Research Article
BibTex RIS Cite

Demir Noksanlığı Şartlarında Fasulye Çeşitlerinin Demir Beslenme Kabiliyetlerine Göre Gruplandırılması ve Çeşitlerin En İyi Demir Beslenme İndekslerinin Belirlenmesi

Year 2021, , 141 - 147, 31.12.2021
https://doi.org/10.46810/tdfd.910721

Abstract

Bu çalışmanın amacı, demir noksanlığı şartlarında fasulye çeşitlerinin demir beslenme kabiliyetlerine göre gruplandırılması ve çeşitlerin en iyi demir beslenme indekslerinin belirlenmesidir. Çalışmada 15 fasulye çeşidi karşılaştırılmıştır. Fasulye çeşitlerine Fe-EDDHA formunda; a) Yetersiz (0,2 µM Fe), b) Yeterli (45 µM ve 100 µM Fe) konsantrasyonlarda demir içeren besin çözeltisi verilmiştir. 15×3 faktöriyel denemede muameleler 3 tekerrürlü uygulanmıştır. Demir beslenmeleri yönünden çeşitlerin karşılaştırılmasında bitki kuru madde miktarı, yaprakta klorofil, aktif demir kapsamları, ferrik redüktaz aktivitesi ve diğer bazı özellikler kullanılmıştır. Demir noksanlığı şartlarında demir beslenme özellikleri yönünden çeşitler 3 grup oluşturmuştur. 10 numaralı çeşit birinci grupta; 1, 5, 2, 11, 6, 3, 9 numaralı çeşitler ikinci grupta; 4, 12, 15, 13, 14, 7, 8 numaralı çeşitler ise üçüncü grupta yer almışlardır. Demir noksanlığı şartlarında Önceler (1 nolu çeşit) ve 10 Eskfbud-7 (10 nolu çeşit), birbirinden en uzak çeşitlerdir. Önceler ve Eskfbud-7 çeşitlerinde demir noksanlığına tolerans indeks değerleri yeterli seviyeye göre (45 µM Fe) klorofil-a yönünden çeşit sırasıyla % 27,93 ve % 74,39; klorofil-b yönünden % 37,60 ve % 119,4; toplam klorofil yönünden % 131,31 ve % 97,2 bulunmuştur. Eskfbud-7 bodur fasulye çeşidinin demir noksanlığına daha dayanıklı bir çeşit olduğu sonucuna varılmıştır.

Supporting Institution

Ondokuz Mayıs Üniversitesi Bilimsel Araştırma Proje Birimi Koordinasyon Birimi

Project Number

PYO.ZRT.1901.16.003

References

  • [1] Tang CR, Obson AD. Lupinus species differ in their requirements for iron. Plant Soil 1993;157: 11-18.
  • [2] Moreau S, Meyer JM, Puppo A. Uptake of iron by symbiosomes and bacteroids from soybean nodules. FEBS Letters 1995;361: 225-228.
  • [3] Hardarson G. Use of nuclear techniques in studies of soil-plant relationships. International Atomic Energy Agency, Vienna; 1990.
  • [4] O’Hara GW, Dilworth MJ, Boonkerd N, Parkpion P. Iron deficiency specifically limits nodule devolopment in peanut inoculated with Bradyrhizobium sp. New Phytol 1988;108:51-57.
  • [5] Krouma A, Drevon J, Abdelly C. Genotypic varition of N2-fixing common bean (Phaseolus vulgaris L.) in response to iron deficiency. Plant Physiol 2006;163(11):1094-1100.
  • [6] Eyüpoğlu F, Kurucu N. Plant available trace iron, zinc, manganese and copper in Turkey soils, (ed. J. Ryan), In: Accomplishments and Future Challenges in Dryland Soil Fertility Research in the Mediterranean Area, ICARDA Book, 1997. p.191-196.
  • [7] Özgümüş A. Bitkilerde demir klorozu. Uludağ Üniversitesi Ziraat Fakültesi Dergisi 1987;6:117-128.
  • [8] Römheld V. Different strategies for iron acquisition in higher plants. Plant Physiol 1987;70:231:234.
  • [9] Bavaresco L, Fregoni M, Fraschini P. Investigations on iron uptake and reduction by excised roots of different grapevine rootstocks and a Vitis vinifera cultivar. Plant Soil 1991;130:109-113.
  • [10] Rombola AD, Bruggemann W, Lopez-Millan, AF, Tagliavini M, Abadia J, Marangoni B, Moog PR. Biochemical responses to iron deficiency in kiwifruit (Actinidia deliciosa). Tree Physiol 2002;22:869-875.
  • [11] Krouma A, Abdelly C. Importance of iron use efficiency in common bean (Phaseolus vulgaris L.) for iron chlorosis resistance. J Plant Nutr and Soil Sci 2003;4:525-528.
  • [12] Chaney RL, Brown JC, Tiffin LO. Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol 1972;50:734-739.
  • [13] Römheld V, Marschner H. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol 1986;80:175-180.
  • [14] Marschner H, Römheld V, Kissel M. Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr 1986;9:695-713.
  • [15] Hewitt EJ. Sand and water culture methods used in the study of plant nutrition; 1966.
  • [16] Kacar B, İnal A. Bitki Analizleri, 1. Basım. Nobel Yayınları, Ankara; 2008.
  • [17] Ojeda M, Schaffer B, Davies FS. Root and leaf ferric chelate reductase activity in pond apple and soursop. J Plant Nutr 2004;27:1381-1393.
  • [18] Takkar PN, Kaur NP. HCI method for Fe+2 estimation to resolve iron clorosis in plant. J Plant Nutr 1984;7(1-5):81-90.
  • [19] Arnon D. Copper enzymes in isolated chloroplast polyphenoloxidase in beta vulgaris. Plant Physiol 1949;24:1-15.
  • [20] Withan FH, Blayedes DF, Devlin RM. Experiments in Plant Physiology. Van Nostrand Reinhold Co., New York. 1971. p.55-58.
  • [21] Chen Y, Barak P. Iron nutrition of plants in calcerous soils. Adv Agron 1982;35:217-240.
  • [22] Lang HJ, Reed DW. Comparison of HCl extraction versus total iron analysis for ron tissue analysis for iron tissue analysis. J Plant Nutr 1987;10 (7):107-116.
  • [23] Slatni T, Krouma A, Gouia H, Abdelly C. Importance of ferric chelate reductase activity and acidification capacity in root nodules of N2-fixing common bean (Phaseolus vulgaris L.) subjected to iron deficiency. Symbiosis 2009;47: 35-42.
  • [24] Morales F, Abadia A, Abadia J. Characterization of the xanthophyll cycle and other photosynthetic pigment changes induced by iron deficiency in sugar beet (Beta vulgaris L.). Plant Physiol 1990;94:607-613.
  • [25] Terry N, Zayed AM. Physiology and biochemistry of leaves under iron deficiency. In: Iron nutrition in soils and plants, Abadia, J., ed. Kluwer Academic Publishers, Dordrecht, The Netherlands. 1995. p. 283-294.
  • [26] Thoiron S, Pascal N, Briat JF. Impact of iron deficiency and iron re-supply during the early stages of vegetative development in maize (Zea mays L.). Plant Cell Environ 1997;20:1051-1060.
  • [27] Lopez-Millan AF, Morales F, Abadia A, Abadia J. Changes induced by Fe deficiency and Fe resupply in the organic and metabolism of sugar beet (Beta vulgaris) leaves. Physiol Plant 2001;112:31-38.
  • [28] Marschner H. Mineral nutrition of higher plants. Institute of Plant Nutrition University of Hohenheim Federal Republic of Germany. Academic Press; 2002.
  • [29] Krouma A, Slatni T, Abdelly C. Differential tolerance to lime-induced chlorosis of N2-fixing common bean (Phaseolus vulgaris L.) Symbiosis, 2008;46:137-143.

Determination of the Best Iron Nutrition Indexes of Bean Cultivars in Iron Deficiency Conditions and Grouping of Varieties According to These İndexes

Year 2021, , 141 - 147, 31.12.2021
https://doi.org/10.46810/tdfd.910721

Abstract

The aim of this study is to group bean varieties according to their iron nutritional abilities under iron deficiency conditions and to determine the best iron nutritional index of the varieties. 15 bean varieties were compared in the study. Bean varieties in the form of Fe EDDHA; a) Insufficient (0.2 μM Fe), b) Sufficient (45 μM and 100 μM Fe) iron-containing nutrient solution was given. In the 15 × 3 factorial trial, the treatments were applied in 3 replications. In the comparison of the varieties in terms of iron nutrition, the amount of plant dry matter, chlorophyll in the leaf, active iron content, ferric reductase activity and some other properties were used. The varieties formed 3 groups in terms of iron nutritional properties under iron deficiency conditions. Number 10 is in the first group; Varieties with numbers 1, 5, 2, 11, 6, 3, 9 are in the second group; Varieties with numbers 4, 12, 15, 13, 14, 7, and 8 were in the third group. In iron deficiency conditions, Önceler (variety number 1) and Eskfbud-7 (variety number 10) bean varieties are the farthest from each other. The tolerance index values for iron deficiency in Önceler and Eskfbud-7 varieties were found to be 27,93 % and 74,39 %, respectively for chlorophyll-a; 37,60 % and 119,4 % for chlorophyll-b; 131,31 % and 97,2 % for total chlorophyll according to the sufficient level (45 μM Fe). It was concluded that Eskfbud-7 bean variety is more resistant to iron deficiency.

Project Number

PYO.ZRT.1901.16.003

References

  • [1] Tang CR, Obson AD. Lupinus species differ in their requirements for iron. Plant Soil 1993;157: 11-18.
  • [2] Moreau S, Meyer JM, Puppo A. Uptake of iron by symbiosomes and bacteroids from soybean nodules. FEBS Letters 1995;361: 225-228.
  • [3] Hardarson G. Use of nuclear techniques in studies of soil-plant relationships. International Atomic Energy Agency, Vienna; 1990.
  • [4] O’Hara GW, Dilworth MJ, Boonkerd N, Parkpion P. Iron deficiency specifically limits nodule devolopment in peanut inoculated with Bradyrhizobium sp. New Phytol 1988;108:51-57.
  • [5] Krouma A, Drevon J, Abdelly C. Genotypic varition of N2-fixing common bean (Phaseolus vulgaris L.) in response to iron deficiency. Plant Physiol 2006;163(11):1094-1100.
  • [6] Eyüpoğlu F, Kurucu N. Plant available trace iron, zinc, manganese and copper in Turkey soils, (ed. J. Ryan), In: Accomplishments and Future Challenges in Dryland Soil Fertility Research in the Mediterranean Area, ICARDA Book, 1997. p.191-196.
  • [7] Özgümüş A. Bitkilerde demir klorozu. Uludağ Üniversitesi Ziraat Fakültesi Dergisi 1987;6:117-128.
  • [8] Römheld V. Different strategies for iron acquisition in higher plants. Plant Physiol 1987;70:231:234.
  • [9] Bavaresco L, Fregoni M, Fraschini P. Investigations on iron uptake and reduction by excised roots of different grapevine rootstocks and a Vitis vinifera cultivar. Plant Soil 1991;130:109-113.
  • [10] Rombola AD, Bruggemann W, Lopez-Millan, AF, Tagliavini M, Abadia J, Marangoni B, Moog PR. Biochemical responses to iron deficiency in kiwifruit (Actinidia deliciosa). Tree Physiol 2002;22:869-875.
  • [11] Krouma A, Abdelly C. Importance of iron use efficiency in common bean (Phaseolus vulgaris L.) for iron chlorosis resistance. J Plant Nutr and Soil Sci 2003;4:525-528.
  • [12] Chaney RL, Brown JC, Tiffin LO. Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol 1972;50:734-739.
  • [13] Römheld V, Marschner H. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol 1986;80:175-180.
  • [14] Marschner H, Römheld V, Kissel M. Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr 1986;9:695-713.
  • [15] Hewitt EJ. Sand and water culture methods used in the study of plant nutrition; 1966.
  • [16] Kacar B, İnal A. Bitki Analizleri, 1. Basım. Nobel Yayınları, Ankara; 2008.
  • [17] Ojeda M, Schaffer B, Davies FS. Root and leaf ferric chelate reductase activity in pond apple and soursop. J Plant Nutr 2004;27:1381-1393.
  • [18] Takkar PN, Kaur NP. HCI method for Fe+2 estimation to resolve iron clorosis in plant. J Plant Nutr 1984;7(1-5):81-90.
  • [19] Arnon D. Copper enzymes in isolated chloroplast polyphenoloxidase in beta vulgaris. Plant Physiol 1949;24:1-15.
  • [20] Withan FH, Blayedes DF, Devlin RM. Experiments in Plant Physiology. Van Nostrand Reinhold Co., New York. 1971. p.55-58.
  • [21] Chen Y, Barak P. Iron nutrition of plants in calcerous soils. Adv Agron 1982;35:217-240.
  • [22] Lang HJ, Reed DW. Comparison of HCl extraction versus total iron analysis for ron tissue analysis for iron tissue analysis. J Plant Nutr 1987;10 (7):107-116.
  • [23] Slatni T, Krouma A, Gouia H, Abdelly C. Importance of ferric chelate reductase activity and acidification capacity in root nodules of N2-fixing common bean (Phaseolus vulgaris L.) subjected to iron deficiency. Symbiosis 2009;47: 35-42.
  • [24] Morales F, Abadia A, Abadia J. Characterization of the xanthophyll cycle and other photosynthetic pigment changes induced by iron deficiency in sugar beet (Beta vulgaris L.). Plant Physiol 1990;94:607-613.
  • [25] Terry N, Zayed AM. Physiology and biochemistry of leaves under iron deficiency. In: Iron nutrition in soils and plants, Abadia, J., ed. Kluwer Academic Publishers, Dordrecht, The Netherlands. 1995. p. 283-294.
  • [26] Thoiron S, Pascal N, Briat JF. Impact of iron deficiency and iron re-supply during the early stages of vegetative development in maize (Zea mays L.). Plant Cell Environ 1997;20:1051-1060.
  • [27] Lopez-Millan AF, Morales F, Abadia A, Abadia J. Changes induced by Fe deficiency and Fe resupply in the organic and metabolism of sugar beet (Beta vulgaris) leaves. Physiol Plant 2001;112:31-38.
  • [28] Marschner H. Mineral nutrition of higher plants. Institute of Plant Nutrition University of Hohenheim Federal Republic of Germany. Academic Press; 2002.
  • [29] Krouma A, Slatni T, Abdelly C. Differential tolerance to lime-induced chlorosis of N2-fixing common bean (Phaseolus vulgaris L.) Symbiosis, 2008;46:137-143.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Articles
Authors

Ahmet Korkmaz 0000-0001-5595-0618

İlkay Çoka This is me 0000-0001-8387-8457

Güney Akınoğlu 0000-0003-4624-2876

Project Number PYO.ZRT.1901.16.003
Publication Date December 31, 2021
Published in Issue Year 2021

Cite

APA Korkmaz, A., Çoka, İ., & Akınoğlu, G. (2021). Demir Noksanlığı Şartlarında Fasulye Çeşitlerinin Demir Beslenme Kabiliyetlerine Göre Gruplandırılması ve Çeşitlerin En İyi Demir Beslenme İndekslerinin Belirlenmesi. Türk Doğa Ve Fen Dergisi, 10(2), 141-147. https://doi.org/10.46810/tdfd.910721
AMA Korkmaz A, Çoka İ, Akınoğlu G. Demir Noksanlığı Şartlarında Fasulye Çeşitlerinin Demir Beslenme Kabiliyetlerine Göre Gruplandırılması ve Çeşitlerin En İyi Demir Beslenme İndekslerinin Belirlenmesi. TDFD. December 2021;10(2):141-147. doi:10.46810/tdfd.910721
Chicago Korkmaz, Ahmet, İlkay Çoka, and Güney Akınoğlu. “Demir Noksanlığı Şartlarında Fasulye Çeşitlerinin Demir Beslenme Kabiliyetlerine Göre Gruplandırılması Ve Çeşitlerin En İyi Demir Beslenme İndekslerinin Belirlenmesi”. Türk Doğa Ve Fen Dergisi 10, no. 2 (December 2021): 141-47. https://doi.org/10.46810/tdfd.910721.
EndNote Korkmaz A, Çoka İ, Akınoğlu G (December 1, 2021) Demir Noksanlığı Şartlarında Fasulye Çeşitlerinin Demir Beslenme Kabiliyetlerine Göre Gruplandırılması ve Çeşitlerin En İyi Demir Beslenme İndekslerinin Belirlenmesi. Türk Doğa ve Fen Dergisi 10 2 141–147.
IEEE A. Korkmaz, İ. Çoka, and G. Akınoğlu, “Demir Noksanlığı Şartlarında Fasulye Çeşitlerinin Demir Beslenme Kabiliyetlerine Göre Gruplandırılması ve Çeşitlerin En İyi Demir Beslenme İndekslerinin Belirlenmesi”, TDFD, vol. 10, no. 2, pp. 141–147, 2021, doi: 10.46810/tdfd.910721.
ISNAD Korkmaz, Ahmet et al. “Demir Noksanlığı Şartlarında Fasulye Çeşitlerinin Demir Beslenme Kabiliyetlerine Göre Gruplandırılması Ve Çeşitlerin En İyi Demir Beslenme İndekslerinin Belirlenmesi”. Türk Doğa ve Fen Dergisi 10/2 (December 2021), 141-147. https://doi.org/10.46810/tdfd.910721.
JAMA Korkmaz A, Çoka İ, Akınoğlu G. Demir Noksanlığı Şartlarında Fasulye Çeşitlerinin Demir Beslenme Kabiliyetlerine Göre Gruplandırılması ve Çeşitlerin En İyi Demir Beslenme İndekslerinin Belirlenmesi. TDFD. 2021;10:141–147.
MLA Korkmaz, Ahmet et al. “Demir Noksanlığı Şartlarında Fasulye Çeşitlerinin Demir Beslenme Kabiliyetlerine Göre Gruplandırılması Ve Çeşitlerin En İyi Demir Beslenme İndekslerinin Belirlenmesi”. Türk Doğa Ve Fen Dergisi, vol. 10, no. 2, 2021, pp. 141-7, doi:10.46810/tdfd.910721.
Vancouver Korkmaz A, Çoka İ, Akınoğlu G. Demir Noksanlığı Şartlarında Fasulye Çeşitlerinin Demir Beslenme Kabiliyetlerine Göre Gruplandırılması ve Çeşitlerin En İyi Demir Beslenme İndekslerinin Belirlenmesi. TDFD. 2021;10(2):141-7.