Asil Yayın Dağıtım; 2004.
  • [3] Huang YH. Pavement Analysis and Design. 2nd ed. Upper Saddle River, NJ: Pearson Prentice Hall; 2004.
  • [4] Hogentogler CA, Terzaghi C. Interrelationship of load, road and subgrade. Public Road 1929:37–64.
  • [5] Hadi MNS, Bodhinayake BC. Non-linear finite element analysis of flexible pavements. Adv Eng Softw 2003;34:657–62.
  • [6] Barber ES. Application of triaxial test results to the calculations of flexible pavement thickness. Proceedings, Highw. Res. Board, 1946.
  • [7] McLeod NW. Flexible pavement thickness requirements. Proceedings, Assoc. Asph. Paving Technol., 1956.
  • [8] Keeling RC. Design of flexible pavement using the triaxial compression test. Highw Res Board Bull 1947;8.
  • [9] Sağlık A, Güngör AG. Esnek üstyapılar projelendirme rehberi. Ankara: Karayolları Genel Müdürlüğü; 2008.
  • [10] Mashayekhi M, Amini AA, Behbahani H, Nobakht S. Comparison of mechanistic-empirical and empirical flexible pavement design procedures of Aashto : a Case study. 5th Int. Conf. Bitum. Mix. Pavements, 2011, p. 319–28.
  • [11] Alhasan A, Ali A, Offenbacker D, Smadi O, Lewis-Beck C. Incorporating spatial variability of pavement foundation layers stiffness in reliability-based mechanistic-empirical pavement performance prediction. Transp Geotech 2018;17:1–13.
  • [12] Carvalho RL, Schwartz CW. Comparisons of flexible pavement designs: AASHTO empirical versus NCHRP project 1-37A mechanistic-empirical. Transp Res Rec 2006:167–74.
  • [13] Mousa MR, Abo-Hashema MA, Gadallah AA, Mousa RM. Evaluation of pavement performance prediction models under different traffic and climatic conditions. 14th Int. Conf. Asph. Pavement Eng. Infrastructure., 2015, p. 1–19.
  • [14] Luo Z, Karki A, Pan E, Abbas AR, Arefin MS, Hu B. Effect of uncertain material property on system reliability in mechanistic-empirical pavement design. Constr Build Mater 2018;172:488–98.
  • [15] Luo X, Gu F, Zhang Y, Lytton RL, Zollinger D. Mechanistic-empirical models for better consideration of subgrade and unbound layers influence on pavement performance. Transp Geotech 2017;13:52–68.
  • [16] Muniandy R, Eltaher A, Thamer N. Comparison of flexible pavement performance using Kenlayer and Chev PC software program. Aust J Basic Appl Sci 2013;7:112–9.
  • [17] Samad E. Sensitivity analysis in flexible pavement performance using mechanistic empirical method (Case study: Cirebon–Losari road segment, West Java). Civ Eng Forum 2011;20:1163–74.
  • [18] Tang X, Stoffels SM, Palomino AM. Mechanistic-empirical approach to characterizing permanent deformation of reinforced soft soil subgrade. Geotext Geomembranes 2016;44:429–41.
  • [19] Behiry AEAEM. Fatigue and rutting lives in flexible pavement. Ain Shams Eng J 2012;3:367–74.
  • [20] Ghanizadeh AR, Ziaie A. NonPAS : A program for nonlinear analysis of flexible pavements. Int J Integr Eng 2015;7:21–8.
  • [21] Singh AK, Sahoo JP. Analysis and design of two layered flexible pavement systems: A new mechanistic approach. Comput Geotech 2020;117:103238.
  • [22] Ahmed A, Erlingsson S. Viscoelastic response modelling of a pavement under moving load. Transp Res Procedia 2016;14:748–57.
  • [23] Sarkar A. Numerical comparison of flexible pavement dynamic response under different axles. Int J Pavement Eng 2016;17:377–87.
  • [24] Chegenizadeh A, Keramatikerman M, Nikraz H. Flexible pavement modelling using Kenlayer. Electron J Geotech Eng 2016;21:2467–79.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Murat Bostancıoğlu 0000-0001-6820-2213

Publication Date December 30, 2020
Published in Issue Year 2020

Cite

APA Bostancıoğlu, M. (2020). AASHTO-93 Yönteminin Mekanistik Ampirik Tasarım Yöntemleri İle Uyumunun Belirlenmesi. Türk Doğa Ve Fen Dergisi, 9(2), 64-75. https://doi.org/10.46810/tdfd.732275
AMA Bostancıoğlu M. AASHTO-93 Yönteminin Mekanistik Ampirik Tasarım Yöntemleri İle Uyumunun Belirlenmesi. TDFD. December 2020;9(2):64-75. doi:10.46810/tdfd.732275
Chicago Bostancıoğlu, Murat. “AASHTO-93 Yönteminin Mekanistik Ampirik Tasarım Yöntemleri İle Uyumunun Belirlenmesi”. Türk Doğa Ve Fen Dergisi 9, no. 2 (December 2020): 64-75. https://doi.org/10.46810/tdfd.732275.
EndNote Bostancıoğlu M (December 1, 2020) AASHTO-93 Yönteminin Mekanistik Ampirik Tasarım Yöntemleri İle Uyumunun Belirlenmesi. Türk Doğa ve Fen Dergisi 9 2 64–75.
IEEE M. Bostancıoğlu, “AASHTO-93 Yönteminin Mekanistik Ampirik Tasarım Yöntemleri İle Uyumunun Belirlenmesi”, TDFD, vol. 9, no. 2, pp. 64–75, 2020, doi: 10.46810/tdfd.732275.
ISNAD Bostancıoğlu, Murat. “AASHTO-93 Yönteminin Mekanistik Ampirik Tasarım Yöntemleri İle Uyumunun Belirlenmesi”. Türk Doğa ve Fen Dergisi 9/2 (December 2020), 64-75. https://doi.org/10.46810/tdfd.732275.
JAMA Bostancıoğlu M. AASHTO-93 Yönteminin Mekanistik Ampirik Tasarım Yöntemleri İle Uyumunun Belirlenmesi. TDFD. 2020;9:64–75.
MLA Bostancıoğlu, Murat. “AASHTO-93 Yönteminin Mekanistik Ampirik Tasarım Yöntemleri İle Uyumunun Belirlenmesi”. Türk Doğa Ve Fen Dergisi, vol. 9, no. 2, 2020, pp. 64-75, doi:10.46810/tdfd.732275.
Vancouver Bostancıoğlu M. AASHTO-93 Yönteminin Mekanistik Ampirik Tasarım Yöntemleri İle Uyumunun Belirlenmesi. TDFD. 2020;9(2):64-75.